Properties

Label 1008.3.o.b.1007.12
Level $1008$
Weight $3$
Character 1008.1007
Analytic conductor $27.466$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(1007,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.1007"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.o (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1007.12
Character \(\chi\) \(=\) 1008.1007
Dual form 1008.3.o.b.1007.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.718749 q^{5} +(-6.52255 + 2.54092i) q^{7} -13.1805 q^{11} -12.0430i q^{13} +17.0788 q^{17} +6.05336 q^{19} +10.8926 q^{23} -24.4834 q^{25} +8.20529i q^{29} +36.6031 q^{31} +(4.68808 - 1.82629i) q^{35} +45.0874 q^{37} +62.4228 q^{41} +12.0100i q^{43} +87.3347i q^{47} +(36.0874 - 33.1466i) q^{49} +74.7970i q^{53} +9.47344 q^{55} +22.0297i q^{59} -57.2996i q^{61} +8.65587i q^{65} -47.6026i q^{67} -66.4226 q^{71} -36.0414i q^{73} +(85.9703 - 33.4905i) q^{77} +46.6882i q^{79} +38.2957i q^{83} -12.2753 q^{85} +126.425 q^{89} +(30.6003 + 78.5509i) q^{91} -4.35085 q^{95} -126.730i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 264 q^{25} - 96 q^{37} - 312 q^{49} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.718749 −0.143750 −0.0718749 0.997414i \(-0.522898\pi\)
−0.0718749 + 0.997414i \(0.522898\pi\)
\(6\) 0 0
\(7\) −6.52255 + 2.54092i −0.931793 + 0.362989i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.1805 −1.19822 −0.599112 0.800665i \(-0.704480\pi\)
−0.599112 + 0.800665i \(0.704480\pi\)
\(12\) 0 0
\(13\) 12.0430i 0.926383i −0.886258 0.463191i \(-0.846704\pi\)
0.886258 0.463191i \(-0.153296\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.0788 1.00463 0.502317 0.864684i \(-0.332481\pi\)
0.502317 + 0.864684i \(0.332481\pi\)
\(18\) 0 0
\(19\) 6.05336 0.318598 0.159299 0.987230i \(-0.449077\pi\)
0.159299 + 0.987230i \(0.449077\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 10.8926 0.473593 0.236796 0.971559i \(-0.423903\pi\)
0.236796 + 0.971559i \(0.423903\pi\)
\(24\) 0 0
\(25\) −24.4834 −0.979336
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.20529i 0.282941i 0.989942 + 0.141470i \(0.0451830\pi\)
−0.989942 + 0.141470i \(0.954817\pi\)
\(30\) 0 0
\(31\) 36.6031 1.18075 0.590373 0.807131i \(-0.298981\pi\)
0.590373 + 0.807131i \(0.298981\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.68808 1.82629i 0.133945 0.0521796i
\(36\) 0 0
\(37\) 45.0874 1.21858 0.609290 0.792948i \(-0.291455\pi\)
0.609290 + 0.792948i \(0.291455\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 62.4228 1.52251 0.761253 0.648454i \(-0.224584\pi\)
0.761253 + 0.648454i \(0.224584\pi\)
\(42\) 0 0
\(43\) 12.0100i 0.279303i 0.990201 + 0.139652i \(0.0445983\pi\)
−0.990201 + 0.139652i \(0.955402\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 87.3347i 1.85818i 0.369848 + 0.929092i \(0.379410\pi\)
−0.369848 + 0.929092i \(0.620590\pi\)
\(48\) 0 0
\(49\) 36.0874 33.1466i 0.736478 0.676461i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 74.7970i 1.41126i 0.708579 + 0.705632i \(0.249337\pi\)
−0.708579 + 0.705632i \(0.750663\pi\)
\(54\) 0 0
\(55\) 9.47344 0.172244
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 22.0297i 0.373384i 0.982418 + 0.186692i \(0.0597767\pi\)
−0.982418 + 0.186692i \(0.940223\pi\)
\(60\) 0 0
\(61\) 57.2996i 0.939338i −0.882843 0.469669i \(-0.844373\pi\)
0.882843 0.469669i \(-0.155627\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.65587i 0.133167i
\(66\) 0 0
\(67\) 47.6026i 0.710487i −0.934774 0.355244i \(-0.884398\pi\)
0.934774 0.355244i \(-0.115602\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −66.4226 −0.935530 −0.467765 0.883853i \(-0.654941\pi\)
−0.467765 + 0.883853i \(0.654941\pi\)
\(72\) 0 0
\(73\) 36.0414i 0.493718i −0.969051 0.246859i \(-0.920602\pi\)
0.969051 0.246859i \(-0.0793984\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 85.9703 33.4905i 1.11650 0.434942i
\(78\) 0 0
\(79\) 46.6882i 0.590990i 0.955344 + 0.295495i \(0.0954845\pi\)
−0.955344 + 0.295495i \(0.904515\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 38.2957i 0.461394i 0.973026 + 0.230697i \(0.0741005\pi\)
−0.973026 + 0.230697i \(0.925899\pi\)
\(84\) 0 0
\(85\) −12.2753 −0.144416
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 126.425 1.42051 0.710255 0.703945i \(-0.248580\pi\)
0.710255 + 0.703945i \(0.248580\pi\)
\(90\) 0 0
\(91\) 30.6003 + 78.5509i 0.336267 + 0.863197i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.35085 −0.0457984
\(96\) 0 0
\(97\) 126.730i 1.30649i −0.757146 0.653246i \(-0.773407\pi\)
0.757146 0.653246i \(-0.226593\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 129.877 1.28591 0.642955 0.765904i \(-0.277708\pi\)
0.642955 + 0.765904i \(0.277708\pi\)
\(102\) 0 0
\(103\) 107.831 1.04691 0.523454 0.852054i \(-0.324643\pi\)
0.523454 + 0.852054i \(0.324643\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 31.6555 0.295845 0.147923 0.988999i \(-0.452741\pi\)
0.147923 + 0.988999i \(0.452741\pi\)
\(108\) 0 0
\(109\) 37.6040 0.344991 0.172496 0.985010i \(-0.444817\pi\)
0.172496 + 0.985010i \(0.444817\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 61.7890i 0.546806i 0.961900 + 0.273403i \(0.0881492\pi\)
−0.961900 + 0.273403i \(0.911851\pi\)
\(114\) 0 0
\(115\) −7.82907 −0.0680788
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −111.397 + 43.3958i −0.936111 + 0.364671i
\(120\) 0 0
\(121\) 52.7247 0.435741
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 35.5661 0.284529
\(126\) 0 0
\(127\) 28.1504i 0.221656i 0.993840 + 0.110828i \(0.0353503\pi\)
−0.993840 + 0.110828i \(0.964650\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 114.344i 0.872855i −0.899739 0.436427i \(-0.856244\pi\)
0.899739 0.436427i \(-0.143756\pi\)
\(132\) 0 0
\(133\) −39.4834 + 15.3811i −0.296868 + 0.115648i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.07205i 0.0297230i −0.999890 0.0148615i \(-0.995269\pi\)
0.999890 0.0148615i \(-0.00473073\pi\)
\(138\) 0 0
\(139\) −9.02009 −0.0648927 −0.0324464 0.999473i \(-0.510330\pi\)
−0.0324464 + 0.999473i \(0.510330\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 158.732i 1.11001i
\(144\) 0 0
\(145\) 5.89754i 0.0406727i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 184.375i 1.23742i 0.785621 + 0.618708i \(0.212344\pi\)
−0.785621 + 0.618708i \(0.787656\pi\)
\(150\) 0 0
\(151\) 113.229i 0.749861i 0.927053 + 0.374931i \(0.122334\pi\)
−0.927053 + 0.374931i \(0.877666\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −26.3084 −0.169732
\(156\) 0 0
\(157\) 201.949i 1.28630i −0.765739 0.643151i \(-0.777627\pi\)
0.765739 0.643151i \(-0.222373\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −71.0478 + 27.6773i −0.441291 + 0.171909i
\(162\) 0 0
\(163\) 307.256i 1.88501i −0.334198 0.942503i \(-0.608466\pi\)
0.334198 0.942503i \(-0.391534\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 217.945i 1.30506i 0.757764 + 0.652529i \(0.226292\pi\)
−0.757764 + 0.652529i \(0.773708\pi\)
\(168\) 0 0
\(169\) 23.9668 0.141815
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.6552 0.102053 0.0510266 0.998697i \(-0.483751\pi\)
0.0510266 + 0.998697i \(0.483751\pi\)
\(174\) 0 0
\(175\) 159.694 62.2104i 0.912539 0.355488i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 71.5186 0.399545 0.199773 0.979842i \(-0.435980\pi\)
0.199773 + 0.979842i \(0.435980\pi\)
\(180\) 0 0
\(181\) 162.482i 0.897693i 0.893609 + 0.448846i \(0.148165\pi\)
−0.893609 + 0.448846i \(0.851835\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −32.4065 −0.175170
\(186\) 0 0
\(187\) −225.106 −1.20378
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 248.036 1.29862 0.649309 0.760525i \(-0.275058\pi\)
0.649309 + 0.760525i \(0.275058\pi\)
\(192\) 0 0
\(193\) 179.833 0.931778 0.465889 0.884843i \(-0.345735\pi\)
0.465889 + 0.884843i \(0.345735\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 276.983i 1.40600i −0.711188 0.703001i \(-0.751843\pi\)
0.711188 0.703001i \(-0.248157\pi\)
\(198\) 0 0
\(199\) −4.12608 −0.0207341 −0.0103670 0.999946i \(-0.503300\pi\)
−0.0103670 + 0.999946i \(0.503300\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −20.8490 53.5194i −0.102704 0.263642i
\(204\) 0 0
\(205\) −44.8663 −0.218860
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −79.7862 −0.381752
\(210\) 0 0
\(211\) 289.252i 1.37086i 0.728138 + 0.685431i \(0.240386\pi\)
−0.728138 + 0.685431i \(0.759614\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.63221i 0.0401498i
\(216\) 0 0
\(217\) −238.746 + 93.0056i −1.10021 + 0.428597i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 205.679i 0.930675i
\(222\) 0 0
\(223\) 141.619 0.635065 0.317532 0.948247i \(-0.397146\pi\)
0.317532 + 0.948247i \(0.397146\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 366.717i 1.61549i −0.589529 0.807747i \(-0.700686\pi\)
0.589529 0.807747i \(-0.299314\pi\)
\(228\) 0 0
\(229\) 48.2856i 0.210854i −0.994427 0.105427i \(-0.966379\pi\)
0.994427 0.105427i \(-0.0336210\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 199.063i 0.854347i 0.904170 + 0.427174i \(0.140491\pi\)
−0.904170 + 0.427174i \(0.859509\pi\)
\(234\) 0 0
\(235\) 62.7717i 0.267114i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −369.790 −1.54724 −0.773619 0.633651i \(-0.781556\pi\)
−0.773619 + 0.633651i \(0.781556\pi\)
\(240\) 0 0
\(241\) 446.214i 1.85151i 0.378123 + 0.925756i \(0.376570\pi\)
−0.378123 + 0.925756i \(0.623430\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −25.9378 + 23.8241i −0.105869 + 0.0972412i
\(246\) 0 0
\(247\) 72.9005i 0.295144i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 397.708i 1.58449i −0.610201 0.792247i \(-0.708911\pi\)
0.610201 0.792247i \(-0.291089\pi\)
\(252\) 0 0
\(253\) −143.570 −0.567470
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −160.583 −0.624836 −0.312418 0.949945i \(-0.601139\pi\)
−0.312418 + 0.949945i \(0.601139\pi\)
\(258\) 0 0
\(259\) −294.085 + 114.564i −1.13546 + 0.442331i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 161.172 0.612822 0.306411 0.951899i \(-0.400872\pi\)
0.306411 + 0.951899i \(0.400872\pi\)
\(264\) 0 0
\(265\) 53.7602i 0.202869i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −293.506 −1.09110 −0.545550 0.838078i \(-0.683679\pi\)
−0.545550 + 0.838078i \(0.683679\pi\)
\(270\) 0 0
\(271\) −9.10088 −0.0335826 −0.0167913 0.999859i \(-0.505345\pi\)
−0.0167913 + 0.999859i \(0.505345\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 322.703 1.17346
\(276\) 0 0
\(277\) 58.0341 0.209509 0.104755 0.994498i \(-0.466594\pi\)
0.104755 + 0.994498i \(0.466594\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 237.740i 0.846050i −0.906118 0.423025i \(-0.860968\pi\)
0.906118 0.423025i \(-0.139032\pi\)
\(282\) 0 0
\(283\) −118.869 −0.420030 −0.210015 0.977698i \(-0.567351\pi\)
−0.210015 + 0.977698i \(0.567351\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −407.156 + 158.611i −1.41866 + 0.552653i
\(288\) 0 0
\(289\) 2.68439 0.00928853
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −343.134 −1.17110 −0.585552 0.810635i \(-0.699122\pi\)
−0.585552 + 0.810635i \(0.699122\pi\)
\(294\) 0 0
\(295\) 15.8338i 0.0536739i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 131.180i 0.438728i
\(300\) 0 0
\(301\) −30.5166 78.3362i −0.101384 0.260253i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 41.1840i 0.135030i
\(306\) 0 0
\(307\) −438.690 −1.42896 −0.714479 0.699657i \(-0.753336\pi\)
−0.714479 + 0.699657i \(0.753336\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 81.3566i 0.261597i −0.991409 0.130798i \(-0.958246\pi\)
0.991409 0.130798i \(-0.0417541\pi\)
\(312\) 0 0
\(313\) 240.509i 0.768401i 0.923250 + 0.384200i \(0.125523\pi\)
−0.923250 + 0.384200i \(0.874477\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 36.9841i 0.116669i −0.998297 0.0583346i \(-0.981421\pi\)
0.998297 0.0583346i \(-0.0185790\pi\)
\(318\) 0 0
\(319\) 108.149i 0.339027i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 103.384 0.320074
\(324\) 0 0
\(325\) 294.853i 0.907240i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −221.911 569.645i −0.674500 1.73144i
\(330\) 0 0
\(331\) 606.081i 1.83106i −0.402250 0.915530i \(-0.631772\pi\)
0.402250 0.915530i \(-0.368228\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 34.2143i 0.102132i
\(336\) 0 0
\(337\) −193.692 −0.574755 −0.287377 0.957817i \(-0.592783\pi\)
−0.287377 + 0.957817i \(0.592783\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −482.446 −1.41480
\(342\) 0 0
\(343\) −151.159 + 307.896i −0.440697 + 0.897656i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 404.557 1.16587 0.582935 0.812518i \(-0.301904\pi\)
0.582935 + 0.812518i \(0.301904\pi\)
\(348\) 0 0
\(349\) 316.549i 0.907016i 0.891252 + 0.453508i \(0.149828\pi\)
−0.891252 + 0.453508i \(0.850172\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −273.644 −0.775195 −0.387598 0.921829i \(-0.626695\pi\)
−0.387598 + 0.921829i \(0.626695\pi\)
\(354\) 0 0
\(355\) 47.7412 0.134482
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 628.441 1.75053 0.875267 0.483641i \(-0.160686\pi\)
0.875267 + 0.483641i \(0.160686\pi\)
\(360\) 0 0
\(361\) −324.357 −0.898495
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 25.9047i 0.0709718i
\(366\) 0 0
\(367\) 363.759 0.991169 0.495584 0.868560i \(-0.334954\pi\)
0.495584 + 0.868560i \(0.334954\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −190.053 487.867i −0.512273 1.31501i
\(372\) 0 0
\(373\) 358.591 0.961370 0.480685 0.876893i \(-0.340388\pi\)
0.480685 + 0.876893i \(0.340388\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 98.8160 0.262112
\(378\) 0 0
\(379\) 20.2357i 0.0533924i 0.999644 + 0.0266962i \(0.00849867\pi\)
−0.999644 + 0.0266962i \(0.991501\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 362.193i 0.945674i 0.881150 + 0.472837i \(0.156770\pi\)
−0.881150 + 0.472837i \(0.843230\pi\)
\(384\) 0 0
\(385\) −61.7911 + 24.0713i −0.160496 + 0.0625228i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 401.899i 1.03316i 0.856239 + 0.516580i \(0.172795\pi\)
−0.856239 + 0.516580i \(0.827205\pi\)
\(390\) 0 0
\(391\) 186.033 0.475787
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 33.5571i 0.0849546i
\(396\) 0 0
\(397\) 600.636i 1.51294i 0.654030 + 0.756469i \(0.273077\pi\)
−0.654030 + 0.756469i \(0.726923\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 320.267i 0.798672i 0.916805 + 0.399336i \(0.130759\pi\)
−0.916805 + 0.399336i \(0.869241\pi\)
\(402\) 0 0
\(403\) 440.810i 1.09382i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −594.273 −1.46013
\(408\) 0 0
\(409\) 536.109i 1.31078i −0.755291 0.655390i \(-0.772504\pi\)
0.755291 0.655390i \(-0.227496\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −55.9757 143.690i −0.135534 0.347917i
\(414\) 0 0
\(415\) 27.5250i 0.0663252i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 572.718i 1.36687i −0.730012 0.683435i \(-0.760485\pi\)
0.730012 0.683435i \(-0.239515\pi\)
\(420\) 0 0
\(421\) −525.282 −1.24770 −0.623851 0.781543i \(-0.714433\pi\)
−0.623851 + 0.781543i \(0.714433\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −418.146 −0.983874
\(426\) 0 0
\(427\) 145.594 + 373.740i 0.340969 + 0.875269i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −319.218 −0.740645 −0.370323 0.928903i \(-0.620753\pi\)
−0.370323 + 0.928903i \(0.620753\pi\)
\(432\) 0 0
\(433\) 415.694i 0.960032i 0.877260 + 0.480016i \(0.159369\pi\)
−0.877260 + 0.480016i \(0.840631\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 65.9371 0.150886
\(438\) 0 0
\(439\) 5.25771 0.0119766 0.00598828 0.999982i \(-0.498094\pi\)
0.00598828 + 0.999982i \(0.498094\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 847.180 1.91237 0.956186 0.292761i \(-0.0945741\pi\)
0.956186 + 0.292761i \(0.0945741\pi\)
\(444\) 0 0
\(445\) −90.8681 −0.204198
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 445.707i 0.992667i −0.868132 0.496333i \(-0.834679\pi\)
0.868132 0.496333i \(-0.165321\pi\)
\(450\) 0 0
\(451\) −822.761 −1.82430
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −21.9939 56.4584i −0.0483382 0.124084i
\(456\) 0 0
\(457\) 719.184 1.57371 0.786853 0.617140i \(-0.211709\pi\)
0.786853 + 0.617140i \(0.211709\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −126.659 −0.274749 −0.137375 0.990519i \(-0.543866\pi\)
−0.137375 + 0.990519i \(0.543866\pi\)
\(462\) 0 0
\(463\) 711.905i 1.53759i 0.639494 + 0.768796i \(0.279144\pi\)
−0.639494 + 0.768796i \(0.720856\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 486.913i 1.04264i −0.853361 0.521320i \(-0.825440\pi\)
0.853361 0.521320i \(-0.174560\pi\)
\(468\) 0 0
\(469\) 120.955 + 310.491i 0.257899 + 0.662027i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 158.298i 0.334668i
\(474\) 0 0
\(475\) −148.207 −0.312015
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 708.637i 1.47941i 0.672932 + 0.739704i \(0.265035\pi\)
−0.672932 + 0.739704i \(0.734965\pi\)
\(480\) 0 0
\(481\) 542.987i 1.12887i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 91.0869i 0.187808i
\(486\) 0 0
\(487\) 309.923i 0.636392i −0.948025 0.318196i \(-0.896923\pi\)
0.948025 0.318196i \(-0.103077\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −905.482 −1.84416 −0.922080 0.387000i \(-0.873511\pi\)
−0.922080 + 0.387000i \(0.873511\pi\)
\(492\) 0 0
\(493\) 140.136i 0.284252i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 433.245 168.775i 0.871721 0.339587i
\(498\) 0 0
\(499\) 484.957i 0.971857i −0.873998 0.485929i \(-0.838481\pi\)
0.873998 0.485929i \(-0.161519\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 170.145i 0.338261i 0.985594 + 0.169130i \(0.0540959\pi\)
−0.985594 + 0.169130i \(0.945904\pi\)
\(504\) 0 0
\(505\) −93.3488 −0.184849
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 740.516 1.45484 0.727422 0.686190i \(-0.240718\pi\)
0.727422 + 0.686190i \(0.240718\pi\)
\(510\) 0 0
\(511\) 91.5784 + 235.082i 0.179214 + 0.460043i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −77.5038 −0.150493
\(516\) 0 0
\(517\) 1151.11i 2.22652i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 132.788 0.254871 0.127436 0.991847i \(-0.459325\pi\)
0.127436 + 0.991847i \(0.459325\pi\)
\(522\) 0 0
\(523\) 28.0680 0.0536674 0.0268337 0.999640i \(-0.491458\pi\)
0.0268337 + 0.999640i \(0.491458\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 625.136 1.18622
\(528\) 0 0
\(529\) −410.351 −0.775710
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 751.756i 1.41042i
\(534\) 0 0
\(535\) −22.7523 −0.0425277
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −475.649 + 436.888i −0.882466 + 0.810552i
\(540\) 0 0
\(541\) 142.826 0.264004 0.132002 0.991249i \(-0.457860\pi\)
0.132002 + 0.991249i \(0.457860\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −27.0279 −0.0495924
\(546\) 0 0
\(547\) 464.249i 0.848718i 0.905494 + 0.424359i \(0.139501\pi\)
−0.905494 + 0.424359i \(0.860499\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 49.6696i 0.0901444i
\(552\) 0 0
\(553\) −118.631 304.526i −0.214523 0.550680i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 755.433i 1.35625i 0.734945 + 0.678127i \(0.237208\pi\)
−0.734945 + 0.678127i \(0.762792\pi\)
\(558\) 0 0
\(559\) 144.637 0.258742
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 426.385i 0.757345i −0.925531 0.378673i \(-0.876381\pi\)
0.925531 0.378673i \(-0.123619\pi\)
\(564\) 0 0
\(565\) 44.4108i 0.0786032i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 761.417i 1.33817i 0.743187 + 0.669083i \(0.233313\pi\)
−0.743187 + 0.669083i \(0.766687\pi\)
\(570\) 0 0
\(571\) 405.274i 0.709762i 0.934911 + 0.354881i \(0.115479\pi\)
−0.934911 + 0.354881i \(0.884521\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −266.689 −0.463806
\(576\) 0 0
\(577\) 103.329i 0.179080i 0.995983 + 0.0895401i \(0.0285397\pi\)
−0.995983 + 0.0895401i \(0.971460\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −97.3063 249.786i −0.167481 0.429923i
\(582\) 0 0
\(583\) 985.859i 1.69101i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 748.072i 1.27440i 0.770699 + 0.637199i \(0.219907\pi\)
−0.770699 + 0.637199i \(0.780093\pi\)
\(588\) 0 0
\(589\) 221.572 0.376183
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 708.242 1.19434 0.597169 0.802116i \(-0.296292\pi\)
0.597169 + 0.802116i \(0.296292\pi\)
\(594\) 0 0
\(595\) 80.0666 31.1907i 0.134566 0.0524213i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 414.088 0.691298 0.345649 0.938364i \(-0.387659\pi\)
0.345649 + 0.938364i \(0.387659\pi\)
\(600\) 0 0
\(601\) 682.465i 1.13555i 0.823184 + 0.567775i \(0.192196\pi\)
−0.823184 + 0.567775i \(0.807804\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −37.8958 −0.0626377
\(606\) 0 0
\(607\) 929.956 1.53205 0.766027 0.642809i \(-0.222231\pi\)
0.766027 + 0.642809i \(0.222231\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1051.77 1.72139
\(612\) 0 0
\(613\) 596.834 0.973628 0.486814 0.873506i \(-0.338159\pi\)
0.486814 + 0.873506i \(0.338159\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1025.43i 1.66197i 0.556298 + 0.830983i \(0.312221\pi\)
−0.556298 + 0.830983i \(0.687779\pi\)
\(618\) 0 0
\(619\) 562.181 0.908209 0.454104 0.890948i \(-0.349959\pi\)
0.454104 + 0.890948i \(0.349959\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −824.616 + 321.237i −1.32362 + 0.515629i
\(624\) 0 0
\(625\) 586.522 0.938435
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 770.038 1.22423
\(630\) 0 0
\(631\) 231.394i 0.366710i 0.983047 + 0.183355i \(0.0586957\pi\)
−0.983047 + 0.183355i \(0.941304\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 20.2330i 0.0318631i
\(636\) 0 0
\(637\) −399.184 434.600i −0.626662 0.682260i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 133.202i 0.207803i −0.994588 0.103902i \(-0.966867\pi\)
0.994588 0.103902i \(-0.0331327\pi\)
\(642\) 0 0
\(643\) 773.102 1.20234 0.601168 0.799123i \(-0.294702\pi\)
0.601168 + 0.799123i \(0.294702\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 58.7839i 0.0908561i 0.998968 + 0.0454281i \(0.0144652\pi\)
−0.998968 + 0.0454281i \(0.985535\pi\)
\(648\) 0 0
\(649\) 290.361i 0.447398i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1019.61i 1.56142i 0.624893 + 0.780711i \(0.285143\pi\)
−0.624893 + 0.780711i \(0.714857\pi\)
\(654\) 0 0
\(655\) 82.1846i 0.125473i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −222.681 −0.337908 −0.168954 0.985624i \(-0.554039\pi\)
−0.168954 + 0.985624i \(0.554039\pi\)
\(660\) 0 0
\(661\) 936.819i 1.41727i −0.705573 0.708637i \(-0.749310\pi\)
0.705573 0.708637i \(-0.250690\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 28.3786 11.0552i 0.0426747 0.0166243i
\(666\) 0 0
\(667\) 89.3771i 0.133999i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 755.236i 1.12554i
\(672\) 0 0
\(673\) 180.866 0.268746 0.134373 0.990931i \(-0.457098\pi\)
0.134373 + 0.990931i \(0.457098\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 714.110 1.05482 0.527408 0.849612i \(-0.323164\pi\)
0.527408 + 0.849612i \(0.323164\pi\)
\(678\) 0 0
\(679\) 322.010 + 826.602i 0.474242 + 1.21738i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 418.174 0.612260 0.306130 0.951990i \(-0.400966\pi\)
0.306130 + 0.951990i \(0.400966\pi\)
\(684\) 0 0
\(685\) 2.92678i 0.00427267i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 900.778 1.30737
\(690\) 0 0
\(691\) −1196.06 −1.73091 −0.865453 0.500991i \(-0.832969\pi\)
−0.865453 + 0.500991i \(0.832969\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.48318 0.00932831
\(696\) 0 0
\(697\) 1066.10 1.52956
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1102.31i 1.57248i −0.617923 0.786238i \(-0.712026\pi\)
0.617923 0.786238i \(-0.287974\pi\)
\(702\) 0 0
\(703\) 272.931 0.388237
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −847.129 + 330.007i −1.19820 + 0.466771i
\(708\) 0 0
\(709\) −130.721 −0.184374 −0.0921871 0.995742i \(-0.529386\pi\)
−0.0921871 + 0.995742i \(0.529386\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 398.704 0.559192
\(714\) 0 0
\(715\) 114.088i 0.159564i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 572.947i 0.796866i 0.917197 + 0.398433i \(0.130446\pi\)
−0.917197 + 0.398433i \(0.869554\pi\)
\(720\) 0 0
\(721\) −703.337 + 273.991i −0.975502 + 0.380016i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 200.893i 0.277094i
\(726\) 0 0
\(727\) 23.1626 0.0318606 0.0159303 0.999873i \(-0.494929\pi\)
0.0159303 + 0.999873i \(0.494929\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 205.117i 0.280598i
\(732\) 0 0
\(733\) 1288.22i 1.75746i −0.477318 0.878730i \(-0.658391\pi\)
0.477318 0.878730i \(-0.341609\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 627.425i 0.851323i
\(738\) 0 0
\(739\) 654.581i 0.885765i −0.896580 0.442883i \(-0.853956\pi\)
0.896580 0.442883i \(-0.146044\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −765.496 −1.03028 −0.515139 0.857107i \(-0.672260\pi\)
−0.515139 + 0.857107i \(0.672260\pi\)
\(744\) 0 0
\(745\) 132.519i 0.177878i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −206.474 + 80.4341i −0.275667 + 0.107389i
\(750\) 0 0
\(751\) 1055.73i 1.40577i −0.711305 0.702884i \(-0.751895\pi\)
0.711305 0.702884i \(-0.248105\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 81.3833i 0.107792i
\(756\) 0 0
\(757\) −974.372 −1.28715 −0.643574 0.765384i \(-0.722549\pi\)
−0.643574 + 0.765384i \(0.722549\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −545.838 −0.717264 −0.358632 0.933479i \(-0.616757\pi\)
−0.358632 + 0.933479i \(0.616757\pi\)
\(762\) 0 0
\(763\) −245.274 + 95.5489i −0.321460 + 0.125228i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 265.303 0.345897
\(768\) 0 0
\(769\) 1399.09i 1.81936i −0.415306 0.909682i \(-0.636325\pi\)
0.415306 0.909682i \(-0.363675\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 852.651 1.10304 0.551520 0.834161i \(-0.314048\pi\)
0.551520 + 0.834161i \(0.314048\pi\)
\(774\) 0 0
\(775\) −896.168 −1.15635
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 377.868 0.485068
\(780\) 0 0
\(781\) 875.481 1.12097
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 145.151i 0.184906i
\(786\) 0 0
\(787\) 902.486 1.14674 0.573371 0.819296i \(-0.305635\pi\)
0.573371 + 0.819296i \(0.305635\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −157.001 403.022i −0.198484 0.509510i
\(792\) 0 0
\(793\) −690.058 −0.870187
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 884.614 1.10993 0.554965 0.831874i \(-0.312732\pi\)
0.554965 + 0.831874i \(0.312732\pi\)
\(798\) 0 0
\(799\) 1491.57i 1.86679i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 475.042i 0.591585i
\(804\) 0 0
\(805\) 51.0655 19.8930i 0.0634354 0.0247119i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 107.405i 0.132762i −0.997794 0.0663812i \(-0.978855\pi\)
0.997794 0.0663812i \(-0.0211453\pi\)
\(810\) 0 0
\(811\) 215.158 0.265299 0.132650 0.991163i \(-0.457651\pi\)
0.132650 + 0.991163i \(0.457651\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 220.840i 0.270969i
\(816\) 0 0
\(817\) 72.7012i 0.0889856i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 781.594i 0.952002i 0.879445 + 0.476001i \(0.157914\pi\)
−0.879445 + 0.476001i \(0.842086\pi\)
\(822\) 0 0
\(823\) 701.058i 0.851833i 0.904763 + 0.425916i \(0.140048\pi\)
−0.904763 + 0.425916i \(0.859952\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1524.87 −1.84386 −0.921930 0.387356i \(-0.873388\pi\)
−0.921930 + 0.387356i \(0.873388\pi\)
\(828\) 0 0
\(829\) 789.295i 0.952104i 0.879417 + 0.476052i \(0.157933\pi\)
−0.879417 + 0.476052i \(0.842067\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 616.329 566.103i 0.739891 0.679596i
\(834\) 0 0
\(835\) 156.647i 0.187602i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1184.60i 1.41192i −0.708250 0.705962i \(-0.750515\pi\)
0.708250 0.705962i \(-0.249485\pi\)
\(840\) 0 0
\(841\) 773.673 0.919944
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17.2261 −0.0203859
\(846\) 0 0
\(847\) −343.899 + 133.969i −0.406021 + 0.158169i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 491.121 0.577110
\(852\) 0 0
\(853\) 158.721i 0.186074i 0.995663 + 0.0930371i \(0.0296575\pi\)
−0.995663 + 0.0930371i \(0.970342\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 819.923 0.956737 0.478368 0.878159i \(-0.341228\pi\)
0.478368 + 0.878159i \(0.341228\pi\)
\(858\) 0 0
\(859\) 1566.30 1.82340 0.911700 0.410856i \(-0.134770\pi\)
0.911700 + 0.410856i \(0.134770\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 355.853 0.412344 0.206172 0.978516i \(-0.433899\pi\)
0.206172 + 0.978516i \(0.433899\pi\)
\(864\) 0 0
\(865\) −12.6897 −0.0146701
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 615.372i 0.708138i
\(870\) 0 0
\(871\) −573.277 −0.658183
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −231.982 + 90.3708i −0.265122 + 0.103281i
\(876\) 0 0
\(877\) 1272.14 1.45056 0.725279 0.688456i \(-0.241711\pi\)
0.725279 + 0.688456i \(0.241711\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1195.13 −1.35656 −0.678281 0.734803i \(-0.737275\pi\)
−0.678281 + 0.734803i \(0.737275\pi\)
\(882\) 0 0
\(883\) 502.807i 0.569431i 0.958612 + 0.284715i \(0.0918991\pi\)
−0.958612 + 0.284715i \(0.908101\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 703.859i 0.793527i −0.917921 0.396764i \(-0.870133\pi\)
0.917921 0.396764i \(-0.129867\pi\)
\(888\) 0 0
\(889\) −71.5279 183.612i −0.0804588 0.206538i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 528.669i 0.592014i
\(894\) 0 0
\(895\) −51.4039 −0.0574345
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 300.339i 0.334081i
\(900\) 0 0
\(901\) 1277.44i 1.41780i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 116.784i 0.129043i
\(906\) 0 0
\(907\) 834.516i 0.920084i 0.887897 + 0.460042i \(0.152166\pi\)
−0.887897 + 0.460042i \(0.847834\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 391.022 0.429223 0.214611 0.976700i \(-0.431151\pi\)
0.214611 + 0.976700i \(0.431151\pi\)
\(912\) 0 0
\(913\) 504.755i 0.552853i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 290.539 + 745.815i 0.316837 + 0.813320i
\(918\) 0 0
\(919\) 1552.19i 1.68899i −0.535560 0.844497i \(-0.679900\pi\)
0.535560 0.844497i \(-0.320100\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 799.926i 0.866658i
\(924\) 0 0
\(925\) −1103.89 −1.19340
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 196.405 0.211415 0.105708 0.994397i \(-0.466289\pi\)
0.105708 + 0.994397i \(0.466289\pi\)
\(930\) 0 0
\(931\) 218.450 200.649i 0.234641 0.215519i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 161.795 0.173043
\(936\) 0 0
\(937\) 529.809i 0.565431i 0.959204 + 0.282716i \(0.0912353\pi\)
−0.959204 + 0.282716i \(0.908765\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1744.64 −1.85403 −0.927016 0.375021i \(-0.877635\pi\)
−0.927016 + 0.375021i \(0.877635\pi\)
\(942\) 0 0
\(943\) 679.948 0.721048
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1635.75 1.72730 0.863651 0.504090i \(-0.168172\pi\)
0.863651 + 0.504090i \(0.168172\pi\)
\(948\) 0 0
\(949\) −434.046 −0.457372
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 206.977i 0.217185i 0.994086 + 0.108592i \(0.0346343\pi\)
−0.994086 + 0.108592i \(0.965366\pi\)
\(954\) 0 0
\(955\) −178.276 −0.186676
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.3468 + 26.5602i 0.0107891 + 0.0276957i
\(960\) 0 0
\(961\) 378.787 0.394159
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −129.255 −0.133943
\(966\) 0 0
\(967\) 444.327i 0.459491i −0.973251 0.229745i \(-0.926211\pi\)
0.973251 0.229745i \(-0.0737893\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1130.03i 1.16378i 0.813268 + 0.581890i \(0.197686\pi\)
−0.813268 + 0.581890i \(0.802314\pi\)
\(972\) 0 0
\(973\) 58.8340 22.9193i 0.0604666 0.0235553i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 622.036i 0.636680i −0.947977 0.318340i \(-0.896875\pi\)
0.947977 0.318340i \(-0.103125\pi\)
\(978\) 0 0
\(979\) −1666.35 −1.70209
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1354.99i 1.37842i −0.724560 0.689212i \(-0.757957\pi\)
0.724560 0.689212i \(-0.242043\pi\)
\(984\) 0 0
\(985\) 199.081i 0.202113i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 130.821i 0.132276i
\(990\) 0 0
\(991\) 1642.45i 1.65736i −0.559720 0.828682i \(-0.689091\pi\)
0.559720 0.828682i \(-0.310909\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.96561 0.00298052
\(996\) 0 0
\(997\) 70.4772i 0.0706893i 0.999375 + 0.0353446i \(0.0112529\pi\)
−0.999375 + 0.0353446i \(0.988747\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.o.b.1007.12 yes 24
3.2 odd 2 inner 1008.3.o.b.1007.16 yes 24
4.3 odd 2 inner 1008.3.o.b.1007.11 yes 24
7.6 odd 2 inner 1008.3.o.b.1007.14 yes 24
12.11 even 2 inner 1008.3.o.b.1007.15 yes 24
21.20 even 2 inner 1008.3.o.b.1007.10 yes 24
28.27 even 2 inner 1008.3.o.b.1007.13 yes 24
84.83 odd 2 inner 1008.3.o.b.1007.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.3.o.b.1007.9 24 84.83 odd 2 inner
1008.3.o.b.1007.10 yes 24 21.20 even 2 inner
1008.3.o.b.1007.11 yes 24 4.3 odd 2 inner
1008.3.o.b.1007.12 yes 24 1.1 even 1 trivial
1008.3.o.b.1007.13 yes 24 28.27 even 2 inner
1008.3.o.b.1007.14 yes 24 7.6 odd 2 inner
1008.3.o.b.1007.15 yes 24 12.11 even 2 inner
1008.3.o.b.1007.16 yes 24 3.2 odd 2 inner