Properties

Label 1008.3.dc.g.305.1
Level $1008$
Weight $3$
Character 1008.305
Analytic conductor $27.466$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(305,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.305"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.dc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,24,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 90x^{14} + 2793x^{12} + 37090x^{10} + 214104x^{8} + 463326x^{6} + 257641x^{4} + 28374x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.1
Root \(3.52391i\) of defining polynomial
Character \(\chi\) \(=\) 1008.305
Dual form 1008.3.dc.g.737.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.75278 + 4.47607i) q^{5} +(5.17399 - 4.71485i) q^{7} +(1.91794 + 1.10732i) q^{11} +15.7846 q^{13} +(-15.1138 - 8.72595i) q^{17} +(1.79193 + 3.10371i) q^{19} +(-6.65847 + 3.84427i) q^{23} +(27.5704 - 47.7533i) q^{25} -24.6165i q^{29} +(-22.9586 + 39.7654i) q^{31} +(-19.0088 + 59.7123i) q^{35} +(-2.46331 - 4.26658i) q^{37} +28.9060i q^{41} +35.9761 q^{43} +(41.2203 - 23.7985i) q^{47} +(4.54035 - 48.7892i) q^{49} +(50.1884 + 28.9763i) q^{53} -19.8258 q^{55} +(100.481 + 58.0128i) q^{59} +(53.9476 + 93.4400i) q^{61} +(-122.374 + 70.6529i) q^{65} +(-65.9631 + 114.252i) q^{67} +115.889i q^{71} +(-23.1873 + 40.1615i) q^{73} +(15.1443 - 3.31353i) q^{77} +(10.0824 + 17.4631i) q^{79} -5.93622i q^{83} +156.232 q^{85} +(-67.5241 + 38.9850i) q^{89} +(81.6693 - 74.4220i) q^{91} +(-27.7848 - 16.0416i) q^{95} -87.3734 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{7} - 24 q^{13} + 12 q^{19} + 92 q^{25} - 32 q^{31} - 132 q^{37} - 24 q^{43} + 64 q^{49} + 440 q^{55} + 184 q^{61} - 332 q^{67} + 188 q^{73} + 112 q^{79} + 256 q^{85} + 252 q^{91} - 1032 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −7.75278 + 4.47607i −1.55056 + 0.895214i −0.552460 + 0.833540i \(0.686311\pi\)
−0.998096 + 0.0616742i \(0.980356\pi\)
\(6\) 0 0
\(7\) 5.17399 4.71485i 0.739141 0.673550i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.91794 + 1.10732i 0.174358 + 0.100666i 0.584639 0.811293i \(-0.301236\pi\)
−0.410281 + 0.911959i \(0.634569\pi\)
\(12\) 0 0
\(13\) 15.7846 1.21420 0.607100 0.794626i \(-0.292333\pi\)
0.607100 + 0.794626i \(0.292333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −15.1138 8.72595i −0.889046 0.513291i −0.0154157 0.999881i \(-0.504907\pi\)
−0.873630 + 0.486590i \(0.838241\pi\)
\(18\) 0 0
\(19\) 1.79193 + 3.10371i 0.0943120 + 0.163353i 0.909321 0.416095i \(-0.136602\pi\)
−0.815009 + 0.579448i \(0.803268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.65847 + 3.84427i −0.289498 + 0.167142i −0.637716 0.770272i \(-0.720121\pi\)
0.348217 + 0.937414i \(0.386787\pi\)
\(24\) 0 0
\(25\) 27.5704 47.7533i 1.10282 1.91013i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 24.6165i 0.848845i −0.905464 0.424423i \(-0.860477\pi\)
0.905464 0.424423i \(-0.139523\pi\)
\(30\) 0 0
\(31\) −22.9586 + 39.7654i −0.740600 + 1.28276i 0.211623 + 0.977351i \(0.432125\pi\)
−0.952223 + 0.305405i \(0.901208\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −19.0088 + 59.7123i −0.543109 + 1.70607i
\(36\) 0 0
\(37\) −2.46331 4.26658i −0.0665760 0.115313i 0.830816 0.556547i \(-0.187874\pi\)
−0.897392 + 0.441234i \(0.854541\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 28.9060i 0.705024i 0.935807 + 0.352512i \(0.114672\pi\)
−0.935807 + 0.352512i \(0.885328\pi\)
\(42\) 0 0
\(43\) 35.9761 0.836653 0.418327 0.908297i \(-0.362617\pi\)
0.418327 + 0.908297i \(0.362617\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 41.2203 23.7985i 0.877027 0.506352i 0.00734985 0.999973i \(-0.497660\pi\)
0.869677 + 0.493621i \(0.164327\pi\)
\(48\) 0 0
\(49\) 4.54035 48.7892i 0.0926602 0.995698i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 50.1884 + 28.9763i 0.946952 + 0.546723i 0.892133 0.451773i \(-0.149208\pi\)
0.0548190 + 0.998496i \(0.482542\pi\)
\(54\) 0 0
\(55\) −19.8258 −0.360470
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 100.481 + 58.0128i 1.70307 + 0.983268i 0.942617 + 0.333875i \(0.108356\pi\)
0.760453 + 0.649393i \(0.224977\pi\)
\(60\) 0 0
\(61\) 53.9476 + 93.4400i 0.884387 + 1.53180i 0.846415 + 0.532524i \(0.178756\pi\)
0.0379718 + 0.999279i \(0.487910\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −122.374 + 70.6529i −1.88268 + 1.08697i
\(66\) 0 0
\(67\) −65.9631 + 114.252i −0.984524 + 1.70525i −0.340494 + 0.940247i \(0.610594\pi\)
−0.644031 + 0.765000i \(0.722739\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 115.889i 1.63224i 0.577883 + 0.816119i \(0.303879\pi\)
−0.577883 + 0.816119i \(0.696121\pi\)
\(72\) 0 0
\(73\) −23.1873 + 40.1615i −0.317634 + 0.550158i −0.979994 0.199028i \(-0.936222\pi\)
0.662360 + 0.749186i \(0.269555\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.1443 3.31353i 0.196679 0.0430328i
\(78\) 0 0
\(79\) 10.0824 + 17.4631i 0.127625 + 0.221053i 0.922756 0.385385i \(-0.125931\pi\)
−0.795131 + 0.606438i \(0.792598\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.93622i 0.0715208i −0.999360 0.0357604i \(-0.988615\pi\)
0.999360 0.0357604i \(-0.0113853\pi\)
\(84\) 0 0
\(85\) 156.232 1.83802
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −67.5241 + 38.9850i −0.758697 + 0.438034i −0.828828 0.559504i \(-0.810992\pi\)
0.0701305 + 0.997538i \(0.477658\pi\)
\(90\) 0 0
\(91\) 81.6693 74.4220i 0.897465 0.817824i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −27.7848 16.0416i −0.292472 0.168859i
\(96\) 0 0
\(97\) −87.3734 −0.900757 −0.450378 0.892838i \(-0.648711\pi\)
−0.450378 + 0.892838i \(0.648711\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 138.974 + 80.2369i 1.37598 + 0.794425i 0.991673 0.128778i \(-0.0411056\pi\)
0.384311 + 0.923204i \(0.374439\pi\)
\(102\) 0 0
\(103\) 8.05119 + 13.9451i 0.0781669 + 0.135389i 0.902459 0.430776i \(-0.141760\pi\)
−0.824292 + 0.566165i \(0.808427\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −99.1075 + 57.2198i −0.926239 + 0.534764i −0.885620 0.464411i \(-0.846266\pi\)
−0.0406186 + 0.999175i \(0.512933\pi\)
\(108\) 0 0
\(109\) 25.8973 44.8555i 0.237590 0.411518i −0.722432 0.691442i \(-0.756976\pi\)
0.960022 + 0.279924i \(0.0903092\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 131.309i 1.16202i −0.813895 0.581012i \(-0.802657\pi\)
0.813895 0.581012i \(-0.197343\pi\)
\(114\) 0 0
\(115\) 34.4144 59.6075i 0.299256 0.518326i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −119.340 + 26.1113i −1.00286 + 0.219423i
\(120\) 0 0
\(121\) −58.0477 100.542i −0.479733 0.830922i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 269.825i 2.15860i
\(126\) 0 0
\(127\) 219.227 1.72620 0.863099 0.505035i \(-0.168520\pi\)
0.863099 + 0.505035i \(0.168520\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −174.192 + 100.570i −1.32971 + 0.767710i −0.985255 0.171092i \(-0.945270\pi\)
−0.344457 + 0.938802i \(0.611937\pi\)
\(132\) 0 0
\(133\) 23.9049 + 7.60989i 0.179736 + 0.0572172i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −62.4737 36.0692i −0.456012 0.263279i 0.254354 0.967111i \(-0.418137\pi\)
−0.710366 + 0.703832i \(0.751471\pi\)
\(138\) 0 0
\(139\) 199.392 1.43447 0.717236 0.696830i \(-0.245407\pi\)
0.717236 + 0.696830i \(0.245407\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 30.2739 + 17.4787i 0.211706 + 0.122228i
\(144\) 0 0
\(145\) 110.185 + 190.846i 0.759898 + 1.31618i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 48.6559 28.0915i 0.326549 0.188533i −0.327759 0.944761i \(-0.606293\pi\)
0.654308 + 0.756228i \(0.272960\pi\)
\(150\) 0 0
\(151\) 53.9534 93.4501i 0.357307 0.618875i −0.630203 0.776431i \(-0.717028\pi\)
0.987510 + 0.157556i \(0.0503615\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 411.057i 2.65198i
\(156\) 0 0
\(157\) −3.73199 + 6.46400i −0.0237707 + 0.0411720i −0.877666 0.479273i \(-0.840900\pi\)
0.853895 + 0.520445i \(0.174234\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16.3257 + 51.2839i −0.101402 + 0.318533i
\(162\) 0 0
\(163\) −85.9193 148.817i −0.527112 0.912986i −0.999501 0.0315950i \(-0.989941\pi\)
0.472388 0.881391i \(-0.343392\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.17115i 0.0249769i 0.999922 + 0.0124885i \(0.00397531\pi\)
−0.999922 + 0.0124885i \(0.996025\pi\)
\(168\) 0 0
\(169\) 80.1534 0.474281
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 111.963 64.6418i 0.647185 0.373652i −0.140192 0.990124i \(-0.544772\pi\)
0.787377 + 0.616472i \(0.211439\pi\)
\(174\) 0 0
\(175\) −82.5009 377.066i −0.471434 2.15466i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 233.083 + 134.571i 1.30214 + 0.751791i 0.980771 0.195163i \(-0.0625237\pi\)
0.321369 + 0.946954i \(0.395857\pi\)
\(180\) 0 0
\(181\) −218.196 −1.20550 −0.602752 0.797929i \(-0.705929\pi\)
−0.602752 + 0.797929i \(0.705929\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 38.1950 + 22.0519i 0.206460 + 0.119199i
\(186\) 0 0
\(187\) −19.3249 33.4717i −0.103342 0.178993i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 210.766 121.686i 1.10349 0.637099i 0.166353 0.986066i \(-0.446801\pi\)
0.937135 + 0.348967i \(0.113468\pi\)
\(192\) 0 0
\(193\) −149.368 + 258.713i −0.773926 + 1.34048i 0.161470 + 0.986878i \(0.448377\pi\)
−0.935396 + 0.353602i \(0.884957\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 47.0566i 0.238866i 0.992842 + 0.119433i \(0.0381077\pi\)
−0.992842 + 0.119433i \(0.961892\pi\)
\(198\) 0 0
\(199\) −137.324 + 237.852i −0.690069 + 1.19523i 0.281746 + 0.959489i \(0.409086\pi\)
−0.971815 + 0.235745i \(0.924247\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −116.063 127.366i −0.571740 0.627417i
\(204\) 0 0
\(205\) −129.385 224.102i −0.631147 1.09318i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.93698i 0.0379760i
\(210\) 0 0
\(211\) −166.122 −0.787310 −0.393655 0.919258i \(-0.628790\pi\)
−0.393655 + 0.919258i \(0.628790\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −278.915 + 161.031i −1.29728 + 0.748983i
\(216\) 0 0
\(217\) 68.7006 + 313.992i 0.316593 + 1.44697i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −238.565 137.736i −1.07948 0.623238i
\(222\) 0 0
\(223\) 300.037 1.34546 0.672728 0.739890i \(-0.265123\pi\)
0.672728 + 0.739890i \(0.265123\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.92278 5.72892i −0.0437127 0.0252375i 0.477984 0.878368i \(-0.341368\pi\)
−0.521697 + 0.853131i \(0.674701\pi\)
\(228\) 0 0
\(229\) −39.4844 68.3890i −0.172421 0.298642i 0.766845 0.641833i \(-0.221826\pi\)
−0.939266 + 0.343191i \(0.888492\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 184.800 106.694i 0.793133 0.457915i −0.0479315 0.998851i \(-0.515263\pi\)
0.841064 + 0.540935i \(0.181930\pi\)
\(234\) 0 0
\(235\) −213.048 + 369.009i −0.906586 + 1.57025i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.32278i 0.0348234i −0.999848 0.0174117i \(-0.994457\pi\)
0.999848 0.0174117i \(-0.00554259\pi\)
\(240\) 0 0
\(241\) −58.6994 + 101.670i −0.243566 + 0.421868i −0.961727 0.274008i \(-0.911651\pi\)
0.718162 + 0.695876i \(0.244984\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 183.183 + 398.575i 0.747688 + 1.62684i
\(246\) 0 0
\(247\) 28.2848 + 48.9908i 0.114514 + 0.198343i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 33.1840i 0.132207i −0.997813 0.0661036i \(-0.978943\pi\)
0.997813 0.0661036i \(-0.0210568\pi\)
\(252\) 0 0
\(253\) −17.0274 −0.0673020
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 258.612 149.310i 1.00627 0.580971i 0.0961736 0.995365i \(-0.469340\pi\)
0.910098 + 0.414394i \(0.136006\pi\)
\(258\) 0 0
\(259\) −32.8614 10.4611i −0.126878 0.0403903i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.6251 10.1759i −0.0670157 0.0386915i 0.466118 0.884723i \(-0.345652\pi\)
−0.533133 + 0.846031i \(0.678986\pi\)
\(264\) 0 0
\(265\) −518.800 −1.95774
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 197.643 + 114.109i 0.734732 + 0.424198i 0.820151 0.572147i \(-0.193889\pi\)
−0.0854188 + 0.996345i \(0.527223\pi\)
\(270\) 0 0
\(271\) 228.622 + 395.985i 0.843624 + 1.46120i 0.886811 + 0.462132i \(0.152915\pi\)
−0.0431875 + 0.999067i \(0.513751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 105.757 61.0587i 0.384570 0.222032i
\(276\) 0 0
\(277\) 194.978 337.711i 0.703890 1.21917i −0.263200 0.964741i \(-0.584778\pi\)
0.967090 0.254433i \(-0.0818887\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 301.317i 1.07230i −0.844122 0.536151i \(-0.819878\pi\)
0.844122 0.536151i \(-0.180122\pi\)
\(282\) 0 0
\(283\) 107.357 185.949i 0.379355 0.657062i −0.611613 0.791157i \(-0.709479\pi\)
0.990969 + 0.134094i \(0.0428125\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 136.287 + 149.559i 0.474869 + 0.521112i
\(288\) 0 0
\(289\) 7.78430 + 13.4828i 0.0269353 + 0.0466533i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 257.705i 0.879539i −0.898111 0.439770i \(-0.855060\pi\)
0.898111 0.439770i \(-0.144940\pi\)
\(294\) 0 0
\(295\) −1038.68 −3.52094
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −105.101 + 60.6802i −0.351509 + 0.202944i
\(300\) 0 0
\(301\) 186.140 169.622i 0.618405 0.563528i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −836.488 482.946i −2.74258 1.58343i
\(306\) 0 0
\(307\) −163.197 −0.531586 −0.265793 0.964030i \(-0.585634\pi\)
−0.265793 + 0.964030i \(0.585634\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 260.213 + 150.234i 0.836698 + 0.483068i 0.856140 0.516743i \(-0.172856\pi\)
−0.0194425 + 0.999811i \(0.506189\pi\)
\(312\) 0 0
\(313\) 233.217 + 403.944i 0.745103 + 1.29056i 0.950147 + 0.311804i \(0.100933\pi\)
−0.205043 + 0.978753i \(0.565734\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −220.520 + 127.318i −0.695648 + 0.401633i −0.805725 0.592290i \(-0.798224\pi\)
0.110076 + 0.993923i \(0.464890\pi\)
\(318\) 0 0
\(319\) 27.2585 47.2130i 0.0854497 0.148003i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 62.5451i 0.193638i
\(324\) 0 0
\(325\) 435.188 753.767i 1.33904 2.31928i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 101.067 317.481i 0.307194 0.964987i
\(330\) 0 0
\(331\) 288.476 + 499.655i 0.871529 + 1.50953i 0.860415 + 0.509594i \(0.170204\pi\)
0.0111141 + 0.999938i \(0.496462\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1181.02i 3.52544i
\(336\) 0 0
\(337\) −248.660 −0.737865 −0.368932 0.929456i \(-0.620277\pi\)
−0.368932 + 0.929456i \(0.620277\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −88.0665 + 50.8452i −0.258259 + 0.149106i
\(342\) 0 0
\(343\) −206.542 273.842i −0.602163 0.798373i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 204.684 + 118.174i 0.589868 + 0.340560i 0.765045 0.643977i \(-0.222717\pi\)
−0.175178 + 0.984537i \(0.556050\pi\)
\(348\) 0 0
\(349\) −148.888 −0.426612 −0.213306 0.976985i \(-0.568423\pi\)
−0.213306 + 0.976985i \(0.568423\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −413.411 238.683i −1.17113 0.676155i −0.217188 0.976130i \(-0.569688\pi\)
−0.953947 + 0.299975i \(0.903022\pi\)
\(354\) 0 0
\(355\) −518.727 898.461i −1.46120 2.53088i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 317.904 183.542i 0.885527 0.511259i 0.0130503 0.999915i \(-0.495846\pi\)
0.872477 + 0.488655i \(0.162512\pi\)
\(360\) 0 0
\(361\) 174.078 301.512i 0.482211 0.835213i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 415.151i 1.13740i
\(366\) 0 0
\(367\) 52.0227 90.1060i 0.141751 0.245521i −0.786405 0.617711i \(-0.788060\pi\)
0.928156 + 0.372191i \(0.121393\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 396.294 86.7079i 1.06818 0.233714i
\(372\) 0 0
\(373\) −184.661 319.842i −0.495070 0.857486i 0.504914 0.863170i \(-0.331524\pi\)
−0.999984 + 0.00568377i \(0.998191\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 388.562i 1.03067i
\(378\) 0 0
\(379\) 91.9709 0.242667 0.121334 0.992612i \(-0.461283\pi\)
0.121334 + 0.992612i \(0.461283\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −235.682 + 136.071i −0.615358 + 0.355277i −0.775059 0.631888i \(-0.782280\pi\)
0.159702 + 0.987165i \(0.448947\pi\)
\(384\) 0 0
\(385\) −102.579 + 93.4759i −0.266438 + 0.242795i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 386.028 + 222.874i 0.992361 + 0.572940i 0.905979 0.423322i \(-0.139136\pi\)
0.0863819 + 0.996262i \(0.472469\pi\)
\(390\) 0 0
\(391\) 134.179 0.343170
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −156.333 90.2586i −0.395779 0.228503i
\(396\) 0 0
\(397\) 23.1619 + 40.1176i 0.0583423 + 0.101052i 0.893721 0.448622i \(-0.148085\pi\)
−0.835379 + 0.549674i \(0.814752\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.21519 1.85629i 0.00801792 0.00462915i −0.495986 0.868331i \(-0.665193\pi\)
0.504004 + 0.863702i \(0.331860\pi\)
\(402\) 0 0
\(403\) −362.392 + 627.681i −0.899236 + 1.55752i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.9107i 0.0268077i
\(408\) 0 0
\(409\) 142.249 246.383i 0.347798 0.602403i −0.638060 0.769986i \(-0.720263\pi\)
0.985858 + 0.167583i \(0.0535963\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 793.410 173.596i 1.92109 0.420329i
\(414\) 0 0
\(415\) 26.5709 + 46.0222i 0.0640264 + 0.110897i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 129.962i 0.310172i 0.987901 + 0.155086i \(0.0495654\pi\)
−0.987901 + 0.155086i \(0.950435\pi\)
\(420\) 0 0
\(421\) −307.217 −0.729732 −0.364866 0.931060i \(-0.618885\pi\)
−0.364866 + 0.931060i \(0.618885\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −833.386 + 481.156i −1.96091 + 1.13213i
\(426\) 0 0
\(427\) 719.680 + 229.103i 1.68543 + 0.536540i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −404.222 233.377i −0.937869 0.541479i −0.0485774 0.998819i \(-0.515469\pi\)
−0.889292 + 0.457340i \(0.848802\pi\)
\(432\) 0 0
\(433\) 1.18036 0.00272601 0.00136300 0.999999i \(-0.499566\pi\)
0.00136300 + 0.999999i \(0.499566\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −23.8630 13.7773i −0.0546063 0.0315270i
\(438\) 0 0
\(439\) 184.775 + 320.040i 0.420900 + 0.729020i 0.996028 0.0890436i \(-0.0283810\pi\)
−0.575128 + 0.818064i \(0.695048\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −22.3910 + 12.9274i −0.0505440 + 0.0291816i −0.525059 0.851066i \(-0.675957\pi\)
0.474515 + 0.880247i \(0.342623\pi\)
\(444\) 0 0
\(445\) 348.999 604.485i 0.784268 1.35839i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 690.627i 1.53814i −0.639162 0.769072i \(-0.720719\pi\)
0.639162 0.769072i \(-0.279281\pi\)
\(450\) 0 0
\(451\) −32.0083 + 55.4400i −0.0709718 + 0.122927i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −300.046 + 942.535i −0.659442 + 2.07151i
\(456\) 0 0
\(457\) 119.412 + 206.828i 0.261295 + 0.452577i 0.966586 0.256341i \(-0.0825170\pi\)
−0.705291 + 0.708918i \(0.749184\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 665.309i 1.44319i 0.692318 + 0.721593i \(0.256590\pi\)
−0.692318 + 0.721593i \(0.743410\pi\)
\(462\) 0 0
\(463\) −852.096 −1.84038 −0.920190 0.391473i \(-0.871966\pi\)
−0.920190 + 0.391473i \(0.871966\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −241.957 + 139.694i −0.518110 + 0.299131i −0.736161 0.676806i \(-0.763363\pi\)
0.218051 + 0.975937i \(0.430030\pi\)
\(468\) 0 0
\(469\) 197.386 + 902.143i 0.420866 + 1.92355i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 69.0000 + 39.8372i 0.145877 + 0.0842224i
\(474\) 0 0
\(475\) 197.617 0.416035
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 225.090 + 129.956i 0.469917 + 0.271307i 0.716205 0.697890i \(-0.245878\pi\)
−0.246288 + 0.969197i \(0.579211\pi\)
\(480\) 0 0
\(481\) −38.8824 67.3462i −0.0808365 0.140013i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 677.387 391.089i 1.39667 0.806370i
\(486\) 0 0
\(487\) −153.354 + 265.618i −0.314896 + 0.545416i −0.979415 0.201855i \(-0.935303\pi\)
0.664519 + 0.747271i \(0.268636\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 107.088i 0.218102i 0.994036 + 0.109051i \(0.0347811\pi\)
−0.994036 + 0.109051i \(0.965219\pi\)
\(492\) 0 0
\(493\) −214.802 + 372.049i −0.435705 + 0.754662i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 546.399 + 599.608i 1.09939 + 1.20646i
\(498\) 0 0
\(499\) −203.015 351.632i −0.406843 0.704673i 0.587691 0.809086i \(-0.300037\pi\)
−0.994534 + 0.104412i \(0.966704\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 300.937i 0.598283i −0.954209 0.299142i \(-0.903300\pi\)
0.954209 0.299142i \(-0.0967003\pi\)
\(504\) 0 0
\(505\) −1436.58 −2.84472
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −392.436 + 226.573i −0.770993 + 0.445133i −0.833229 0.552928i \(-0.813510\pi\)
0.0622355 + 0.998061i \(0.480177\pi\)
\(510\) 0 0
\(511\) 69.3850 + 317.120i 0.135783 + 0.620587i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −124.838 72.0753i −0.242404 0.139952i
\(516\) 0 0
\(517\) 105.411 0.203889
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −338.021 195.156i −0.648792 0.374580i 0.139201 0.990264i \(-0.455546\pi\)
−0.787993 + 0.615684i \(0.788880\pi\)
\(522\) 0 0
\(523\) −170.504 295.322i −0.326012 0.564670i 0.655705 0.755018i \(-0.272372\pi\)
−0.981717 + 0.190348i \(0.939038\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 693.982 400.671i 1.31685 0.760286i
\(528\) 0 0
\(529\) −234.943 + 406.934i −0.444127 + 0.769251i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 456.269i 0.856040i
\(534\) 0 0
\(535\) 512.239 887.224i 0.957456 1.65836i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 62.7336 88.5472i 0.116389 0.164280i
\(540\) 0 0
\(541\) 455.204 + 788.436i 0.841412 + 1.45737i 0.888701 + 0.458487i \(0.151609\pi\)
−0.0472887 + 0.998881i \(0.515058\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 463.673i 0.850776i
\(546\) 0 0
\(547\) 93.6660 0.171236 0.0856179 0.996328i \(-0.472714\pi\)
0.0856179 + 0.996328i \(0.472714\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 76.4025 44.1110i 0.138662 0.0800563i
\(552\) 0 0
\(553\) 134.502 + 42.8174i 0.243223 + 0.0774274i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 336.858 + 194.485i 0.604772 + 0.349165i 0.770916 0.636936i \(-0.219799\pi\)
−0.166145 + 0.986101i \(0.553132\pi\)
\(558\) 0 0
\(559\) 567.868 1.01586
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 201.709 + 116.457i 0.358275 + 0.206850i 0.668324 0.743870i \(-0.267012\pi\)
−0.310049 + 0.950721i \(0.600345\pi\)
\(564\) 0 0
\(565\) 587.747 + 1018.01i 1.04026 + 1.80178i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −422.193 + 243.753i −0.741990 + 0.428388i −0.822793 0.568342i \(-0.807585\pi\)
0.0808021 + 0.996730i \(0.474252\pi\)
\(570\) 0 0
\(571\) −380.009 + 658.195i −0.665515 + 1.15271i 0.313630 + 0.949545i \(0.398455\pi\)
−0.979145 + 0.203161i \(0.934878\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 423.952i 0.737307i
\(576\) 0 0
\(577\) 224.653 389.110i 0.389346 0.674368i −0.603015 0.797729i \(-0.706034\pi\)
0.992362 + 0.123362i \(0.0393676\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −27.9884 30.7140i −0.0481728 0.0528640i
\(582\) 0 0
\(583\) 64.1723 + 111.150i 0.110073 + 0.190651i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.3268i 0.0669962i −0.999439 0.0334981i \(-0.989335\pi\)
0.999439 0.0334981i \(-0.0106648\pi\)
\(588\) 0 0
\(589\) −164.560 −0.279390
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −364.581 + 210.491i −0.614807 + 0.354959i −0.774844 0.632152i \(-0.782172\pi\)
0.160037 + 0.987111i \(0.448839\pi\)
\(594\) 0 0
\(595\) 808.342 736.610i 1.35856 1.23800i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −833.627 481.295i −1.39170 0.803497i −0.398195 0.917301i \(-0.630363\pi\)
−0.993503 + 0.113804i \(0.963696\pi\)
\(600\) 0 0
\(601\) −313.194 −0.521121 −0.260560 0.965458i \(-0.583907\pi\)
−0.260560 + 0.965458i \(0.583907\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 900.062 + 519.651i 1.48771 + 0.858927i
\(606\) 0 0
\(607\) 9.21009 + 15.9523i 0.0151731 + 0.0262806i 0.873512 0.486802i \(-0.161837\pi\)
−0.858339 + 0.513083i \(0.828503\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 650.645 375.650i 1.06489 0.614812i
\(612\) 0 0
\(613\) −497.804 + 862.221i −0.812078 + 1.40656i 0.0993295 + 0.995055i \(0.468330\pi\)
−0.911407 + 0.411505i \(0.865003\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 425.645i 0.689863i 0.938628 + 0.344931i \(0.112098\pi\)
−0.938628 + 0.344931i \(0.887902\pi\)
\(618\) 0 0
\(619\) 433.536 750.907i 0.700382 1.21310i −0.267950 0.963433i \(-0.586346\pi\)
0.968332 0.249664i \(-0.0803203\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −165.560 + 520.074i −0.265747 + 0.834790i
\(624\) 0 0
\(625\) −518.494 898.057i −0.829590 1.43689i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 85.9789i 0.136691i
\(630\) 0 0
\(631\) 657.164 1.04146 0.520732 0.853720i \(-0.325659\pi\)
0.520732 + 0.853720i \(0.325659\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1699.62 + 981.276i −2.67657 + 1.54532i
\(636\) 0 0
\(637\) 71.6676 770.118i 0.112508 1.20898i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −127.940 73.8664i −0.199595 0.115236i 0.396872 0.917874i \(-0.370096\pi\)
−0.596467 + 0.802638i \(0.703429\pi\)
\(642\) 0 0
\(643\) −85.1602 −0.132442 −0.0662210 0.997805i \(-0.521094\pi\)
−0.0662210 + 0.997805i \(0.521094\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 304.830 + 175.993i 0.471143 + 0.272015i 0.716718 0.697363i \(-0.245643\pi\)
−0.245575 + 0.969378i \(0.578977\pi\)
\(648\) 0 0
\(649\) 128.478 + 222.530i 0.197963 + 0.342882i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 770.964 445.116i 1.18065 0.681648i 0.224485 0.974478i \(-0.427930\pi\)
0.956165 + 0.292829i \(0.0945968\pi\)
\(654\) 0 0
\(655\) 900.316 1559.39i 1.37453 2.38075i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 598.195i 0.907732i −0.891070 0.453866i \(-0.850044\pi\)
0.891070 0.453866i \(-0.149956\pi\)
\(660\) 0 0
\(661\) 373.678 647.229i 0.565322 0.979167i −0.431697 0.902019i \(-0.642085\pi\)
0.997020 0.0771485i \(-0.0245816\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −219.392 + 48.0024i −0.329913 + 0.0721840i
\(666\) 0 0
\(667\) 94.6324 + 163.908i 0.141878 + 0.245739i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 238.950i 0.356110i
\(672\) 0 0
\(673\) 1200.21 1.78337 0.891687 0.452652i \(-0.149522\pi\)
0.891687 + 0.452652i \(0.149522\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −157.531 + 90.9508i −0.232690 + 0.134344i −0.611813 0.791003i \(-0.709559\pi\)
0.379122 + 0.925347i \(0.376226\pi\)
\(678\) 0 0
\(679\) −452.069 + 411.953i −0.665786 + 0.606705i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −520.787 300.676i −0.762499 0.440229i 0.0676932 0.997706i \(-0.478436\pi\)
−0.830192 + 0.557477i \(0.811769\pi\)
\(684\) 0 0
\(685\) 645.793 0.942764
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 792.204 + 457.379i 1.14979 + 0.663831i
\(690\) 0 0
\(691\) 313.485 + 542.972i 0.453669 + 0.785777i 0.998611 0.0526968i \(-0.0167817\pi\)
−0.544942 + 0.838474i \(0.683448\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1545.84 + 892.491i −2.22423 + 1.28416i
\(696\) 0 0
\(697\) 252.232 436.879i 0.361882 0.626799i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 277.434i 0.395769i −0.980225 0.197885i \(-0.936593\pi\)
0.980225 0.197885i \(-0.0634071\pi\)
\(702\) 0 0
\(703\) 8.82815 15.2908i 0.0125578 0.0217508i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1097.36 240.099i 1.55213 0.339602i
\(708\) 0 0
\(709\) −320.286 554.751i −0.451743 0.782441i 0.546752 0.837295i \(-0.315864\pi\)
−0.998494 + 0.0548534i \(0.982531\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 353.036i 0.495141i
\(714\) 0 0
\(715\) −312.943 −0.437682
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 102.376 59.1067i 0.142386 0.0822068i −0.427114 0.904198i \(-0.640470\pi\)
0.569501 + 0.821991i \(0.307137\pi\)
\(720\) 0 0
\(721\) 107.406 + 34.1915i 0.148968 + 0.0474223i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1175.52 678.687i −1.62141 0.936120i
\(726\) 0 0
\(727\) 623.825 0.858081 0.429041 0.903285i \(-0.358852\pi\)
0.429041 + 0.903285i \(0.358852\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −543.735 313.925i −0.743823 0.429447i
\(732\) 0 0
\(733\) 76.1467 + 131.890i 0.103884 + 0.179932i 0.913282 0.407329i \(-0.133540\pi\)
−0.809398 + 0.587261i \(0.800206\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −253.027 + 146.085i −0.343320 + 0.198216i
\(738\) 0 0
\(739\) −220.788 + 382.415i −0.298765 + 0.517477i −0.975854 0.218425i \(-0.929908\pi\)
0.677088 + 0.735902i \(0.263241\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 82.3447i 0.110827i −0.998463 0.0554137i \(-0.982352\pi\)
0.998463 0.0554137i \(-0.0176478\pi\)
\(744\) 0 0
\(745\) −251.479 + 435.574i −0.337555 + 0.584663i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −242.999 + 763.332i −0.324431 + 1.01913i
\(750\) 0 0
\(751\) −205.466 355.877i −0.273590 0.473871i 0.696189 0.717859i \(-0.254878\pi\)
−0.969778 + 0.243988i \(0.921544\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 965.997i 1.27947i
\(756\) 0 0
\(757\) 219.158 0.289508 0.144754 0.989468i \(-0.453761\pi\)
0.144754 + 0.989468i \(0.453761\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −411.177 + 237.393i −0.540311 + 0.311949i −0.745205 0.666835i \(-0.767648\pi\)
0.204894 + 0.978784i \(0.434315\pi\)
\(762\) 0 0
\(763\) −77.4944 354.184i −0.101565 0.464199i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1586.05 + 915.709i 2.06787 + 1.19388i
\(768\) 0 0
\(769\) 109.532 0.142434 0.0712172 0.997461i \(-0.477312\pi\)
0.0712172 + 0.997461i \(0.477312\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 614.807 + 354.959i 0.795351 + 0.459196i 0.841843 0.539722i \(-0.181471\pi\)
−0.0464917 + 0.998919i \(0.514804\pi\)
\(774\) 0 0
\(775\) 1265.95 + 2192.70i 1.63349 + 2.82929i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −89.7158 + 51.7974i −0.115168 + 0.0664922i
\(780\) 0 0
\(781\) −128.327 + 222.268i −0.164311 + 0.284594i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 66.8186i 0.0851193i
\(786\) 0 0
\(787\) 167.606 290.303i 0.212969 0.368873i −0.739674 0.672966i \(-0.765020\pi\)
0.952642 + 0.304093i \(0.0983534\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −619.101 679.390i −0.782682 0.858900i
\(792\) 0 0
\(793\) 851.541 + 1474.91i 1.07382 + 1.85991i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 342.591i 0.429851i 0.976630 + 0.214925i \(0.0689509\pi\)
−0.976630 + 0.214925i \(0.931049\pi\)
\(798\) 0 0
\(799\) −830.659 −1.03962
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −88.9437 + 51.3517i −0.110764 + 0.0639498i
\(804\) 0 0
\(805\) −102.981 470.667i −0.127926 0.584680i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −306.230 176.802i −0.378530 0.218544i 0.298649 0.954363i \(-0.403464\pi\)
−0.677178 + 0.735819i \(0.736797\pi\)
\(810\) 0 0
\(811\) −588.302 −0.725404 −0.362702 0.931905i \(-0.618146\pi\)
−0.362702 + 0.931905i \(0.618146\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1332.23 + 769.162i 1.63463 + 0.943757i
\(816\) 0 0
\(817\) 64.4665 + 111.659i 0.0789064 + 0.136670i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1244.63 + 718.587i −1.51599 + 0.875259i −0.516169 + 0.856487i \(0.672642\pi\)
−0.999824 + 0.0187718i \(0.994024\pi\)
\(822\) 0 0
\(823\) 690.118 1195.32i 0.838540 1.45239i −0.0525755 0.998617i \(-0.516743\pi\)
0.891115 0.453777i \(-0.149924\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 713.927i 0.863273i −0.902048 0.431637i \(-0.857936\pi\)
0.902048 0.431637i \(-0.142064\pi\)
\(828\) 0 0
\(829\) 133.228 230.758i 0.160710 0.278358i −0.774414 0.632680i \(-0.781955\pi\)
0.935123 + 0.354322i \(0.115288\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −494.354 + 697.770i −0.593462 + 0.837660i
\(834\) 0 0
\(835\) −18.6703 32.3380i −0.0223597 0.0387281i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 258.193i 0.307739i 0.988091 + 0.153869i \(0.0491735\pi\)
−0.988091 + 0.153869i \(0.950827\pi\)
\(840\) 0 0
\(841\) 235.028 0.279462
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −621.412 + 358.772i −0.735399 + 0.424583i
\(846\) 0 0
\(847\) −774.376 246.515i −0.914258 0.291044i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 32.8037 + 18.9392i 0.0385473 + 0.0222553i
\(852\) 0 0
\(853\) 276.361 0.323987 0.161993 0.986792i \(-0.448208\pi\)
0.161993 + 0.986792i \(0.448208\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 509.114 + 293.937i 0.594065 + 0.342984i 0.766703 0.642002i \(-0.221896\pi\)
−0.172638 + 0.984985i \(0.555229\pi\)
\(858\) 0 0
\(859\) 407.998 + 706.673i 0.474968 + 0.822669i 0.999589 0.0286670i \(-0.00912625\pi\)
−0.524621 + 0.851336i \(0.675793\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 370.696 214.022i 0.429544 0.247997i −0.269608 0.962970i \(-0.586894\pi\)
0.699152 + 0.714973i \(0.253561\pi\)
\(864\) 0 0
\(865\) −578.683 + 1002.31i −0.668997 + 1.15874i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 44.6577i 0.0513898i
\(870\) 0 0
\(871\) −1041.20 + 1803.41i −1.19541 + 2.07051i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1272.18 + 1396.07i 1.45392 + 1.59551i
\(876\) 0 0
\(877\) −381.148 660.167i −0.434604 0.752756i 0.562659 0.826689i \(-0.309778\pi\)
−0.997263 + 0.0739326i \(0.976445\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 995.350i 1.12980i −0.825161 0.564898i \(-0.808915\pi\)
0.825161 0.564898i \(-0.191085\pi\)
\(882\) 0 0
\(883\) 874.928 0.990859 0.495429 0.868648i \(-0.335011\pi\)
0.495429 + 0.868648i \(0.335011\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −725.318 + 418.762i −0.817720 + 0.472111i −0.849630 0.527380i \(-0.823175\pi\)
0.0319094 + 0.999491i \(0.489841\pi\)
\(888\) 0 0
\(889\) 1134.28 1033.62i 1.27590 1.16268i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 147.727 + 85.2905i 0.165428 + 0.0955101i
\(894\) 0 0
\(895\) −2409.39 −2.69205
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 978.886 + 565.160i 1.08886 + 0.628654i
\(900\) 0 0
\(901\) −505.691 875.883i −0.561256 0.972124i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1691.63 976.661i 1.86920 1.07918i
\(906\) 0 0
\(907\) −633.977 + 1098.08i −0.698982 + 1.21067i 0.269838 + 0.962906i \(0.413030\pi\)
−0.968820 + 0.247767i \(0.920303\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1262.85i 1.38623i −0.720829 0.693113i \(-0.756239\pi\)
0.720829 0.693113i \(-0.243761\pi\)
\(912\) 0 0
\(913\) 6.57332 11.3853i 0.00719970 0.0124702i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −427.097 + 1341.64i −0.465754 + 1.46307i
\(918\) 0 0
\(919\) 32.8984 + 56.9817i 0.0357980 + 0.0620040i 0.883369 0.468678i \(-0.155269\pi\)
−0.847571 + 0.530682i \(0.821936\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1829.26i 1.98186i
\(924\) 0 0
\(925\) −271.658 −0.293684
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 962.951 555.960i 1.03655 0.598450i 0.117693 0.993050i \(-0.462450\pi\)
0.918853 + 0.394600i \(0.129117\pi\)
\(930\) 0 0
\(931\) 159.563 73.3348i 0.171389 0.0787699i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 299.643 + 172.999i 0.320474 + 0.185026i
\(936\) 0 0
\(937\) 636.217 0.678993 0.339497 0.940607i \(-0.389743\pi\)
0.339497 + 0.940607i \(0.389743\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1429.27 825.189i −1.51888 0.876927i −0.999753 0.0222319i \(-0.992923\pi\)
−0.519130 0.854695i \(-0.673744\pi\)
\(942\) 0 0
\(943\) −111.122 192.469i −0.117839 0.204103i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −615.578 + 355.404i −0.650029 + 0.375294i −0.788467 0.615077i \(-0.789125\pi\)
0.138438 + 0.990371i \(0.455792\pi\)
\(948\) 0 0
\(949\) −366.002 + 633.934i −0.385671 + 0.668002i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 839.240i 0.880629i −0.897844 0.440315i \(-0.854867\pi\)
0.897844 0.440315i \(-0.145133\pi\)
\(954\) 0 0
\(955\) −1089.35 + 1886.81i −1.14068 + 1.97572i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −493.299 + 107.932i −0.514389 + 0.112547i
\(960\) 0 0
\(961\) −573.693 993.666i −0.596975 1.03399i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2674.32i 2.77132i
\(966\) 0 0
\(967\) 848.150 0.877094 0.438547 0.898708i \(-0.355493\pi\)
0.438547 + 0.898708i \(0.355493\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 483.894 279.376i 0.498346 0.287720i −0.229685 0.973265i \(-0.573769\pi\)
0.728030 + 0.685545i \(0.240436\pi\)
\(972\) 0 0
\(973\) 1031.65 940.102i 1.06028 0.966189i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1052.41 + 607.609i 1.07719 + 0.621913i 0.930136 0.367216i \(-0.119689\pi\)
0.147049 + 0.989129i \(0.453022\pi\)
\(978\) 0 0
\(979\) −172.676 −0.176380
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −937.994 541.551i −0.954216 0.550917i −0.0598280 0.998209i \(-0.519055\pi\)
−0.894388 + 0.447292i \(0.852389\pi\)
\(984\) 0 0
\(985\) −210.629 364.820i −0.213836 0.370375i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −239.545 + 138.302i −0.242210 + 0.139840i
\(990\) 0 0
\(991\) −350.453 + 607.003i −0.353636 + 0.612516i −0.986884 0.161434i \(-0.948388\pi\)
0.633248 + 0.773949i \(0.281722\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2458.68i 2.47104i
\(996\) 0 0
\(997\) −265.177 + 459.300i −0.265975 + 0.460682i −0.967819 0.251649i \(-0.919027\pi\)
0.701844 + 0.712331i \(0.252360\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.dc.g.305.1 16
3.2 odd 2 inner 1008.3.dc.g.305.8 16
4.3 odd 2 504.3.cu.a.305.1 yes 16
7.2 even 3 inner 1008.3.dc.g.737.8 16
12.11 even 2 504.3.cu.a.305.8 yes 16
21.2 odd 6 inner 1008.3.dc.g.737.1 16
28.3 even 6 3528.3.d.j.1961.8 8
28.11 odd 6 3528.3.d.g.1961.1 8
28.23 odd 6 504.3.cu.a.233.8 yes 16
84.11 even 6 3528.3.d.g.1961.8 8
84.23 even 6 504.3.cu.a.233.1 16
84.59 odd 6 3528.3.d.j.1961.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.cu.a.233.1 16 84.23 even 6
504.3.cu.a.233.8 yes 16 28.23 odd 6
504.3.cu.a.305.1 yes 16 4.3 odd 2
504.3.cu.a.305.8 yes 16 12.11 even 2
1008.3.dc.g.305.1 16 1.1 even 1 trivial
1008.3.dc.g.305.8 16 3.2 odd 2 inner
1008.3.dc.g.737.1 16 21.2 odd 6 inner
1008.3.dc.g.737.8 16 7.2 even 3 inner
3528.3.d.g.1961.1 8 28.11 odd 6
3528.3.d.g.1961.8 8 84.11 even 6
3528.3.d.j.1961.1 8 84.59 odd 6
3528.3.d.j.1961.8 8 28.3 even 6