Properties

Label 1008.3.dc.d.305.1
Level $1008$
Weight $3$
Character 1008.305
Analytic conductor $27.466$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(305,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.305"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.dc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-12,0,0,0,0,0,-112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.92844527616.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 13x^{6} - 2x^{5} + 239x^{4} - 200x^{3} - 50x^{2} - 288x + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.1
Root \(3.55140 - 1.47305i\) of defining polynomial
Character \(\chi\) \(=\) 1008.305
Dual form 1008.3.dc.d.737.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.60280 + 3.81213i) q^{5} +(-4.89116 + 5.00764i) q^{7} +(-4.41990 - 2.55183i) q^{11} -20.7823 q^{13} +(-22.7370 - 13.1272i) q^{17} +(11.1735 + 19.3531i) q^{19} +(34.4512 - 19.8904i) q^{23} +(16.5647 - 28.6908i) q^{25} -7.62426i q^{29} +(-5.89116 + 10.2038i) q^{31} +(13.2056 - 51.7102i) q^{35} +(30.1735 + 52.2620i) q^{37} -11.8044i q^{41} +30.3470 q^{43} +(-33.0681 + 19.0919i) q^{47} +(-1.15301 - 48.9864i) q^{49} +(5.11147 + 2.95111i) q^{53} +38.9116 q^{55} +(38.2878 + 22.1055i) q^{59} +(24.7382 + 42.8477i) q^{61} +(137.222 - 79.2249i) q^{65} +(31.5647 - 54.6716i) q^{67} +41.6279i q^{71} +(2.08835 - 3.61713i) q^{73} +(34.3971 - 9.65187i) q^{77} +(-20.8912 - 36.1846i) q^{79} -145.784i q^{83} +200.170 q^{85} +(38.0173 - 21.9493i) q^{89} +(101.650 - 104.071i) q^{91} +(-147.553 - 85.1896i) q^{95} +39.5173 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{7} - 112 q^{13} + 8 q^{19} + 24 q^{25} - 20 q^{31} + 160 q^{37} + 80 q^{43} - 172 q^{49} + 40 q^{55} + 8 q^{61} + 144 q^{67} + 288 q^{73} - 140 q^{79} + 896 q^{85} + 352 q^{91} - 552 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −6.60280 + 3.81213i −1.32056 + 0.762426i −0.983818 0.179171i \(-0.942658\pi\)
−0.336742 + 0.941597i \(0.609325\pi\)
\(6\) 0 0
\(7\) −4.89116 + 5.00764i −0.698738 + 0.715378i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.41990 2.55183i −0.401809 0.231985i 0.285455 0.958392i \(-0.407855\pi\)
−0.687264 + 0.726407i \(0.741189\pi\)
\(12\) 0 0
\(13\) −20.7823 −1.59864 −0.799320 0.600905i \(-0.794807\pi\)
−0.799320 + 0.600905i \(0.794807\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −22.7370 13.1272i −1.33747 0.772188i −0.351037 0.936361i \(-0.614171\pi\)
−0.986432 + 0.164173i \(0.947504\pi\)
\(18\) 0 0
\(19\) 11.1735 + 19.3531i 0.588079 + 1.01858i 0.994484 + 0.104889i \(0.0334488\pi\)
−0.406405 + 0.913693i \(0.633218\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 34.4512 19.8904i 1.49788 0.864801i 0.497883 0.867244i \(-0.334111\pi\)
0.999997 + 0.00244278i \(0.000777562\pi\)
\(24\) 0 0
\(25\) 16.5647 28.6908i 0.662586 1.14763i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.62426i 0.262905i −0.991322 0.131453i \(-0.958036\pi\)
0.991322 0.131453i \(-0.0419642\pi\)
\(30\) 0 0
\(31\) −5.89116 + 10.2038i −0.190038 + 0.329155i −0.945262 0.326311i \(-0.894194\pi\)
0.755225 + 0.655466i \(0.227528\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 13.2056 51.7102i 0.377303 1.47744i
\(36\) 0 0
\(37\) 30.1735 + 52.2620i 0.815500 + 1.41249i 0.908968 + 0.416865i \(0.136871\pi\)
−0.0934686 + 0.995622i \(0.529795\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.8044i 0.287913i −0.989584 0.143956i \(-0.954017\pi\)
0.989584 0.143956i \(-0.0459825\pi\)
\(42\) 0 0
\(43\) 30.3470 0.705744 0.352872 0.935672i \(-0.385205\pi\)
0.352872 + 0.935672i \(0.385205\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −33.0681 + 19.0919i −0.703577 + 0.406210i −0.808678 0.588251i \(-0.799817\pi\)
0.105101 + 0.994462i \(0.466483\pi\)
\(48\) 0 0
\(49\) −1.15301 48.9864i −0.0235308 0.999723i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.11147 + 2.95111i 0.0964428 + 0.0556813i 0.547446 0.836841i \(-0.315600\pi\)
−0.451003 + 0.892522i \(0.648934\pi\)
\(54\) 0 0
\(55\) 38.9116 0.707485
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 38.2878 + 22.1055i 0.648945 + 0.374669i 0.788052 0.615609i \(-0.211090\pi\)
−0.139107 + 0.990277i \(0.544423\pi\)
\(60\) 0 0
\(61\) 24.7382 + 42.8477i 0.405544 + 0.702422i 0.994385 0.105827i \(-0.0337489\pi\)
−0.588841 + 0.808249i \(0.700416\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 137.222 79.2249i 2.11110 1.21885i
\(66\) 0 0
\(67\) 31.5647 54.6716i 0.471114 0.815994i −0.528340 0.849033i \(-0.677185\pi\)
0.999454 + 0.0330391i \(0.0105186\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 41.6279i 0.586308i 0.956065 + 0.293154i \(0.0947048\pi\)
−0.956065 + 0.293154i \(0.905295\pi\)
\(72\) 0 0
\(73\) 2.08835 3.61713i 0.0286075 0.0495497i −0.851367 0.524570i \(-0.824226\pi\)
0.879975 + 0.475021i \(0.157559\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 34.3971 9.65187i 0.446716 0.125349i
\(78\) 0 0
\(79\) −20.8912 36.1846i −0.264445 0.458032i 0.702973 0.711217i \(-0.251855\pi\)
−0.967418 + 0.253184i \(0.918522\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 145.784i 1.75644i −0.478258 0.878219i \(-0.658732\pi\)
0.478258 0.878219i \(-0.341268\pi\)
\(84\) 0 0
\(85\) 200.170 2.35494
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 38.0173 21.9493i 0.427160 0.246621i −0.270976 0.962586i \(-0.587346\pi\)
0.698136 + 0.715965i \(0.254013\pi\)
\(90\) 0 0
\(91\) 101.650 104.071i 1.11703 1.14363i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −147.553 85.1896i −1.55319 0.896733i
\(96\) 0 0
\(97\) 39.5173 0.407395 0.203697 0.979034i \(-0.434704\pi\)
0.203697 + 0.979034i \(0.434704\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −80.9414 46.7315i −0.801400 0.462688i 0.0425607 0.999094i \(-0.486448\pi\)
−0.843960 + 0.536406i \(0.819782\pi\)
\(102\) 0 0
\(103\) −29.0000 50.2295i −0.281553 0.487665i 0.690214 0.723605i \(-0.257516\pi\)
−0.971768 + 0.235940i \(0.924183\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −148.407 + 85.6826i −1.38698 + 0.800772i −0.992974 0.118337i \(-0.962244\pi\)
−0.394004 + 0.919109i \(0.628910\pi\)
\(108\) 0 0
\(109\) −98.6056 + 170.790i −0.904639 + 1.56688i −0.0832375 + 0.996530i \(0.526526\pi\)
−0.821401 + 0.570351i \(0.806807\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 135.640i 1.20035i −0.799869 0.600175i \(-0.795098\pi\)
0.799869 0.600175i \(-0.204902\pi\)
\(114\) 0 0
\(115\) −151.650 + 262.665i −1.31869 + 2.28404i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 176.947 49.6514i 1.48695 0.417239i
\(120\) 0 0
\(121\) −47.4763 82.2314i −0.392366 0.679598i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 61.9800i 0.495840i
\(126\) 0 0
\(127\) 186.558 1.46896 0.734481 0.678629i \(-0.237426\pi\)
0.734481 + 0.678629i \(0.237426\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 43.8203 25.2997i 0.334506 0.193127i −0.323334 0.946285i \(-0.604804\pi\)
0.657840 + 0.753158i \(0.271470\pi\)
\(132\) 0 0
\(133\) −151.565 38.7061i −1.13958 0.291023i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −137.805 79.5617i −1.00588 0.580743i −0.0958942 0.995392i \(-0.530571\pi\)
−0.909981 + 0.414649i \(0.863904\pi\)
\(138\) 0 0
\(139\) −1.82330 −0.0131173 −0.00655863 0.999978i \(-0.502088\pi\)
−0.00655863 + 0.999978i \(0.502088\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 91.8559 + 53.0330i 0.642349 + 0.370860i
\(144\) 0 0
\(145\) 29.0647 + 50.3415i 0.200446 + 0.347183i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 146.969 84.8528i 0.986372 0.569482i 0.0821839 0.996617i \(-0.473811\pi\)
0.904188 + 0.427135i \(0.140477\pi\)
\(150\) 0 0
\(151\) −64.4968 + 111.712i −0.427131 + 0.739813i −0.996617 0.0821885i \(-0.973809\pi\)
0.569486 + 0.822001i \(0.307142\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 89.8315i 0.579558i
\(156\) 0 0
\(157\) 28.3470 49.0984i 0.180554 0.312729i −0.761515 0.648147i \(-0.775544\pi\)
0.942069 + 0.335418i \(0.108878\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −68.9025 + 269.807i −0.427966 + 1.67582i
\(162\) 0 0
\(163\) −67.4795 116.878i −0.413985 0.717043i 0.581337 0.813663i \(-0.302530\pi\)
−0.995321 + 0.0966206i \(0.969197\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 322.191i 1.92929i −0.263560 0.964643i \(-0.584897\pi\)
0.263560 0.964643i \(-0.415103\pi\)
\(168\) 0 0
\(169\) 262.905 1.55565
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −49.7315 + 28.7125i −0.287466 + 0.165968i −0.636798 0.771030i \(-0.719742\pi\)
0.349333 + 0.936999i \(0.386408\pi\)
\(174\) 0 0
\(175\) 62.6530 + 223.282i 0.358017 + 1.27589i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 164.216 + 94.8102i 0.917409 + 0.529666i 0.882807 0.469735i \(-0.155651\pi\)
0.0346013 + 0.999401i \(0.488984\pi\)
\(180\) 0 0
\(181\) −220.599 −1.21878 −0.609390 0.792871i \(-0.708586\pi\)
−0.609390 + 0.792871i \(0.708586\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −398.459 230.051i −2.15383 1.24352i
\(186\) 0 0
\(187\) 66.9968 + 116.042i 0.358272 + 0.620545i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 127.474 73.5970i 0.667402 0.385325i −0.127689 0.991814i \(-0.540756\pi\)
0.795092 + 0.606489i \(0.207423\pi\)
\(192\) 0 0
\(193\) 60.2349 104.330i 0.312098 0.540570i −0.666718 0.745310i \(-0.732302\pi\)
0.978816 + 0.204740i \(0.0656349\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.6369i 0.109832i 0.998491 + 0.0549160i \(0.0174891\pi\)
−0.998491 + 0.0549160i \(0.982511\pi\)
\(198\) 0 0
\(199\) −9.95903 + 17.2495i −0.0500454 + 0.0866811i −0.889963 0.456033i \(-0.849270\pi\)
0.839918 + 0.542714i \(0.182603\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 38.1796 + 37.2915i 0.188077 + 0.183702i
\(204\) 0 0
\(205\) 45.0000 + 77.9423i 0.219512 + 0.380206i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 114.052i 0.545701i
\(210\) 0 0
\(211\) 31.6530 0.150014 0.0750071 0.997183i \(-0.476102\pi\)
0.0750071 + 0.997183i \(0.476102\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −200.375 + 115.687i −0.931977 + 0.538077i
\(216\) 0 0
\(217\) −22.2823 79.4093i −0.102684 0.365942i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 472.527 + 272.814i 2.13813 + 1.23445i
\(222\) 0 0
\(223\) 250.653 1.12400 0.562002 0.827136i \(-0.310031\pi\)
0.562002 + 0.827136i \(0.310031\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 196.971 + 113.722i 0.867716 + 0.500976i 0.866588 0.499024i \(-0.166308\pi\)
0.00112715 + 0.999999i \(0.499641\pi\)
\(228\) 0 0
\(229\) −112.565 194.968i −0.491549 0.851387i 0.508404 0.861119i \(-0.330236\pi\)
−0.999953 + 0.00973134i \(0.996902\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −45.9491 + 26.5287i −0.197206 + 0.113857i −0.595352 0.803465i \(-0.702987\pi\)
0.398145 + 0.917322i \(0.369654\pi\)
\(234\) 0 0
\(235\) 145.561 252.120i 0.619410 1.07285i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 451.366i 1.88856i 0.329143 + 0.944280i \(0.393240\pi\)
−0.329143 + 0.944280i \(0.606760\pi\)
\(240\) 0 0
\(241\) 44.1940 76.5462i 0.183378 0.317619i −0.759651 0.650331i \(-0.774630\pi\)
0.943029 + 0.332712i \(0.107964\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 194.356 + 319.052i 0.793289 + 1.30225i
\(246\) 0 0
\(247\) −232.211 402.202i −0.940127 1.62835i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 233.706i 0.931102i 0.885021 + 0.465551i \(0.154144\pi\)
−0.885021 + 0.465551i \(0.845856\pi\)
\(252\) 0 0
\(253\) −203.028 −0.802483
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −324.608 + 187.412i −1.26306 + 0.729231i −0.973666 0.227978i \(-0.926789\pi\)
−0.289398 + 0.957209i \(0.593455\pi\)
\(258\) 0 0
\(259\) −409.293 104.524i −1.58028 0.403568i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −347.128 200.415i −1.31988 0.762032i −0.336170 0.941801i \(-0.609132\pi\)
−0.983709 + 0.179769i \(0.942465\pi\)
\(264\) 0 0
\(265\) −45.0000 −0.169811
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 292.544 + 168.900i 1.08752 + 0.627882i 0.932916 0.360094i \(-0.117255\pi\)
0.154608 + 0.987976i \(0.450589\pi\)
\(270\) 0 0
\(271\) −177.279 307.056i −0.654167 1.13305i −0.982102 0.188350i \(-0.939686\pi\)
0.327936 0.944700i \(-0.393647\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −146.428 + 84.5404i −0.532467 + 0.307420i
\(276\) 0 0
\(277\) 137.653 238.422i 0.496942 0.860729i −0.503052 0.864256i \(-0.667789\pi\)
0.999994 + 0.00352717i \(0.00112273\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 190.120i 0.676585i −0.941041 0.338292i \(-0.890151\pi\)
0.941041 0.338292i \(-0.109849\pi\)
\(282\) 0 0
\(283\) −72.9149 + 126.292i −0.257650 + 0.446262i −0.965612 0.259988i \(-0.916281\pi\)
0.707962 + 0.706250i \(0.249615\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 59.1124 + 57.7374i 0.205966 + 0.201176i
\(288\) 0 0
\(289\) 200.147 + 346.664i 0.692549 + 1.19953i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 340.870i 1.16338i 0.813411 + 0.581689i \(0.197608\pi\)
−0.813411 + 0.581689i \(0.802392\pi\)
\(294\) 0 0
\(295\) −337.076 −1.14263
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −715.977 + 413.370i −2.39457 + 1.38251i
\(300\) 0 0
\(301\) −148.432 + 151.967i −0.493130 + 0.504874i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −326.682 188.610i −1.07109 0.618394i
\(306\) 0 0
\(307\) 115.300 0.375569 0.187784 0.982210i \(-0.439869\pi\)
0.187784 + 0.982210i \(0.439869\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 117.684 + 67.9447i 0.378404 + 0.218472i 0.677124 0.735869i \(-0.263226\pi\)
−0.298720 + 0.954341i \(0.596560\pi\)
\(312\) 0 0
\(313\) 9.58835 + 16.6075i 0.0306337 + 0.0530591i 0.880936 0.473236i \(-0.156914\pi\)
−0.850302 + 0.526295i \(0.823581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 231.314 133.549i 0.729699 0.421292i −0.0886133 0.996066i \(-0.528244\pi\)
0.818312 + 0.574774i \(0.194910\pi\)
\(318\) 0 0
\(319\) −19.4558 + 33.6985i −0.0609900 + 0.105638i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 586.707i 1.81643i
\(324\) 0 0
\(325\) −344.252 + 596.262i −1.05924 + 1.83465i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 66.1362 258.975i 0.201022 0.787158i
\(330\) 0 0
\(331\) 240.347 + 416.293i 0.726124 + 1.25768i 0.958510 + 0.285060i \(0.0920134\pi\)
−0.232386 + 0.972624i \(0.574653\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 481.314i 1.43676i
\(336\) 0 0
\(337\) −234.823 −0.696805 −0.348403 0.937345i \(-0.613276\pi\)
−0.348403 + 0.937345i \(0.613276\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 52.0767 30.0665i 0.152718 0.0881716i
\(342\) 0 0
\(343\) 250.946 + 233.827i 0.731622 + 0.681711i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 53.0388 + 30.6220i 0.152850 + 0.0882478i 0.574474 0.818523i \(-0.305207\pi\)
−0.421624 + 0.906771i \(0.638540\pi\)
\(348\) 0 0
\(349\) 84.5173 0.242170 0.121085 0.992642i \(-0.461363\pi\)
0.121085 + 0.992642i \(0.461363\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 477.650 + 275.772i 1.35312 + 0.781223i 0.988685 0.150007i \(-0.0479296\pi\)
0.364433 + 0.931230i \(0.381263\pi\)
\(354\) 0 0
\(355\) −158.691 274.860i −0.447016 0.774255i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −247.383 + 142.827i −0.689088 + 0.397845i −0.803270 0.595614i \(-0.796909\pi\)
0.114182 + 0.993460i \(0.463575\pi\)
\(360\) 0 0
\(361\) −69.1940 + 119.847i −0.191673 + 0.331988i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 31.8442i 0.0872445i
\(366\) 0 0
\(367\) 5.63253 9.75582i 0.0153475 0.0265826i −0.858250 0.513232i \(-0.828448\pi\)
0.873597 + 0.486650i \(0.161781\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −39.7791 + 11.1621i −0.107221 + 0.0300864i
\(372\) 0 0
\(373\) −79.6876 138.023i −0.213640 0.370035i 0.739211 0.673474i \(-0.235198\pi\)
−0.952851 + 0.303439i \(0.901865\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 158.450i 0.420291i
\(378\) 0 0
\(379\) −315.375 −0.832124 −0.416062 0.909336i \(-0.636590\pi\)
−0.416062 + 0.909336i \(0.636590\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 432.369 249.629i 1.12890 0.651772i 0.185243 0.982693i \(-0.440693\pi\)
0.943659 + 0.330921i \(0.107359\pi\)
\(384\) 0 0
\(385\) −190.323 + 194.856i −0.494346 + 0.506119i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −472.960 273.064i −1.21584 0.701963i −0.251811 0.967776i \(-0.581026\pi\)
−0.964025 + 0.265813i \(0.914360\pi\)
\(390\) 0 0
\(391\) −1044.42 −2.67116
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 275.880 + 159.280i 0.698431 + 0.403240i
\(396\) 0 0
\(397\) −261.823 453.491i −0.659505 1.14230i −0.980744 0.195297i \(-0.937433\pi\)
0.321240 0.946998i \(-0.395901\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −473.802 + 273.550i −1.18155 + 0.682169i −0.956373 0.292148i \(-0.905630\pi\)
−0.225179 + 0.974318i \(0.572297\pi\)
\(402\) 0 0
\(403\) 122.432 212.059i 0.303802 0.526200i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 307.991i 0.756734i
\(408\) 0 0
\(409\) 322.399 558.411i 0.788261 1.36531i −0.138770 0.990325i \(-0.544315\pi\)
0.927031 0.374984i \(-0.122352\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −297.968 + 83.6102i −0.721473 + 0.202446i
\(414\) 0 0
\(415\) 555.749 + 962.586i 1.33915 + 2.31948i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 64.9379i 0.154983i −0.996993 0.0774916i \(-0.975309\pi\)
0.996993 0.0774916i \(-0.0246911\pi\)
\(420\) 0 0
\(421\) −283.722 −0.673924 −0.336962 0.941518i \(-0.609399\pi\)
−0.336962 + 0.941518i \(0.609399\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −753.260 + 434.895i −1.77238 + 1.02328i
\(426\) 0 0
\(427\) −335.565 85.6955i −0.785866 0.200692i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.6191 + 18.2553i 0.0733622 + 0.0423557i 0.536232 0.844070i \(-0.319847\pi\)
−0.462870 + 0.886426i \(0.653180\pi\)
\(432\) 0 0
\(433\) 382.082 0.882406 0.441203 0.897407i \(-0.354552\pi\)
0.441203 + 0.897407i \(0.354552\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 769.882 + 444.491i 1.76174 + 1.01714i
\(438\) 0 0
\(439\) −289.973 502.248i −0.660531 1.14407i −0.980476 0.196637i \(-0.936998\pi\)
0.319945 0.947436i \(-0.396335\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 610.819 352.657i 1.37882 0.796065i 0.386806 0.922161i \(-0.373578\pi\)
0.992018 + 0.126096i \(0.0402449\pi\)
\(444\) 0 0
\(445\) −167.347 + 289.853i −0.376061 + 0.651356i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 532.400i 1.18575i −0.805296 0.592873i \(-0.797994\pi\)
0.805296 0.592873i \(-0.202006\pi\)
\(450\) 0 0
\(451\) −30.1229 + 52.1744i −0.0667914 + 0.115686i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −274.443 + 1074.66i −0.603172 + 2.36189i
\(456\) 0 0
\(457\) −222.453 385.299i −0.486767 0.843106i 0.513117 0.858319i \(-0.328491\pi\)
−0.999884 + 0.0152131i \(0.995157\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 380.463i 0.825300i 0.910890 + 0.412650i \(0.135397\pi\)
−0.910890 + 0.412650i \(0.864603\pi\)
\(462\) 0 0
\(463\) 847.035 1.82945 0.914724 0.404079i \(-0.132408\pi\)
0.914724 + 0.404079i \(0.132408\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −151.876 + 87.6858i −0.325217 + 0.187764i −0.653715 0.756740i \(-0.726791\pi\)
0.328499 + 0.944504i \(0.393457\pi\)
\(468\) 0 0
\(469\) 119.388 + 425.472i 0.254559 + 0.907191i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −134.131 77.4404i −0.283574 0.163722i
\(474\) 0 0
\(475\) 740.341 1.55861
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 186.629 + 107.750i 0.389621 + 0.224948i 0.681996 0.731356i \(-0.261112\pi\)
−0.292375 + 0.956304i \(0.594445\pi\)
\(480\) 0 0
\(481\) −627.076 1086.13i −1.30369 2.25806i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −260.925 + 150.645i −0.537989 + 0.310608i
\(486\) 0 0
\(487\) −196.143 + 339.730i −0.402759 + 0.697598i −0.994058 0.108854i \(-0.965282\pi\)
0.591299 + 0.806452i \(0.298615\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 491.584i 1.00119i −0.865682 0.500595i \(-0.833115\pi\)
0.865682 0.500595i \(-0.166885\pi\)
\(492\) 0 0
\(493\) −100.085 + 173.353i −0.203012 + 0.351628i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −208.458 203.609i −0.419432 0.409675i
\(498\) 0 0
\(499\) 62.4827 + 108.223i 0.125216 + 0.216880i 0.921817 0.387625i \(-0.126704\pi\)
−0.796601 + 0.604505i \(0.793371\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.9357i 0.0436097i −0.999762 0.0218049i \(-0.993059\pi\)
0.999762 0.0218049i \(-0.00694125\pi\)
\(504\) 0 0
\(505\) 712.586 1.41106
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −252.734 + 145.916i −0.496531 + 0.286672i −0.727280 0.686341i \(-0.759216\pi\)
0.230749 + 0.973013i \(0.425882\pi\)
\(510\) 0 0
\(511\) 7.89883 + 28.1497i 0.0154576 + 0.0550875i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 382.962 + 221.104i 0.743616 + 0.429327i
\(516\) 0 0
\(517\) 194.877 0.376938
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 455.130 + 262.769i 0.873570 + 0.504356i 0.868533 0.495631i \(-0.165063\pi\)
0.00503702 + 0.999987i \(0.498397\pi\)
\(522\) 0 0
\(523\) 120.337 + 208.430i 0.230091 + 0.398529i 0.957835 0.287320i \(-0.0927644\pi\)
−0.727744 + 0.685849i \(0.759431\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 267.895 154.669i 0.508339 0.293489i
\(528\) 0 0
\(529\) 526.759 912.373i 0.995763 1.72471i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 245.323i 0.460269i
\(534\) 0 0
\(535\) 653.266 1131.49i 1.22106 2.11494i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −119.909 + 219.458i −0.222466 + 0.407157i
\(540\) 0 0
\(541\) 171.208 + 296.541i 0.316466 + 0.548135i 0.979748 0.200234i \(-0.0641704\pi\)
−0.663282 + 0.748369i \(0.730837\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1503.59i 2.75888i
\(546\) 0 0
\(547\) −94.5237 −0.172804 −0.0864019 0.996260i \(-0.527537\pi\)
−0.0864019 + 0.996260i \(0.527537\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 147.553 85.1896i 0.267791 0.154609i
\(552\) 0 0
\(553\) 283.382 + 72.3691i 0.512444 + 0.130866i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 58.6678 + 33.8719i 0.105328 + 0.0608112i 0.551739 0.834017i \(-0.313965\pi\)
−0.446411 + 0.894828i \(0.647298\pi\)
\(558\) 0 0
\(559\) −630.681 −1.12823
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −447.878 258.582i −0.795520 0.459294i 0.0463821 0.998924i \(-0.485231\pi\)
−0.841902 + 0.539630i \(0.818564\pi\)
\(564\) 0 0
\(565\) 517.076 + 895.601i 0.915178 + 1.58513i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 186.087 107.438i 0.327043 0.188818i −0.327484 0.944857i \(-0.606201\pi\)
0.654528 + 0.756038i \(0.272868\pi\)
\(570\) 0 0
\(571\) 217.467 376.663i 0.380852 0.659656i −0.610332 0.792146i \(-0.708964\pi\)
0.991184 + 0.132490i \(0.0422973\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1317.91i 2.29202i
\(576\) 0 0
\(577\) −153.983 + 266.706i −0.266868 + 0.462229i −0.968051 0.250752i \(-0.919322\pi\)
0.701183 + 0.712981i \(0.252655\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 730.037 + 713.056i 1.25652 + 1.22729i
\(582\) 0 0
\(583\) −15.0615 26.0872i −0.0258344 0.0447465i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 342.668i 0.583761i 0.956455 + 0.291881i \(0.0942810\pi\)
−0.956455 + 0.291881i \(0.905719\pi\)
\(588\) 0 0
\(589\) −263.300 −0.447028
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 502.396 290.059i 0.847211 0.489138i −0.0124977 0.999922i \(-0.503978\pi\)
0.859709 + 0.510784i \(0.170645\pi\)
\(594\) 0 0
\(595\) −979.066 + 1002.38i −1.64549 + 1.68468i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −461.655 266.537i −0.770710 0.444969i 0.0624181 0.998050i \(-0.480119\pi\)
−0.833128 + 0.553081i \(0.813452\pi\)
\(600\) 0 0
\(601\) −244.388 −0.406636 −0.203318 0.979113i \(-0.565172\pi\)
−0.203318 + 0.979113i \(0.565172\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 626.953 + 361.972i 1.03629 + 0.598300i
\(606\) 0 0
\(607\) −244.708 423.847i −0.403143 0.698265i 0.590960 0.806701i \(-0.298749\pi\)
−0.994103 + 0.108436i \(0.965416\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 687.232 396.774i 1.12477 0.649384i
\(612\) 0 0
\(613\) 199.779 346.028i 0.325904 0.564482i −0.655791 0.754943i \(-0.727665\pi\)
0.981695 + 0.190460i \(0.0609981\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 800.485i 1.29738i −0.761052 0.648691i \(-0.775317\pi\)
0.761052 0.648691i \(-0.224683\pi\)
\(618\) 0 0
\(619\) 368.596 638.427i 0.595470 1.03138i −0.398010 0.917381i \(-0.630299\pi\)
0.993480 0.114004i \(-0.0363675\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −76.0345 + 297.735i −0.122046 + 0.477905i
\(624\) 0 0
\(625\) 177.841 + 308.029i 0.284545 + 0.492846i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1584.37i 2.51888i
\(630\) 0 0
\(631\) 1046.82 1.65898 0.829490 0.558521i \(-0.188631\pi\)
0.829490 + 0.558521i \(0.188631\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1231.81 + 711.184i −1.93985 + 1.11998i
\(636\) 0 0
\(637\) 23.9622 + 1018.05i 0.0376173 + 1.59820i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −152.784 88.2100i −0.238353 0.137613i 0.376067 0.926593i \(-0.377276\pi\)
−0.614419 + 0.788980i \(0.710610\pi\)
\(642\) 0 0
\(643\) 865.349 1.34580 0.672900 0.739733i \(-0.265048\pi\)
0.672900 + 0.739733i \(0.265048\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −471.727 272.352i −0.729100 0.420946i 0.0889930 0.996032i \(-0.471635\pi\)
−0.818093 + 0.575086i \(0.804968\pi\)
\(648\) 0 0
\(649\) −112.819 195.408i −0.173835 0.301091i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −560.396 + 323.545i −0.858187 + 0.495474i −0.863405 0.504512i \(-0.831672\pi\)
0.00521781 + 0.999986i \(0.498339\pi\)
\(654\) 0 0
\(655\) −192.891 + 334.097i −0.294490 + 0.510072i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 265.738i 0.403245i 0.979463 + 0.201622i \(0.0646213\pi\)
−0.979463 + 0.201622i \(0.935379\pi\)
\(660\) 0 0
\(661\) −432.779 + 749.595i −0.654734 + 1.13403i 0.327227 + 0.944946i \(0.393886\pi\)
−0.981960 + 0.189086i \(0.939447\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1148.30 322.215i 1.72677 0.484534i
\(666\) 0 0
\(667\) −151.650 262.665i −0.227361 0.393801i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 252.510i 0.376320i
\(672\) 0 0
\(673\) −344.022 −0.511176 −0.255588 0.966786i \(-0.582269\pi\)
−0.255588 + 0.966786i \(0.582269\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −86.9185 + 50.1824i −0.128388 + 0.0741247i −0.562818 0.826581i \(-0.690283\pi\)
0.434431 + 0.900705i \(0.356950\pi\)
\(678\) 0 0
\(679\) −193.286 + 197.888i −0.284662 + 0.291441i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −231.465 133.636i −0.338895 0.195661i 0.320889 0.947117i \(-0.396019\pi\)
−0.659783 + 0.751456i \(0.729352\pi\)
\(684\) 0 0
\(685\) 1213.20 1.77109
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −106.228 61.3309i −0.154177 0.0890143i
\(690\) 0 0
\(691\) 269.940 + 467.549i 0.390651 + 0.676627i 0.992536 0.121956i \(-0.0389166\pi\)
−0.601885 + 0.798583i \(0.705583\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.0389 6.95065i 0.0173221 0.0100009i
\(696\) 0 0
\(697\) −154.959 + 268.397i −0.222323 + 0.385074i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1083.03i 1.54498i −0.635025 0.772492i \(-0.719010\pi\)
0.635025 0.772492i \(-0.280990\pi\)
\(702\) 0 0
\(703\) −674.287 + 1167.90i −0.959156 + 1.66131i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 629.912 176.754i 0.890965 0.250006i
\(708\) 0 0
\(709\) 286.981 + 497.065i 0.404768 + 0.701079i 0.994294 0.106670i \(-0.0340188\pi\)
−0.589526 + 0.807749i \(0.700685\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 468.711i 0.657379i
\(714\) 0 0
\(715\) −808.675 −1.13101
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 582.754 336.453i 0.810507 0.467946i −0.0366251 0.999329i \(-0.511661\pi\)
0.847132 + 0.531383i \(0.178327\pi\)
\(720\) 0 0
\(721\) 393.375 + 100.459i 0.545597 + 0.139333i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −218.746 126.293i −0.301719 0.174198i
\(726\) 0 0
\(727\) 924.627 1.27184 0.635920 0.771755i \(-0.280621\pi\)
0.635920 + 0.771755i \(0.280621\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −689.999 398.371i −0.943911 0.544967i
\(732\) 0 0
\(733\) −491.120 850.644i −0.670013 1.16050i −0.977900 0.209074i \(-0.932955\pi\)
0.307887 0.951423i \(-0.400378\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −279.025 + 161.095i −0.378596 + 0.218583i
\(738\) 0 0
\(739\) −52.1165 + 90.2684i −0.0705230 + 0.122149i −0.899131 0.437680i \(-0.855800\pi\)
0.828608 + 0.559830i \(0.189133\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1381.60i 1.85949i −0.368203 0.929745i \(-0.620027\pi\)
0.368203 0.929745i \(-0.379973\pi\)
\(744\) 0 0
\(745\) −646.940 + 1120.53i −0.868376 + 1.50407i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 296.813 1162.26i 0.396279 1.55174i
\(750\) 0 0
\(751\) −159.156 275.667i −0.211926 0.367066i 0.740391 0.672176i \(-0.234640\pi\)
−0.952317 + 0.305110i \(0.901307\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 983.480i 1.30262i
\(756\) 0 0
\(757\) 541.097 0.714792 0.357396 0.933953i \(-0.383665\pi\)
0.357396 + 0.933953i \(0.383665\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −594.210 + 343.067i −0.780828 + 0.450811i −0.836724 0.547626i \(-0.815532\pi\)
0.0558959 + 0.998437i \(0.482199\pi\)
\(762\) 0 0
\(763\) −372.959 1329.14i −0.488806 1.74200i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −795.709 459.403i −1.03743 0.598961i
\(768\) 0 0
\(769\) 1233.76 1.60437 0.802187 0.597073i \(-0.203670\pi\)
0.802187 + 0.597073i \(0.203670\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −307.770 177.691i −0.398150 0.229872i 0.287535 0.957770i \(-0.407164\pi\)
−0.685685 + 0.727898i \(0.740497\pi\)
\(774\) 0 0
\(775\) 195.170 + 338.045i 0.251833 + 0.436187i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 228.452 131.897i 0.293263 0.169315i
\(780\) 0 0
\(781\) 106.227 183.991i 0.136014 0.235584i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 432.250i 0.550636i
\(786\) 0 0
\(787\) −31.3912 + 54.3711i −0.0398871 + 0.0690865i −0.885280 0.465059i \(-0.846033\pi\)
0.845393 + 0.534145i \(0.179367\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 679.235 + 663.435i 0.858704 + 0.838730i
\(792\) 0 0
\(793\) −514.116 890.476i −0.648318 1.12292i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 294.027i 0.368917i −0.982840 0.184459i \(-0.940947\pi\)
0.982840 0.184459i \(-0.0590531\pi\)
\(798\) 0 0
\(799\) 1002.49 1.25468
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.4606 + 10.6582i −0.0229895 + 0.0132730i
\(804\) 0 0
\(805\) −573.590 2044.15i −0.712534 2.53931i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −149.303 86.2000i −0.184552 0.106551i 0.404877 0.914371i \(-0.367314\pi\)
−0.589430 + 0.807820i \(0.700648\pi\)
\(810\) 0 0
\(811\) −28.1511 −0.0347115 −0.0173558 0.999849i \(-0.505525\pi\)
−0.0173558 + 0.999849i \(0.505525\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 891.108 + 514.481i 1.09338 + 0.631265i
\(816\) 0 0
\(817\) 339.082 + 587.307i 0.415033 + 0.718858i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 775.318 447.630i 0.944358 0.545225i 0.0530340 0.998593i \(-0.483111\pi\)
0.891324 + 0.453368i \(0.149778\pi\)
\(822\) 0 0
\(823\) 668.994 1158.73i 0.812872 1.40794i −0.0979740 0.995189i \(-0.531236\pi\)
0.910846 0.412746i \(-0.135430\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 330.739i 0.399926i 0.979803 + 0.199963i \(0.0640821\pi\)
−0.979803 + 0.199963i \(0.935918\pi\)
\(828\) 0 0
\(829\) 535.284 927.138i 0.645698 1.11838i −0.338442 0.940987i \(-0.609900\pi\)
0.984140 0.177394i \(-0.0567668\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −616.839 + 1128.94i −0.740503 + 1.35527i
\(834\) 0 0
\(835\) 1228.23 + 2127.36i 1.47094 + 2.54774i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 818.205i 0.975214i 0.873063 + 0.487607i \(0.162130\pi\)
−0.873063 + 0.487607i \(0.837870\pi\)
\(840\) 0 0
\(841\) 782.871 0.930881
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1735.91 + 1002.23i −2.05433 + 1.18607i
\(846\) 0 0
\(847\) 644.000 + 164.463i 0.760331 + 0.194171i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2079.03 + 1200.33i 2.44304 + 1.41049i
\(852\) 0 0
\(853\) −1455.47 −1.70630 −0.853148 0.521670i \(-0.825309\pi\)
−0.853148 + 0.521670i \(0.825309\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.9946 15.5853i −0.0314989 0.0181859i 0.484168 0.874975i \(-0.339122\pi\)
−0.515667 + 0.856789i \(0.672456\pi\)
\(858\) 0 0
\(859\) −589.337 1020.76i −0.686074 1.18831i −0.973098 0.230391i \(-0.925999\pi\)
0.287024 0.957923i \(-0.407334\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 468.246 270.342i 0.542580 0.313258i −0.203544 0.979066i \(-0.565246\pi\)
0.746124 + 0.665807i \(0.231913\pi\)
\(864\) 0 0
\(865\) 218.912 379.166i 0.253077 0.438342i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 213.243i 0.245389i
\(870\) 0 0
\(871\) −655.987 + 1136.20i −0.753143 + 1.30448i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −310.374 303.155i −0.354713 0.346462i
\(876\) 0 0
\(877\) −737.974 1278.21i −0.841476 1.45748i −0.888647 0.458592i \(-0.848354\pi\)
0.0471710 0.998887i \(-0.484979\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 919.702i 1.04393i 0.852967 + 0.521965i \(0.174801\pi\)
−0.852967 + 0.521965i \(0.825199\pi\)
\(882\) 0 0
\(883\) 938.164 1.06247 0.531237 0.847223i \(-0.321728\pi\)
0.531237 + 0.847223i \(0.321728\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −655.439 + 378.418i −0.738939 + 0.426627i −0.821684 0.569944i \(-0.806965\pi\)
0.0827442 + 0.996571i \(0.473632\pi\)
\(888\) 0 0
\(889\) −912.487 + 934.217i −1.02642 + 1.05086i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −738.973 426.646i −0.827517 0.477767i
\(894\) 0 0
\(895\) −1445.72 −1.61532
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 77.7964 + 44.9158i 0.0865366 + 0.0499619i
\(900\) 0 0
\(901\) −77.4795 134.198i −0.0859928 0.148944i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1456.57 840.953i 1.60947 0.929230i
\(906\) 0 0
\(907\) −191.839 + 332.275i −0.211510 + 0.366346i −0.952187 0.305515i \(-0.901171\pi\)
0.740677 + 0.671861i \(0.234505\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.2548i 0.0277221i 0.999904 + 0.0138610i \(0.00441225\pi\)
−0.999904 + 0.0138610i \(0.995588\pi\)
\(912\) 0 0
\(913\) −372.017 + 644.353i −0.407467 + 0.705753i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −87.6406 + 343.181i −0.0955732 + 0.374244i
\(918\) 0 0
\(919\) −406.558 704.180i −0.442392 0.766245i 0.555474 0.831534i \(-0.312537\pi\)
−0.997866 + 0.0652882i \(0.979203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 865.124i 0.937296i
\(924\) 0 0
\(925\) 1999.25 2.16136
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 279.717 161.495i 0.301095 0.173837i −0.341840 0.939758i \(-0.611050\pi\)
0.642935 + 0.765921i \(0.277717\pi\)
\(930\) 0 0
\(931\) 935.154 569.664i 1.00446 0.611884i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −884.733 510.801i −0.946239 0.546311i
\(936\) 0 0
\(937\) 649.858 0.693552 0.346776 0.937948i \(-0.387276\pi\)
0.346776 + 0.937948i \(0.387276\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 576.584 + 332.891i 0.612736 + 0.353763i 0.774035 0.633142i \(-0.218235\pi\)
−0.161300 + 0.986905i \(0.551569\pi\)
\(942\) 0 0
\(943\) −234.795 406.677i −0.248987 0.431259i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1256.46 725.415i 1.32678 0.766014i 0.341976 0.939709i \(-0.388904\pi\)
0.984800 + 0.173694i \(0.0555705\pi\)
\(948\) 0 0
\(949\) −43.4008 + 75.1724i −0.0457332 + 0.0792122i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 562.272i 0.590002i 0.955497 + 0.295001i \(0.0953200\pi\)
−0.955497 + 0.295001i \(0.904680\pi\)
\(954\) 0 0
\(955\) −561.123 + 971.893i −0.587563 + 1.01769i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1072.44 300.929i 1.11829 0.313794i
\(960\) 0 0
\(961\) 411.088 + 712.026i 0.427771 + 0.740922i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 918.494i 0.951807i
\(966\) 0 0
\(967\) 1238.53 1.28080 0.640399 0.768042i \(-0.278769\pi\)
0.640399 + 0.768042i \(0.278769\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −380.984 + 219.961i −0.392363 + 0.226531i −0.683183 0.730247i \(-0.739405\pi\)
0.290821 + 0.956778i \(0.406072\pi\)
\(972\) 0 0
\(973\) 8.91806 9.13044i 0.00916553 0.00938380i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −671.736 387.827i −0.687549 0.396957i 0.115144 0.993349i \(-0.463267\pi\)
−0.802693 + 0.596392i \(0.796600\pi\)
\(978\) 0 0
\(979\) −224.043 −0.228849
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1171.93 + 676.614i 1.19220 + 0.688316i 0.958804 0.284067i \(-0.0916837\pi\)
0.233393 + 0.972382i \(0.425017\pi\)
\(984\) 0 0
\(985\) −82.4827 142.864i −0.0837388 0.145040i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1045.49 603.615i 1.05712 0.610328i
\(990\) 0 0
\(991\) −107.307 + 185.862i −0.108282 + 0.187550i −0.915074 0.403285i \(-0.867868\pi\)
0.806792 + 0.590835i \(0.201202\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 151.860i 0.152624i
\(996\) 0 0
\(997\) 519.306 899.464i 0.520869 0.902171i −0.478837 0.877904i \(-0.658941\pi\)
0.999706 0.0242670i \(-0.00772520\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.dc.d.305.1 8
3.2 odd 2 inner 1008.3.dc.d.305.4 8
4.3 odd 2 252.3.bk.b.53.1 8
7.2 even 3 inner 1008.3.dc.d.737.4 8
12.11 even 2 252.3.bk.b.53.4 yes 8
21.2 odd 6 inner 1008.3.dc.d.737.1 8
28.3 even 6 1764.3.c.g.197.4 4
28.11 odd 6 1764.3.c.e.197.1 4
28.19 even 6 1764.3.bk.f.1745.1 8
28.23 odd 6 252.3.bk.b.233.4 yes 8
28.27 even 2 1764.3.bk.f.557.4 8
84.11 even 6 1764.3.c.e.197.4 4
84.23 even 6 252.3.bk.b.233.1 yes 8
84.47 odd 6 1764.3.bk.f.1745.4 8
84.59 odd 6 1764.3.c.g.197.1 4
84.83 odd 2 1764.3.bk.f.557.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.bk.b.53.1 8 4.3 odd 2
252.3.bk.b.53.4 yes 8 12.11 even 2
252.3.bk.b.233.1 yes 8 84.23 even 6
252.3.bk.b.233.4 yes 8 28.23 odd 6
1008.3.dc.d.305.1 8 1.1 even 1 trivial
1008.3.dc.d.305.4 8 3.2 odd 2 inner
1008.3.dc.d.737.1 8 21.2 odd 6 inner
1008.3.dc.d.737.4 8 7.2 even 3 inner
1764.3.c.e.197.1 4 28.11 odd 6
1764.3.c.e.197.4 4 84.11 even 6
1764.3.c.g.197.1 4 84.59 odd 6
1764.3.c.g.197.4 4 28.3 even 6
1764.3.bk.f.557.1 8 84.83 odd 2
1764.3.bk.f.557.4 8 28.27 even 2
1764.3.bk.f.1745.1 8 28.19 even 6
1764.3.bk.f.1745.4 8 84.47 odd 6