Properties

Label 3528.3.d.g.1961.8
Level $3528$
Weight $3$
Character 3528.1961
Analytic conductor $96.131$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3528,3,Mod(1961,3528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3528, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3528.1961"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3528.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,-12,0,0,0,0,0,12,0,0,0,0,0,-92] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.1310372663\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 17x^{6} + 96x^{5} - 108x^{4} - 1104x^{3} + 5366x^{2} - 8656x + 10256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1961.8
Root \(0.725935 + 1.57128i\) of defining polynomial
Character \(\chi\) \(=\) 3528.1961
Dual form 3528.3.d.g.1961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.95214i q^{5} -2.21465i q^{11} +15.7846 q^{13} -17.4519i q^{17} +3.58386 q^{19} -7.68853i q^{23} -55.1408 q^{25} +24.6165i q^{29} -45.9172 q^{31} +4.92662 q^{37} -28.9060i q^{41} -35.9761 q^{43} +47.5971i q^{47} +57.9526i q^{53} +19.8258 q^{55} -116.026i q^{59} -107.895 q^{61} +141.306i q^{65} -131.926 q^{67} +115.889i q^{71} +46.3746 q^{73} +20.1647 q^{79} -5.93622i q^{83} +156.232 q^{85} +77.9701i q^{89} +32.0832i q^{95} -87.3734 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{13} + 12 q^{19} - 92 q^{25} - 32 q^{31} + 132 q^{37} + 12 q^{43} - 220 q^{55} - 184 q^{61} - 332 q^{67} - 188 q^{73} + 112 q^{79} + 128 q^{85} - 516 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.95214i 1.79043i 0.445637 + 0.895214i \(0.352977\pi\)
−0.445637 + 0.895214i \(0.647023\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 2.21465i − 0.201332i −0.994920 0.100666i \(-0.967903\pi\)
0.994920 0.100666i \(-0.0320973\pi\)
\(12\) 0 0
\(13\) 15.7846 1.21420 0.607100 0.794626i \(-0.292333\pi\)
0.607100 + 0.794626i \(0.292333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 17.4519i − 1.02658i −0.858215 0.513291i \(-0.828426\pi\)
0.858215 0.513291i \(-0.171574\pi\)
\(18\) 0 0
\(19\) 3.58386 0.188624 0.0943120 0.995543i \(-0.469935\pi\)
0.0943120 + 0.995543i \(0.469935\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 7.68853i − 0.334284i −0.985933 0.167142i \(-0.946546\pi\)
0.985933 0.167142i \(-0.0534538\pi\)
\(24\) 0 0
\(25\) −55.1408 −2.20563
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 24.6165i 0.848845i 0.905464 + 0.424423i \(0.139523\pi\)
−0.905464 + 0.424423i \(0.860477\pi\)
\(30\) 0 0
\(31\) −45.9172 −1.48120 −0.740600 0.671947i \(-0.765458\pi\)
−0.740600 + 0.671947i \(0.765458\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.92662 0.133152 0.0665760 0.997781i \(-0.478793\pi\)
0.0665760 + 0.997781i \(0.478793\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 28.9060i − 0.705024i −0.935807 0.352512i \(-0.885328\pi\)
0.935807 0.352512i \(-0.114672\pi\)
\(42\) 0 0
\(43\) −35.9761 −0.836653 −0.418327 0.908297i \(-0.637383\pi\)
−0.418327 + 0.908297i \(0.637383\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 47.5971i 1.01270i 0.862327 + 0.506352i \(0.169006\pi\)
−0.862327 + 0.506352i \(0.830994\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 57.9526i 1.09345i 0.837314 + 0.546723i \(0.184125\pi\)
−0.837314 + 0.546723i \(0.815875\pi\)
\(54\) 0 0
\(55\) 19.8258 0.360470
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 116.026i − 1.96654i −0.182164 0.983268i \(-0.558310\pi\)
0.182164 0.983268i \(-0.441690\pi\)
\(60\) 0 0
\(61\) −107.895 −1.76877 −0.884387 0.466755i \(-0.845423\pi\)
−0.884387 + 0.466755i \(0.845423\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 141.306i 2.17394i
\(66\) 0 0
\(67\) −131.926 −1.96905 −0.984524 0.175247i \(-0.943928\pi\)
−0.984524 + 0.175247i \(0.943928\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 115.889i 1.63224i 0.577883 + 0.816119i \(0.303879\pi\)
−0.577883 + 0.816119i \(0.696121\pi\)
\(72\) 0 0
\(73\) 46.3746 0.635268 0.317634 0.948213i \(-0.397112\pi\)
0.317634 + 0.948213i \(0.397112\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 20.1647 0.255249 0.127625 0.991823i \(-0.459265\pi\)
0.127625 + 0.991823i \(0.459265\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 5.93622i − 0.0715208i −0.999360 0.0357604i \(-0.988615\pi\)
0.999360 0.0357604i \(-0.0113853\pi\)
\(84\) 0 0
\(85\) 156.232 1.83802
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 77.9701i 0.876068i 0.898958 + 0.438034i \(0.144325\pi\)
−0.898958 + 0.438034i \(0.855675\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 32.0832i 0.337718i
\(96\) 0 0
\(97\) −87.3734 −0.900757 −0.450378 0.892838i \(-0.648711\pi\)
−0.450378 + 0.892838i \(0.648711\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 160.474i 1.58885i 0.607362 + 0.794425i \(0.292228\pi\)
−0.607362 + 0.794425i \(0.707772\pi\)
\(102\) 0 0
\(103\) 16.1024 0.156334 0.0781669 0.996940i \(-0.475093\pi\)
0.0781669 + 0.996940i \(0.475093\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 114.440i − 1.06953i −0.845001 0.534764i \(-0.820400\pi\)
0.845001 0.534764i \(-0.179600\pi\)
\(108\) 0 0
\(109\) −51.7946 −0.475180 −0.237590 0.971366i \(-0.576357\pi\)
−0.237590 + 0.971366i \(0.576357\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 131.309i 1.16202i 0.813895 + 0.581012i \(0.197343\pi\)
−0.813895 + 0.581012i \(0.802657\pi\)
\(114\) 0 0
\(115\) 68.8288 0.598511
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 116.095 0.959466
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 269.825i − 2.15860i
\(126\) 0 0
\(127\) −219.227 −1.72620 −0.863099 0.505035i \(-0.831480\pi\)
−0.863099 + 0.505035i \(0.831480\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 201.140i − 1.53542i −0.640798 0.767710i \(-0.721396\pi\)
0.640798 0.767710i \(-0.278604\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 72.1384i − 0.526558i −0.964720 0.263279i \(-0.915196\pi\)
0.964720 0.263279i \(-0.0848039\pi\)
\(138\) 0 0
\(139\) −199.392 −1.43447 −0.717236 0.696830i \(-0.754593\pi\)
−0.717236 + 0.696830i \(0.754593\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 34.9573i − 0.244457i
\(144\) 0 0
\(145\) −220.370 −1.51980
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 56.1829i − 0.377067i −0.982067 0.188533i \(-0.939627\pi\)
0.982067 0.188533i \(-0.0603734\pi\)
\(150\) 0 0
\(151\) 107.907 0.714615 0.357307 0.933987i \(-0.383695\pi\)
0.357307 + 0.933987i \(0.383695\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 411.057i − 2.65198i
\(156\) 0 0
\(157\) 7.46399 0.0475413 0.0237707 0.999717i \(-0.492433\pi\)
0.0237707 + 0.999717i \(0.492433\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −171.839 −1.05422 −0.527112 0.849796i \(-0.676725\pi\)
−0.527112 + 0.849796i \(0.676725\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.17115i 0.0249769i 0.999922 + 0.0124885i \(0.00397531\pi\)
−0.999922 + 0.0124885i \(0.996025\pi\)
\(168\) 0 0
\(169\) 80.1534 0.474281
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 129.284i − 0.747304i −0.927569 0.373652i \(-0.878105\pi\)
0.927569 0.373652i \(-0.121895\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 269.141i − 1.50358i −0.659402 0.751791i \(-0.729190\pi\)
0.659402 0.751791i \(-0.270810\pi\)
\(180\) 0 0
\(181\) −218.196 −1.20550 −0.602752 0.797929i \(-0.705929\pi\)
−0.602752 + 0.797929i \(0.705929\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 44.1038i 0.238399i
\(186\) 0 0
\(187\) −38.6498 −0.206683
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 243.372i 1.27420i 0.770782 + 0.637099i \(0.219866\pi\)
−0.770782 + 0.637099i \(0.780134\pi\)
\(192\) 0 0
\(193\) 298.736 1.54785 0.773926 0.633276i \(-0.218290\pi\)
0.773926 + 0.633276i \(0.218290\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 47.0566i − 0.238866i −0.992842 0.119433i \(-0.961892\pi\)
0.992842 0.119433i \(-0.0381077\pi\)
\(198\) 0 0
\(199\) −274.647 −1.38014 −0.690069 0.723744i \(-0.742420\pi\)
−0.690069 + 0.723744i \(0.742420\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 258.770 1.26229
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 7.93698i − 0.0379760i
\(210\) 0 0
\(211\) 166.122 0.787310 0.393655 0.919258i \(-0.371210\pi\)
0.393655 + 0.919258i \(0.371210\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 322.063i − 1.49797i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 275.471i − 1.24648i
\(222\) 0 0
\(223\) −300.037 −1.34546 −0.672728 0.739890i \(-0.734877\pi\)
−0.672728 + 0.739890i \(0.734877\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.4578i 0.0504750i 0.999681 + 0.0252375i \(0.00803421\pi\)
−0.999681 + 0.0252375i \(0.991966\pi\)
\(228\) 0 0
\(229\) 78.9688 0.344842 0.172421 0.985023i \(-0.444841\pi\)
0.172421 + 0.985023i \(0.444841\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 213.389i − 0.915831i −0.888996 0.457915i \(-0.848596\pi\)
0.888996 0.457915i \(-0.151404\pi\)
\(234\) 0 0
\(235\) −426.095 −1.81317
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 8.32278i − 0.0348234i −0.999848 0.0174117i \(-0.994457\pi\)
0.999848 0.0174117i \(-0.00554259\pi\)
\(240\) 0 0
\(241\) 117.399 0.487132 0.243566 0.969884i \(-0.421683\pi\)
0.243566 + 0.969884i \(0.421683\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 56.5697 0.229027
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 33.1840i − 0.132207i −0.997813 0.0661036i \(-0.978943\pi\)
0.997813 0.0661036i \(-0.0210568\pi\)
\(252\) 0 0
\(253\) −17.0274 −0.0673020
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 298.619i − 1.16194i −0.813924 0.580971i \(-0.802673\pi\)
0.813924 0.580971i \(-0.197327\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.3518i 0.0773831i 0.999251 + 0.0386915i \(0.0123190\pi\)
−0.999251 + 0.0386915i \(0.987681\pi\)
\(264\) 0 0
\(265\) −518.800 −1.95774
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 228.218i 0.848395i 0.905570 + 0.424198i \(0.139444\pi\)
−0.905570 + 0.424198i \(0.860556\pi\)
\(270\) 0 0
\(271\) 457.244 1.68725 0.843624 0.536935i \(-0.180418\pi\)
0.843624 + 0.536935i \(0.180418\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 122.117i 0.444064i
\(276\) 0 0
\(277\) −389.955 −1.40778 −0.703890 0.710309i \(-0.748555\pi\)
−0.703890 + 0.710309i \(0.748555\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 301.317i 1.07230i 0.844122 + 0.536151i \(0.180122\pi\)
−0.844122 + 0.536151i \(0.819878\pi\)
\(282\) 0 0
\(283\) 214.715 0.758710 0.379355 0.925251i \(-0.376146\pi\)
0.379355 + 0.925251i \(0.376146\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.5686 −0.0538706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 257.705i 0.879539i 0.898111 + 0.439770i \(0.144940\pi\)
−0.898111 + 0.439770i \(0.855060\pi\)
\(294\) 0 0
\(295\) 1038.68 3.52094
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 121.360i − 0.405888i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 965.893i − 3.16686i
\(306\) 0 0
\(307\) 163.197 0.531586 0.265793 0.964030i \(-0.414366\pi\)
0.265793 + 0.964030i \(0.414366\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 300.468i − 0.966136i −0.875583 0.483068i \(-0.839522\pi\)
0.875583 0.483068i \(-0.160478\pi\)
\(312\) 0 0
\(313\) −466.435 −1.49021 −0.745103 0.666949i \(-0.767600\pi\)
−0.745103 + 0.666949i \(0.767600\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 254.635i 0.803265i 0.915801 + 0.401633i \(0.131557\pi\)
−0.915801 + 0.401633i \(0.868443\pi\)
\(318\) 0 0
\(319\) 54.5169 0.170899
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 62.5451i − 0.193638i
\(324\) 0 0
\(325\) −870.375 −2.67808
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 576.952 1.74306 0.871529 0.490344i \(-0.163129\pi\)
0.871529 + 0.490344i \(0.163129\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 1181.02i − 3.52544i
\(336\) 0 0
\(337\) −248.660 −0.737865 −0.368932 0.929456i \(-0.620277\pi\)
−0.368932 + 0.929456i \(0.620277\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 101.690i 0.298212i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 236.349i − 0.681120i −0.940223 0.340560i \(-0.889383\pi\)
0.940223 0.340560i \(-0.110617\pi\)
\(348\) 0 0
\(349\) −148.888 −0.426612 −0.213306 0.976985i \(-0.568423\pi\)
−0.213306 + 0.976985i \(0.568423\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 477.365i − 1.35231i −0.736759 0.676155i \(-0.763645\pi\)
0.736759 0.676155i \(-0.236355\pi\)
\(354\) 0 0
\(355\) −1037.45 −2.92241
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 367.084i 1.02252i 0.859426 + 0.511259i \(0.170821\pi\)
−0.859426 + 0.511259i \(0.829179\pi\)
\(360\) 0 0
\(361\) −348.156 −0.964421
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 415.151i 1.13740i
\(366\) 0 0
\(367\) 104.045 0.283503 0.141751 0.989902i \(-0.454727\pi\)
0.141751 + 0.989902i \(0.454727\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 369.322 0.990139 0.495070 0.868853i \(-0.335143\pi\)
0.495070 + 0.868853i \(0.335143\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 388.562i 1.03067i
\(378\) 0 0
\(379\) −91.9709 −0.242667 −0.121334 0.992612i \(-0.538717\pi\)
−0.121334 + 0.992612i \(0.538717\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 272.142i − 0.710554i −0.934761 0.355277i \(-0.884387\pi\)
0.934761 0.355277i \(-0.115613\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 445.747i 1.14588i 0.819597 + 0.572940i \(0.194197\pi\)
−0.819597 + 0.572940i \(0.805803\pi\)
\(390\) 0 0
\(391\) −134.179 −0.343170
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 180.517i 0.457006i
\(396\) 0 0
\(397\) −46.3238 −0.116685 −0.0583423 0.998297i \(-0.518581\pi\)
−0.0583423 + 0.998297i \(0.518581\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 3.71258i − 0.00925830i −0.999989 0.00462915i \(-0.998526\pi\)
0.999989 0.00462915i \(-0.00147351\pi\)
\(402\) 0 0
\(403\) −724.784 −1.79847
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 10.9107i − 0.0268077i
\(408\) 0 0
\(409\) −284.499 −0.695595 −0.347798 0.937570i \(-0.613070\pi\)
−0.347798 + 0.937570i \(0.613070\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 53.1419 0.128053
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 129.962i 0.310172i 0.987901 + 0.155086i \(0.0495654\pi\)
−0.987901 + 0.155086i \(0.950435\pi\)
\(420\) 0 0
\(421\) −307.217 −0.729732 −0.364866 0.931060i \(-0.618885\pi\)
−0.364866 + 0.931060i \(0.618885\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 962.311i 2.26426i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 466.755i 1.08296i 0.840714 + 0.541479i \(0.182135\pi\)
−0.840714 + 0.541479i \(0.817865\pi\)
\(432\) 0 0
\(433\) 1.18036 0.00272601 0.00136300 0.999999i \(-0.499566\pi\)
0.00136300 + 0.999999i \(0.499566\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 27.5546i − 0.0630540i
\(438\) 0 0
\(439\) 369.550 0.841800 0.420900 0.907107i \(-0.361714\pi\)
0.420900 + 0.907107i \(0.361714\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 25.8549i − 0.0583631i −0.999574 0.0291816i \(-0.990710\pi\)
0.999574 0.0291816i \(-0.00929010\pi\)
\(444\) 0 0
\(445\) −697.999 −1.56854
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 690.627i 1.53814i 0.639162 + 0.769072i \(0.279281\pi\)
−0.639162 + 0.769072i \(0.720719\pi\)
\(450\) 0 0
\(451\) −64.0166 −0.141944
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −238.824 −0.522591 −0.261295 0.965259i \(-0.584150\pi\)
−0.261295 + 0.965259i \(0.584150\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 665.309i − 1.44319i −0.692318 0.721593i \(-0.743410\pi\)
0.692318 0.721593i \(-0.256590\pi\)
\(462\) 0 0
\(463\) 852.096 1.84038 0.920190 0.391473i \(-0.128034\pi\)
0.920190 + 0.391473i \(0.128034\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 279.388i − 0.598262i −0.954212 0.299131i \(-0.903303\pi\)
0.954212 0.299131i \(-0.0966967\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 79.6744i 0.168445i
\(474\) 0 0
\(475\) −197.617 −0.416035
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 259.912i − 0.542614i −0.962493 0.271307i \(-0.912544\pi\)
0.962493 0.271307i \(-0.0874558\pi\)
\(480\) 0 0
\(481\) 77.7647 0.161673
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 782.179i − 1.61274i
\(486\) 0 0
\(487\) −306.709 −0.629792 −0.314896 0.949126i \(-0.601970\pi\)
−0.314896 + 0.949126i \(0.601970\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 107.088i 0.218102i 0.994036 + 0.109051i \(0.0347811\pi\)
−0.994036 + 0.109051i \(0.965219\pi\)
\(492\) 0 0
\(493\) 429.605 0.871409
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −406.030 −0.813687 −0.406843 0.913498i \(-0.633370\pi\)
−0.406843 + 0.913498i \(0.633370\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 300.937i − 0.598283i −0.954209 0.299142i \(-0.903300\pi\)
0.954209 0.299142i \(-0.0967003\pi\)
\(504\) 0 0
\(505\) −1436.58 −2.84472
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 453.146i 0.890266i 0.895464 + 0.445133i \(0.146844\pi\)
−0.895464 + 0.445133i \(0.853156\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 144.151i 0.279904i
\(516\) 0 0
\(517\) 105.411 0.203889
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 390.313i − 0.749160i −0.927195 0.374580i \(-0.877787\pi\)
0.927195 0.374580i \(-0.122213\pi\)
\(522\) 0 0
\(523\) −341.009 −0.652024 −0.326012 0.945366i \(-0.605705\pi\)
−0.326012 + 0.945366i \(0.605705\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 801.342i 1.52057i
\(528\) 0 0
\(529\) 469.886 0.888254
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 456.269i − 0.856040i
\(534\) 0 0
\(535\) 1024.48 1.91491
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −910.408 −1.68282 −0.841412 0.540394i \(-0.818275\pi\)
−0.841412 + 0.540394i \(0.818275\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 463.673i − 0.850776i
\(546\) 0 0
\(547\) −93.6660 −0.171236 −0.0856179 0.996328i \(-0.527286\pi\)
−0.0856179 + 0.996328i \(0.527286\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 88.2220i 0.160113i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 388.970i 0.698330i 0.937061 + 0.349165i \(0.113535\pi\)
−0.937061 + 0.349165i \(0.886465\pi\)
\(558\) 0 0
\(559\) −567.868 −1.01586
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 232.914i − 0.413701i −0.978373 0.206850i \(-0.933679\pi\)
0.978373 0.206850i \(-0.0663213\pi\)
\(564\) 0 0
\(565\) −1175.49 −2.08052
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 487.506i 0.856777i 0.903595 + 0.428388i \(0.140918\pi\)
−0.903595 + 0.428388i \(0.859082\pi\)
\(570\) 0 0
\(571\) −760.019 −1.33103 −0.665515 0.746384i \(-0.731788\pi\)
−0.665515 + 0.746384i \(0.731788\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 423.952i 0.737307i
\(576\) 0 0
\(577\) −449.306 −0.778693 −0.389346 0.921091i \(-0.627299\pi\)
−0.389346 + 0.921091i \(0.627299\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 128.345 0.220145
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 39.3268i − 0.0669962i −0.999439 0.0334981i \(-0.989335\pi\)
0.999439 0.0334981i \(-0.0106648\pi\)
\(588\) 0 0
\(589\) −164.560 −0.279390
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 420.981i 0.709918i 0.934882 + 0.354959i \(0.115505\pi\)
−0.934882 + 0.354959i \(0.884495\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 962.589i 1.60699i 0.595309 + 0.803497i \(0.297030\pi\)
−0.595309 + 0.803497i \(0.702970\pi\)
\(600\) 0 0
\(601\) −313.194 −0.521121 −0.260560 0.965458i \(-0.583907\pi\)
−0.260560 + 0.965458i \(0.583907\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1039.30i 1.71785i
\(606\) 0 0
\(607\) 18.4202 0.0303463 0.0151731 0.999885i \(-0.495170\pi\)
0.0151731 + 0.999885i \(0.495170\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 751.300i 1.22962i
\(612\) 0 0
\(613\) 995.607 1.62416 0.812078 0.583549i \(-0.198336\pi\)
0.812078 + 0.583549i \(0.198336\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 425.645i − 0.689863i −0.938628 0.344931i \(-0.887902\pi\)
0.938628 0.344931i \(-0.112098\pi\)
\(618\) 0 0
\(619\) 867.073 1.40076 0.700382 0.713768i \(-0.253013\pi\)
0.700382 + 0.713768i \(0.253013\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1036.99 1.65918
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 85.9789i − 0.136691i
\(630\) 0 0
\(631\) −657.164 −1.04146 −0.520732 0.853720i \(-0.674341\pi\)
−0.520732 + 0.853720i \(0.674341\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1962.55i − 3.09063i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 147.733i − 0.230472i −0.993338 0.115236i \(-0.963238\pi\)
0.993338 0.115236i \(-0.0367625\pi\)
\(642\) 0 0
\(643\) 85.1602 0.132442 0.0662210 0.997805i \(-0.478906\pi\)
0.0662210 + 0.997805i \(0.478906\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 351.987i − 0.544029i −0.962293 0.272015i \(-0.912310\pi\)
0.962293 0.272015i \(-0.0876899\pi\)
\(648\) 0 0
\(649\) −256.956 −0.395926
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 890.233i − 1.36330i −0.731680 0.681648i \(-0.761263\pi\)
0.731680 0.681648i \(-0.238737\pi\)
\(654\) 0 0
\(655\) 1800.63 2.74906
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 598.195i − 0.907732i −0.891070 0.453866i \(-0.850044\pi\)
0.891070 0.453866i \(-0.149956\pi\)
\(660\) 0 0
\(661\) −747.356 −1.13064 −0.565322 0.824870i \(-0.691248\pi\)
−0.565322 + 0.824870i \(0.691248\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 189.265 0.283755
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 238.950i 0.356110i
\(672\) 0 0
\(673\) 1200.21 1.78337 0.891687 0.452652i \(-0.149522\pi\)
0.891687 + 0.452652i \(0.149522\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 181.902i 0.268688i 0.990935 + 0.134344i \(0.0428927\pi\)
−0.990935 + 0.134344i \(0.957107\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 601.353i 0.880458i 0.897885 + 0.440229i \(0.145103\pi\)
−0.897885 + 0.440229i \(0.854897\pi\)
\(684\) 0 0
\(685\) 645.793 0.942764
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 914.759i 1.32766i
\(690\) 0 0
\(691\) 626.970 0.907337 0.453669 0.891170i \(-0.350115\pi\)
0.453669 + 0.891170i \(0.350115\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1784.98i − 2.56832i
\(696\) 0 0
\(697\) −504.464 −0.723765
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 277.434i 0.395769i 0.980225 + 0.197885i \(0.0634071\pi\)
−0.980225 + 0.197885i \(0.936593\pi\)
\(702\) 0 0
\(703\) 17.6563 0.0251156
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 640.571 0.903485 0.451743 0.892148i \(-0.350802\pi\)
0.451743 + 0.892148i \(0.350802\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 353.036i 0.495141i
\(714\) 0 0
\(715\) 312.943 0.437682
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 118.213i 0.164414i 0.996615 + 0.0822068i \(0.0261968\pi\)
−0.996615 + 0.0822068i \(0.973803\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 1357.37i − 1.87224i
\(726\) 0 0
\(727\) −623.825 −0.858081 −0.429041 0.903285i \(-0.641148\pi\)
−0.429041 + 0.903285i \(0.641148\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 627.851i 0.858893i
\(732\) 0 0
\(733\) −152.293 −0.207767 −0.103884 0.994589i \(-0.533127\pi\)
−0.103884 + 0.994589i \(0.533127\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 292.170i 0.396432i
\(738\) 0 0
\(739\) −441.575 −0.597531 −0.298765 0.954327i \(-0.596575\pi\)
−0.298765 + 0.954327i \(0.596575\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 82.3447i − 0.110827i −0.998463 0.0554137i \(-0.982352\pi\)
0.998463 0.0554137i \(-0.0176478\pi\)
\(744\) 0 0
\(745\) 502.958 0.675111
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −410.932 −0.547179 −0.273590 0.961847i \(-0.588211\pi\)
−0.273590 + 0.961847i \(0.588211\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 965.997i 1.27947i
\(756\) 0 0
\(757\) 219.158 0.289508 0.144754 0.989468i \(-0.453761\pi\)
0.144754 + 0.989468i \(0.453761\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 474.786i 0.623898i 0.950099 + 0.311949i \(0.100982\pi\)
−0.950099 + 0.311949i \(0.899018\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1831.42i − 2.38777i
\(768\) 0 0
\(769\) 109.532 0.142434 0.0712172 0.997461i \(-0.477312\pi\)
0.0712172 + 0.997461i \(0.477312\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 709.918i 0.918393i 0.888335 + 0.459196i \(0.151863\pi\)
−0.888335 + 0.459196i \(0.848137\pi\)
\(774\) 0 0
\(775\) 2531.91 3.26698
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 103.595i − 0.132984i
\(780\) 0 0
\(781\) 256.653 0.328621
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 66.8186i 0.0851193i
\(786\) 0 0
\(787\) 335.213 0.425938 0.212969 0.977059i \(-0.431687\pi\)
0.212969 + 0.977059i \(0.431687\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1703.08 −2.14764
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 342.591i − 0.429851i −0.976630 0.214925i \(-0.931049\pi\)
0.976630 0.214925i \(-0.0689509\pi\)
\(798\) 0 0
\(799\) 830.659 1.03962
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 102.703i − 0.127900i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 353.604i − 0.437088i −0.975827 0.218544i \(-0.929869\pi\)
0.975827 0.218544i \(-0.0701308\pi\)
\(810\) 0 0
\(811\) 588.302 0.725404 0.362702 0.931905i \(-0.381854\pi\)
0.362702 + 0.931905i \(0.381854\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 1538.32i − 1.88751i
\(816\) 0 0
\(817\) −128.933 −0.157813
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1437.17i 1.75052i 0.483655 + 0.875259i \(0.339309\pi\)
−0.483655 + 0.875259i \(0.660691\pi\)
\(822\) 0 0
\(823\) 1380.24 1.67708 0.838540 0.544840i \(-0.183410\pi\)
0.838540 + 0.544840i \(0.183410\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 713.927i − 0.863273i −0.902048 0.431637i \(-0.857936\pi\)
0.902048 0.431637i \(-0.142064\pi\)
\(828\) 0 0
\(829\) −266.457 −0.321420 −0.160710 0.987002i \(-0.551378\pi\)
−0.160710 + 0.987002i \(0.551378\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −37.3407 −0.0447194
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 258.193i 0.307739i 0.988091 + 0.153869i \(0.0491735\pi\)
−0.988091 + 0.153869i \(0.950827\pi\)
\(840\) 0 0
\(841\) 235.028 0.279462
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 717.545i 0.849165i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 37.8785i − 0.0445106i
\(852\) 0 0
\(853\) 276.361 0.323987 0.161993 0.986792i \(-0.448208\pi\)
0.161993 + 0.986792i \(0.448208\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 587.874i 0.685968i 0.939341 + 0.342984i \(0.111438\pi\)
−0.939341 + 0.342984i \(0.888562\pi\)
\(858\) 0 0
\(859\) 815.995 0.949936 0.474968 0.880003i \(-0.342460\pi\)
0.474968 + 0.880003i \(0.342460\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 428.043i 0.495995i 0.968761 + 0.247997i \(0.0797724\pi\)
−0.968761 + 0.247997i \(0.920228\pi\)
\(864\) 0 0
\(865\) 1157.37 1.33799
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 44.6577i − 0.0513898i
\(870\) 0 0
\(871\) −2082.40 −2.39082
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 762.296 0.869208 0.434604 0.900622i \(-0.356888\pi\)
0.434604 + 0.900622i \(0.356888\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 995.350i 1.12980i 0.825161 + 0.564898i \(0.191085\pi\)
−0.825161 + 0.564898i \(0.808915\pi\)
\(882\) 0 0
\(883\) −874.928 −0.990859 −0.495429 0.868648i \(-0.664989\pi\)
−0.495429 + 0.868648i \(0.664989\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 837.525i − 0.944222i −0.881539 0.472111i \(-0.843492\pi\)
0.881539 0.472111i \(-0.156508\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 170.581i 0.191020i
\(894\) 0 0
\(895\) 2409.39 2.69205
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 1130.32i − 1.25731i
\(900\) 0 0
\(901\) 1011.38 1.12251
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1953.32i − 2.15837i
\(906\) 0 0
\(907\) −1267.95 −1.39796 −0.698982 0.715139i \(-0.746363\pi\)
−0.698982 + 0.715139i \(0.746363\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1262.85i − 1.38623i −0.720829 0.693113i \(-0.756239\pi\)
0.720829 0.693113i \(-0.243761\pi\)
\(912\) 0 0
\(913\) −13.1466 −0.0143994
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 65.7968 0.0715961 0.0357980 0.999359i \(-0.488603\pi\)
0.0357980 + 0.999359i \(0.488603\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1829.26i 1.98186i
\(924\) 0 0
\(925\) −271.658 −0.293684
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1111.92i − 1.19690i −0.801160 0.598450i \(-0.795783\pi\)
0.801160 0.598450i \(-0.204217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 345.998i − 0.370052i
\(936\) 0 0
\(937\) 636.217 0.678993 0.339497 0.940607i \(-0.389743\pi\)
0.339497 + 0.940607i \(0.389743\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1650.38i − 1.75385i −0.480623 0.876927i \(-0.659589\pi\)
0.480623 0.876927i \(-0.340411\pi\)
\(942\) 0 0
\(943\) −222.245 −0.235678
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 710.808i − 0.750589i −0.926906 0.375294i \(-0.877542\pi\)
0.926906 0.375294i \(-0.122458\pi\)
\(948\) 0 0
\(949\) 732.004 0.771342
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 839.240i 0.880629i 0.897844 + 0.440315i \(0.145133\pi\)
−0.897844 + 0.440315i \(0.854867\pi\)
\(954\) 0 0
\(955\) −2178.70 −2.28136
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1147.39 1.19395
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2674.32i 2.77132i
\(966\) 0 0
\(967\) −848.150 −0.877094 −0.438547 0.898708i \(-0.644507\pi\)
−0.438547 + 0.898708i \(0.644507\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 558.752i 0.575440i 0.957715 + 0.287720i \(0.0928972\pi\)
−0.957715 + 0.287720i \(0.907103\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1215.22i 1.24383i 0.783086 + 0.621913i \(0.213644\pi\)
−0.783086 + 0.621913i \(0.786356\pi\)
\(978\) 0 0
\(979\) 172.676 0.176380
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1083.10i 1.10183i 0.834560 + 0.550917i \(0.185722\pi\)
−0.834560 + 0.550917i \(0.814278\pi\)
\(984\) 0 0
\(985\) 421.257 0.427673
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 276.603i 0.279680i
\(990\) 0 0
\(991\) −700.907 −0.707272 −0.353636 0.935383i \(-0.615055\pi\)
−0.353636 + 0.935383i \(0.615055\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 2458.68i − 2.47104i
\(996\) 0 0
\(997\) 530.354 0.531949 0.265975 0.963980i \(-0.414306\pi\)
0.265975 + 0.963980i \(0.414306\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.3.d.g.1961.8 8
3.2 odd 2 inner 3528.3.d.g.1961.1 8
7.2 even 3 504.3.cu.a.305.8 yes 16
7.4 even 3 504.3.cu.a.233.1 16
7.6 odd 2 3528.3.d.j.1961.1 8
21.2 odd 6 504.3.cu.a.305.1 yes 16
21.11 odd 6 504.3.cu.a.233.8 yes 16
21.20 even 2 3528.3.d.j.1961.8 8
28.11 odd 6 1008.3.dc.g.737.1 16
28.23 odd 6 1008.3.dc.g.305.8 16
84.11 even 6 1008.3.dc.g.737.8 16
84.23 even 6 1008.3.dc.g.305.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.cu.a.233.1 16 7.4 even 3
504.3.cu.a.233.8 yes 16 21.11 odd 6
504.3.cu.a.305.1 yes 16 21.2 odd 6
504.3.cu.a.305.8 yes 16 7.2 even 3
1008.3.dc.g.305.1 16 84.23 even 6
1008.3.dc.g.305.8 16 28.23 odd 6
1008.3.dc.g.737.1 16 28.11 odd 6
1008.3.dc.g.737.8 16 84.11 even 6
3528.3.d.g.1961.1 8 3.2 odd 2 inner
3528.3.d.g.1961.8 8 1.1 even 1 trivial
3528.3.d.j.1961.1 8 7.6 odd 2
3528.3.d.j.1961.8 8 21.20 even 2