L(s) = 1 | − 0.718·5-s + (−6.52 + 2.54i)7-s − 13.1·11-s − 12.0i·13-s + 17.0·17-s + 6.05·19-s + 10.8·23-s − 24.4·25-s + 8.20i·29-s + 36.6·31-s + (4.68 − 1.82i)35-s + 45.0·37-s + 62.4·41-s + 12.0i·43-s + 87.3i·47-s + ⋯ |
L(s) = 1 | − 0.143·5-s + (−0.931 + 0.362i)7-s − 1.19·11-s − 0.926i·13-s + 1.00·17-s + 0.318·19-s + 0.473·23-s − 0.979·25-s + 0.282i·29-s + 1.18·31-s + (0.133 − 0.0521i)35-s + 1.21·37-s + 1.52·41-s + 0.279i·43-s + 1.85i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.961 - 0.275i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.961 - 0.275i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.384670923\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.384670923\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (6.52 - 2.54i)T \) |
good | 5 | \( 1 + 0.718T + 25T^{2} \) |
| 11 | \( 1 + 13.1T + 121T^{2} \) |
| 13 | \( 1 + 12.0iT - 169T^{2} \) |
| 17 | \( 1 - 17.0T + 289T^{2} \) |
| 19 | \( 1 - 6.05T + 361T^{2} \) |
| 23 | \( 1 - 10.8T + 529T^{2} \) |
| 29 | \( 1 - 8.20iT - 841T^{2} \) |
| 31 | \( 1 - 36.6T + 961T^{2} \) |
| 37 | \( 1 - 45.0T + 1.36e3T^{2} \) |
| 41 | \( 1 - 62.4T + 1.68e3T^{2} \) |
| 43 | \( 1 - 12.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 87.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 74.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 22.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 57.2iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 47.6iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 66.4T + 5.04e3T^{2} \) |
| 73 | \( 1 + 36.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 46.6iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 38.2iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 126.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 126. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.854908782381582631198906549290, −9.106599197761128629003186593654, −7.84677233345055933615847341222, −7.63493826677682917178082400564, −6.17282309289161490183830230536, −5.66826307815467759548116527421, −4.58520201256068598176021879215, −3.22808766836003100536358197877, −2.65061200265493941541506823069, −0.77507488383799599536848990584,
0.65841020326894464945722380786, 2.36017085129514335254145534791, 3.38437037956125004330984950966, 4.36680384178587798654652332291, 5.48165495566295515223272870351, 6.32423429113545043905154816643, 7.30918240639323934825271522154, 7.921080468012269838126563253407, 8.992066835255995563545910318154, 9.915819729782387393539214197606