Properties

Label 1008.3.o.b
Level $1008$
Weight $3$
Character orbit 1008.o
Analytic conductor $27.466$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(1007,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.1007"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.o (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 264 q^{25} - 96 q^{37} - 312 q^{49} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1007.1 0 0 0 −9.41321 0 −3.32249 6.16125i 0 0 0
1007.2 0 0 0 −9.41321 0 3.32249 6.16125i 0 0 0
1007.3 0 0 0 −9.41321 0 3.32249 + 6.16125i 0 0 0
1007.4 0 0 0 −9.41321 0 −3.32249 + 6.16125i 0 0 0
1007.5 0 0 0 −4.34452 0 −0.646021 6.97013i 0 0 0
1007.6 0 0 0 −4.34452 0 0.646021 6.97013i 0 0 0
1007.7 0 0 0 −4.34452 0 0.646021 + 6.97013i 0 0 0
1007.8 0 0 0 −4.34452 0 −0.646021 + 6.97013i 0 0 0
1007.9 0 0 0 −0.718749 0 −6.52255 2.54092i 0 0 0
1007.10 0 0 0 −0.718749 0 6.52255 + 2.54092i 0 0 0
1007.11 0 0 0 −0.718749 0 6.52255 2.54092i 0 0 0
1007.12 0 0 0 −0.718749 0 −6.52255 + 2.54092i 0 0 0
1007.13 0 0 0 0.718749 0 −6.52255 2.54092i 0 0 0
1007.14 0 0 0 0.718749 0 6.52255 + 2.54092i 0 0 0
1007.15 0 0 0 0.718749 0 6.52255 2.54092i 0 0 0
1007.16 0 0 0 0.718749 0 −6.52255 + 2.54092i 0 0 0
1007.17 0 0 0 4.34452 0 −0.646021 6.97013i 0 0 0
1007.18 0 0 0 4.34452 0 0.646021 6.97013i 0 0 0
1007.19 0 0 0 4.34452 0 0.646021 + 6.97013i 0 0 0
1007.20 0 0 0 4.34452 0 −0.646021 + 6.97013i 0 0 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1007.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
7.b odd 2 1 inner
12.b even 2 1 inner
21.c even 2 1 inner
28.d even 2 1 inner
84.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.3.o.b 24
3.b odd 2 1 inner 1008.3.o.b 24
4.b odd 2 1 inner 1008.3.o.b 24
7.b odd 2 1 inner 1008.3.o.b 24
12.b even 2 1 inner 1008.3.o.b 24
21.c even 2 1 inner 1008.3.o.b 24
28.d even 2 1 inner 1008.3.o.b 24
84.h odd 2 1 inner 1008.3.o.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1008.3.o.b 24 1.a even 1 1 trivial
1008.3.o.b 24 3.b odd 2 1 inner
1008.3.o.b 24 4.b odd 2 1 inner
1008.3.o.b 24 7.b odd 2 1 inner
1008.3.o.b 24 12.b even 2 1 inner
1008.3.o.b 24 21.c even 2 1 inner
1008.3.o.b 24 28.d even 2 1 inner
1008.3.o.b 24 84.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - 108T_{5}^{4} + 1728T_{5}^{2} - 864 \) acting on \(S_{3}^{\mathrm{new}}(1008, [\chi])\). Copy content Toggle raw display