Properties

Label 1011.4
Level 1011
Weight 4
Dimension 84840
Nonzero newspaces 20
Sturm bound 302848
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1011 = 3 \cdot 337 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(302848\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1011))\).

Total New Old
Modular forms 114240 85512 28728
Cusp forms 112896 84840 28056
Eisenstein series 1344 672 672

Trace form

\( 84840 q - 168 q^{3} - 336 q^{4} - 168 q^{6} - 336 q^{7} - 168 q^{9} - 336 q^{10} - 168 q^{12} - 336 q^{13} - 168 q^{15} - 336 q^{16} - 168 q^{18} - 336 q^{19} - 168 q^{21} - 336 q^{22} - 168 q^{24} - 336 q^{25}+ \cdots - 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1011))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1011.4.a \(\chi_{1011}(1, \cdot)\) 1011.4.a.a 34 1
1011.4.a.b 38
1011.4.a.c 46
1011.4.a.d 50
1011.4.d \(\chi_{1011}(673, \cdot)\) n/a 168 1
1011.4.e \(\chi_{1011}(208, \cdot)\) n/a 336 2
1011.4.g \(\chi_{1011}(148, \cdot)\) n/a 336 2
1011.4.h \(\chi_{1011}(466, \cdot)\) n/a 336 2
1011.4.k \(\chi_{1011}(52, \cdot)\) n/a 1008 6
1011.4.m \(\chi_{1011}(85, \cdot)\) n/a 680 4
1011.4.n \(\chi_{1011}(220, \cdot)\) n/a 672 4
1011.4.p \(\chi_{1011}(379, \cdot)\) n/a 1008 6
1011.4.s \(\chi_{1011}(59, \cdot)\) n/a 2688 8
1011.4.u \(\chi_{1011}(4, \cdot)\) n/a 2016 12
1011.4.v \(\chi_{1011}(172, \cdot)\) n/a 1360 8
1011.4.x \(\chi_{1011}(49, \cdot)\) n/a 2016 12
1011.4.bb \(\chi_{1011}(358, \cdot)\) n/a 2016 12
1011.4.bd \(\chi_{1011}(38, \cdot)\) n/a 5376 16
1011.4.be \(\chi_{1011}(7, \cdot)\) n/a 4080 24
1011.4.bh \(\chi_{1011}(37, \cdot)\) n/a 4032 24
1011.4.bj \(\chi_{1011}(5, \cdot)\) n/a 16128 48
1011.4.bl \(\chi_{1011}(28, \cdot)\) n/a 8160 48
1011.4.bm \(\chi_{1011}(20, \cdot)\) n/a 32256 96

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1011))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1011)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(337))\)\(^{\oplus 2}\)