Properties

Label 1764.3.c.g.197.1
Level $1764$
Weight $3$
Character 1764.197
Analytic conductor $48.066$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(197,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.197"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-23})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 17x^{2} - 16x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 197.1
Root \(0.500000 + 3.81213i\) of defining polynomial
Character \(\chi\) \(=\) 1764.197
Dual form 1764.3.c.g.197.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.62426i q^{5} +5.10366i q^{11} +20.7823 q^{13} +26.2544i q^{17} -22.3470 q^{19} +39.7809i q^{23} -33.1293 q^{25} +7.62426i q^{29} +11.7823 q^{31} -60.3470 q^{37} -11.8044i q^{41} -30.3470 q^{43} +38.1838i q^{47} +5.90221i q^{53} +38.9116 q^{55} +44.2109i q^{59} +49.4763 q^{61} -158.450i q^{65} +63.1293 q^{67} +41.6279i q^{71} +4.17670 q^{73} -41.7823 q^{79} +145.784i q^{83} +200.170 q^{85} +43.8986i q^{89} +170.379i q^{95} -39.5173 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 56 q^{13} - 8 q^{19} - 24 q^{25} + 20 q^{31} - 160 q^{37} - 40 q^{43} + 20 q^{55} + 8 q^{61} + 144 q^{67} + 288 q^{73} - 140 q^{79} + 448 q^{85} + 276 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 7.62426i − 1.52485i −0.647076 0.762426i \(-0.724008\pi\)
0.647076 0.762426i \(-0.275992\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.10366i 0.463969i 0.972719 + 0.231985i \(0.0745219\pi\)
−0.972719 + 0.231985i \(0.925478\pi\)
\(12\) 0 0
\(13\) 20.7823 1.59864 0.799320 0.600905i \(-0.205193\pi\)
0.799320 + 0.600905i \(0.205193\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 26.2544i 1.54438i 0.635394 + 0.772188i \(0.280838\pi\)
−0.635394 + 0.772188i \(0.719162\pi\)
\(18\) 0 0
\(19\) −22.3470 −1.17616 −0.588079 0.808804i \(-0.700115\pi\)
−0.588079 + 0.808804i \(0.700115\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 39.7809i 1.72960i 0.502114 + 0.864801i \(0.332556\pi\)
−0.502114 + 0.864801i \(0.667444\pi\)
\(24\) 0 0
\(25\) −33.1293 −1.32517
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.62426i 0.262905i 0.991322 + 0.131453i \(0.0419642\pi\)
−0.991322 + 0.131453i \(0.958036\pi\)
\(30\) 0 0
\(31\) 11.7823 0.380075 0.190038 0.981777i \(-0.439139\pi\)
0.190038 + 0.981777i \(0.439139\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −60.3470 −1.63100 −0.815500 0.578757i \(-0.803538\pi\)
−0.815500 + 0.578757i \(0.803538\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 11.8044i − 0.287913i −0.989584 0.143956i \(-0.954017\pi\)
0.989584 0.143956i \(-0.0459825\pi\)
\(42\) 0 0
\(43\) −30.3470 −0.705744 −0.352872 0.935672i \(-0.614795\pi\)
−0.352872 + 0.935672i \(0.614795\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 38.1838i 0.812421i 0.913780 + 0.406210i \(0.133150\pi\)
−0.913780 + 0.406210i \(0.866850\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.90221i 0.111363i 0.998449 + 0.0556813i \(0.0177331\pi\)
−0.998449 + 0.0556813i \(0.982267\pi\)
\(54\) 0 0
\(55\) 38.9116 0.707485
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 44.2109i 0.749338i 0.927159 + 0.374669i \(0.122244\pi\)
−0.927159 + 0.374669i \(0.877756\pi\)
\(60\) 0 0
\(61\) 49.4763 0.811087 0.405544 0.914076i \(-0.367082\pi\)
0.405544 + 0.914076i \(0.367082\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 158.450i − 2.43769i
\(66\) 0 0
\(67\) 63.1293 0.942229 0.471114 0.882072i \(-0.343852\pi\)
0.471114 + 0.882072i \(0.343852\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 41.6279i 0.586308i 0.956065 + 0.293154i \(0.0947048\pi\)
−0.956065 + 0.293154i \(0.905295\pi\)
\(72\) 0 0
\(73\) 4.17670 0.0572151 0.0286075 0.999591i \(-0.490893\pi\)
0.0286075 + 0.999591i \(0.490893\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −41.7823 −0.528890 −0.264445 0.964401i \(-0.585189\pi\)
−0.264445 + 0.964401i \(0.585189\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 145.784i 1.75644i 0.478258 + 0.878219i \(0.341268\pi\)
−0.478258 + 0.878219i \(0.658732\pi\)
\(84\) 0 0
\(85\) 200.170 2.35494
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 43.8986i 0.493242i 0.969112 + 0.246621i \(0.0793203\pi\)
−0.969112 + 0.246621i \(0.920680\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 170.379i 1.79347i
\(96\) 0 0
\(97\) −39.5173 −0.407395 −0.203697 0.979034i \(-0.565296\pi\)
−0.203697 + 0.979034i \(0.565296\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 93.4630i 0.925377i 0.886521 + 0.462688i \(0.153115\pi\)
−0.886521 + 0.462688i \(0.846885\pi\)
\(102\) 0 0
\(103\) 58.0000 0.563107 0.281553 0.959546i \(-0.409150\pi\)
0.281553 + 0.959546i \(0.409150\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 171.365i − 1.60154i −0.598969 0.800772i \(-0.704423\pi\)
0.598969 0.800772i \(-0.295577\pi\)
\(108\) 0 0
\(109\) 197.211 1.80928 0.904639 0.426179i \(-0.140141\pi\)
0.904639 + 0.426179i \(0.140141\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 135.640i 1.20035i 0.799869 + 0.600175i \(0.204902\pi\)
−0.799869 + 0.600175i \(0.795098\pi\)
\(114\) 0 0
\(115\) 303.300 2.63739
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 94.9526 0.784732
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 61.9800i 0.495840i
\(126\) 0 0
\(127\) −186.558 −1.46896 −0.734481 0.678629i \(-0.762574\pi\)
−0.734481 + 0.678629i \(0.762574\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 50.5993i − 0.386254i −0.981174 0.193127i \(-0.938137\pi\)
0.981174 0.193127i \(-0.0618630\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 159.123i − 1.16149i −0.814087 0.580743i \(-0.802762\pi\)
0.814087 0.580743i \(-0.197238\pi\)
\(138\) 0 0
\(139\) −1.82330 −0.0131173 −0.00655863 0.999978i \(-0.502088\pi\)
−0.00655863 + 0.999978i \(0.502088\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 106.066i 0.741720i
\(144\) 0 0
\(145\) 58.1293 0.400892
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 169.706i − 1.13896i −0.822004 0.569482i \(-0.807144\pi\)
0.822004 0.569482i \(-0.192856\pi\)
\(150\) 0 0
\(151\) −128.994 −0.854262 −0.427131 0.904190i \(-0.640476\pi\)
−0.427131 + 0.904190i \(0.640476\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 89.8315i − 0.579558i
\(156\) 0 0
\(157\) 56.6940 0.361108 0.180554 0.983565i \(-0.442211\pi\)
0.180554 + 0.983565i \(0.442211\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −134.959 −0.827970 −0.413985 0.910284i \(-0.635863\pi\)
−0.413985 + 0.910284i \(0.635863\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 322.191i 1.92929i 0.263560 + 0.964643i \(0.415103\pi\)
−0.263560 + 0.964643i \(0.584897\pi\)
\(168\) 0 0
\(169\) 262.905 1.55565
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 57.4250i − 0.331937i −0.986131 0.165968i \(-0.946925\pi\)
0.986131 0.165968i \(-0.0530749\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 189.620i − 1.05933i −0.848206 0.529666i \(-0.822317\pi\)
0.848206 0.529666i \(-0.177683\pi\)
\(180\) 0 0
\(181\) 220.599 1.21878 0.609390 0.792871i \(-0.291414\pi\)
0.609390 + 0.792871i \(0.291414\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 460.101i 2.48703i
\(186\) 0 0
\(187\) −133.994 −0.716543
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 147.194i 0.770650i 0.922781 + 0.385325i \(0.125911\pi\)
−0.922781 + 0.385325i \(0.874089\pi\)
\(192\) 0 0
\(193\) −120.470 −0.624196 −0.312098 0.950050i \(-0.601032\pi\)
−0.312098 + 0.950050i \(0.601032\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 21.6369i − 0.109832i −0.998491 0.0549160i \(-0.982511\pi\)
0.998491 0.0549160i \(-0.0174891\pi\)
\(198\) 0 0
\(199\) 19.9181 0.100091 0.0500454 0.998747i \(-0.484063\pi\)
0.0500454 + 0.998747i \(0.484063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −90.0000 −0.439024
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 114.052i − 0.545701i
\(210\) 0 0
\(211\) −31.6530 −0.150014 −0.0750071 0.997183i \(-0.523898\pi\)
−0.0750071 + 0.997183i \(0.523898\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 231.373i 1.07615i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 545.627i 2.46890i
\(222\) 0 0
\(223\) 250.653 1.12400 0.562002 0.827136i \(-0.310031\pi\)
0.562002 + 0.827136i \(0.310031\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 227.443i 1.00195i 0.865461 + 0.500976i \(0.167025\pi\)
−0.865461 + 0.500976i \(0.832975\pi\)
\(228\) 0 0
\(229\) −225.129 −0.983097 −0.491549 0.870850i \(-0.663569\pi\)
−0.491549 + 0.870850i \(0.663569\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 53.0574i 0.227714i 0.993497 + 0.113857i \(0.0363206\pi\)
−0.993497 + 0.113857i \(0.963679\pi\)
\(234\) 0 0
\(235\) 291.123 1.23882
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 451.366i 1.88856i 0.329143 + 0.944280i \(0.393240\pi\)
−0.329143 + 0.944280i \(0.606760\pi\)
\(240\) 0 0
\(241\) 88.3880 0.366755 0.183378 0.983043i \(-0.441297\pi\)
0.183378 + 0.983043i \(0.441297\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −464.423 −1.88025
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 233.706i − 0.931102i −0.885021 0.465551i \(-0.845856\pi\)
0.885021 0.465551i \(-0.154144\pi\)
\(252\) 0 0
\(253\) −203.028 −0.802483
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 374.825i − 1.45846i −0.684268 0.729231i \(-0.739878\pi\)
0.684268 0.729231i \(-0.260122\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 400.829i 1.52406i 0.647539 + 0.762032i \(0.275798\pi\)
−0.647539 + 0.762032i \(0.724202\pi\)
\(264\) 0 0
\(265\) 45.0000 0.169811
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 337.801i − 1.25576i −0.778308 0.627882i \(-0.783922\pi\)
0.778308 0.627882i \(-0.216078\pi\)
\(270\) 0 0
\(271\) 354.558 1.30833 0.654167 0.756351i \(-0.273020\pi\)
0.654167 + 0.756351i \(0.273020\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 169.081i − 0.614840i
\(276\) 0 0
\(277\) −275.306 −0.993885 −0.496942 0.867784i \(-0.665544\pi\)
−0.496942 + 0.867784i \(0.665544\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 190.120i 0.676585i 0.941041 + 0.338292i \(0.109849\pi\)
−0.941041 + 0.338292i \(0.890151\pi\)
\(282\) 0 0
\(283\) 145.830 0.515299 0.257650 0.966238i \(-0.417052\pi\)
0.257650 + 0.966238i \(0.417052\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −400.293 −1.38510
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 340.870i 1.16338i 0.813411 + 0.581689i \(0.197608\pi\)
−0.813411 + 0.581689i \(0.802392\pi\)
\(294\) 0 0
\(295\) 337.076 1.14263
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 826.739i 2.76501i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 377.220i − 1.23679i
\(306\) 0 0
\(307\) 115.300 0.375569 0.187784 0.982210i \(-0.439869\pi\)
0.187784 + 0.982210i \(0.439869\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 135.889i 0.436944i 0.975843 + 0.218472i \(0.0701072\pi\)
−0.975843 + 0.218472i \(0.929893\pi\)
\(312\) 0 0
\(313\) 19.1767 0.0612674 0.0306337 0.999531i \(-0.490247\pi\)
0.0306337 + 0.999531i \(0.490247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 267.099i − 0.842583i −0.906925 0.421292i \(-0.861577\pi\)
0.906925 0.421292i \(-0.138423\pi\)
\(318\) 0 0
\(319\) −38.9116 −0.121980
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 586.707i − 1.81643i
\(324\) 0 0
\(325\) −688.504 −2.11848
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 480.694 1.45225 0.726124 0.687564i \(-0.241320\pi\)
0.726124 + 0.687564i \(0.241320\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 481.314i − 1.43676i
\(336\) 0 0
\(337\) −234.823 −0.696805 −0.348403 0.937345i \(-0.613276\pi\)
−0.348403 + 0.937345i \(0.613276\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 60.1330i 0.176343i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 61.2440i − 0.176496i −0.996099 0.0882478i \(-0.971873\pi\)
0.996099 0.0882478i \(-0.0281267\pi\)
\(348\) 0 0
\(349\) −84.5173 −0.242170 −0.121085 0.992642i \(-0.538637\pi\)
−0.121085 + 0.992642i \(0.538637\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 551.543i − 1.56245i −0.624252 0.781223i \(-0.714596\pi\)
0.624252 0.781223i \(-0.285404\pi\)
\(354\) 0 0
\(355\) 317.382 0.894033
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 285.653i − 0.795691i −0.917452 0.397845i \(-0.869758\pi\)
0.917452 0.397845i \(-0.130242\pi\)
\(360\) 0 0
\(361\) 138.388 0.383346
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 31.8442i − 0.0872445i
\(366\) 0 0
\(367\) −11.2651 −0.0306950 −0.0153475 0.999882i \(-0.504885\pi\)
−0.0153475 + 0.999882i \(0.504885\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 159.375 0.427279 0.213640 0.976913i \(-0.431468\pi\)
0.213640 + 0.976913i \(0.431468\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 158.450i 0.420291i
\(378\) 0 0
\(379\) 315.375 0.832124 0.416062 0.909336i \(-0.363410\pi\)
0.416062 + 0.909336i \(0.363410\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 499.257i − 1.30354i −0.758415 0.651772i \(-0.774026\pi\)
0.758415 0.651772i \(-0.225974\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 546.127i − 1.40393i −0.712213 0.701963i \(-0.752307\pi\)
0.712213 0.701963i \(-0.247693\pi\)
\(390\) 0 0
\(391\) −1044.42 −2.67116
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 318.559i 0.806479i
\(396\) 0 0
\(397\) −523.647 −1.31901 −0.659505 0.751701i \(-0.729234\pi\)
−0.659505 + 0.751701i \(0.729234\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 547.100i 1.36434i 0.731194 + 0.682169i \(0.238963\pi\)
−0.731194 + 0.682169i \(0.761037\pi\)
\(402\) 0 0
\(403\) 244.864 0.607604
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 307.991i − 0.756734i
\(408\) 0 0
\(409\) 644.798 1.57652 0.788261 0.615341i \(-0.210982\pi\)
0.788261 + 0.615341i \(0.210982\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1111.50 2.67831
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 64.9379i 0.154983i 0.996993 + 0.0774916i \(0.0246911\pi\)
−0.996993 + 0.0774916i \(0.975309\pi\)
\(420\) 0 0
\(421\) −283.722 −0.673924 −0.336962 0.941518i \(-0.609399\pi\)
−0.336962 + 0.941518i \(0.609399\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 869.790i − 2.04657i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 36.5106i − 0.0847114i −0.999103 0.0423557i \(-0.986514\pi\)
0.999103 0.0423557i \(-0.0134863\pi\)
\(432\) 0 0
\(433\) −382.082 −0.882406 −0.441203 0.897407i \(-0.645448\pi\)
−0.441203 + 0.897407i \(0.645448\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 888.983i − 2.03429i
\(438\) 0 0
\(439\) 579.946 1.32106 0.660531 0.750799i \(-0.270331\pi\)
0.660531 + 0.750799i \(0.270331\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 705.313i 1.59213i 0.605212 + 0.796065i \(0.293088\pi\)
−0.605212 + 0.796065i \(0.706912\pi\)
\(444\) 0 0
\(445\) 334.694 0.752121
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 532.400i 1.18575i 0.805296 + 0.592873i \(0.202006\pi\)
−0.805296 + 0.592873i \(0.797994\pi\)
\(450\) 0 0
\(451\) 60.2458 0.133583
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 444.905 0.973534 0.486767 0.873532i \(-0.338176\pi\)
0.486767 + 0.873532i \(0.338176\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 380.463i 0.825300i 0.910890 + 0.412650i \(0.135397\pi\)
−0.910890 + 0.412650i \(0.864603\pi\)
\(462\) 0 0
\(463\) −847.035 −1.82945 −0.914724 0.404079i \(-0.867592\pi\)
−0.914724 + 0.404079i \(0.867592\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 175.372i 0.375528i 0.982214 + 0.187764i \(0.0601240\pi\)
−0.982214 + 0.187764i \(0.939876\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 154.881i − 0.327444i
\(474\) 0 0
\(475\) 740.341 1.55861
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 215.500i 0.449896i 0.974371 + 0.224948i \(0.0722212\pi\)
−0.974371 + 0.224948i \(0.927779\pi\)
\(480\) 0 0
\(481\) −1254.15 −2.60738
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 301.290i 0.621216i
\(486\) 0 0
\(487\) −392.287 −0.805517 −0.402759 0.915306i \(-0.631949\pi\)
−0.402759 + 0.915306i \(0.631949\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 491.584i − 1.00119i −0.865682 0.500595i \(-0.833115\pi\)
0.865682 0.500595i \(-0.166885\pi\)
\(492\) 0 0
\(493\) −200.170 −0.406025
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 124.965 0.250432 0.125216 0.992130i \(-0.460038\pi\)
0.125216 + 0.992130i \(0.460038\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.9357i 0.0436097i 0.999762 + 0.0218049i \(0.00694125\pi\)
−0.999762 + 0.0218049i \(0.993059\pi\)
\(504\) 0 0
\(505\) 712.586 1.41106
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 291.832i − 0.573344i −0.958029 0.286672i \(-0.907451\pi\)
0.958029 0.286672i \(-0.0925491\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 442.207i − 0.858654i
\(516\) 0 0
\(517\) −194.877 −0.376938
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 525.539i − 1.00871i −0.863496 0.504356i \(-0.831730\pi\)
0.863496 0.504356i \(-0.168270\pi\)
\(522\) 0 0
\(523\) −240.675 −0.460181 −0.230091 0.973169i \(-0.573902\pi\)
−0.230091 + 0.973169i \(0.573902\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 309.338i 0.586979i
\(528\) 0 0
\(529\) −1053.52 −1.99153
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 245.323i − 0.460269i
\(534\) 0 0
\(535\) −1306.53 −2.44212
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −342.416 −0.632932 −0.316466 0.948604i \(-0.602496\pi\)
−0.316466 + 0.948604i \(0.602496\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 1503.59i − 2.75888i
\(546\) 0 0
\(547\) 94.5237 0.172804 0.0864019 0.996260i \(-0.472463\pi\)
0.0864019 + 0.996260i \(0.472463\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 170.379i − 0.309218i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 67.7437i 0.121622i 0.998149 + 0.0608112i \(0.0193688\pi\)
−0.998149 + 0.0608112i \(0.980631\pi\)
\(558\) 0 0
\(559\) −630.681 −1.12823
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 517.165i − 0.918588i −0.888284 0.459294i \(-0.848103\pi\)
0.888284 0.459294i \(-0.151897\pi\)
\(564\) 0 0
\(565\) 1034.15 1.83036
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 214.875i − 0.377637i −0.982012 0.188818i \(-0.939534\pi\)
0.982012 0.188818i \(-0.0604657\pi\)
\(570\) 0 0
\(571\) 434.933 0.761705 0.380852 0.924636i \(-0.375631\pi\)
0.380852 + 0.924636i \(0.375631\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 1317.91i − 2.29202i
\(576\) 0 0
\(577\) −307.965 −0.533736 −0.266868 0.963733i \(-0.585989\pi\)
−0.266868 + 0.963733i \(0.585989\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −30.1229 −0.0516688
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 342.668i − 0.583761i −0.956455 0.291881i \(-0.905719\pi\)
0.956455 0.291881i \(-0.0942810\pi\)
\(588\) 0 0
\(589\) −263.300 −0.447028
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 580.117i 0.978275i 0.872207 + 0.489138i \(0.162688\pi\)
−0.872207 + 0.489138i \(0.837312\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 533.073i 0.889939i 0.895546 + 0.444969i \(0.146785\pi\)
−0.895546 + 0.444969i \(0.853215\pi\)
\(600\) 0 0
\(601\) 244.388 0.406636 0.203318 0.979113i \(-0.434828\pi\)
0.203318 + 0.979113i \(0.434828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 723.943i − 1.19660i
\(606\) 0 0
\(607\) 489.416 0.806287 0.403143 0.915137i \(-0.367918\pi\)
0.403143 + 0.915137i \(0.367918\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 793.548i 1.29877i
\(612\) 0 0
\(613\) −399.558 −0.651808 −0.325904 0.945403i \(-0.605669\pi\)
−0.325904 + 0.945403i \(0.605669\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 800.485i 1.29738i 0.761052 + 0.648691i \(0.224683\pi\)
−0.761052 + 0.648691i \(0.775317\pi\)
\(618\) 0 0
\(619\) −737.192 −1.19094 −0.595470 0.803377i \(-0.703034\pi\)
−0.595470 + 0.803377i \(0.703034\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −355.681 −0.569090
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 1584.37i − 2.51888i
\(630\) 0 0
\(631\) −1046.82 −1.65898 −0.829490 0.558521i \(-0.811369\pi\)
−0.829490 + 0.558521i \(0.811369\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1422.37i 2.23995i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 176.420i − 0.275226i −0.990486 0.137613i \(-0.956057\pi\)
0.990486 0.137613i \(-0.0439431\pi\)
\(642\) 0 0
\(643\) 865.349 1.34580 0.672900 0.739733i \(-0.265048\pi\)
0.672900 + 0.739733i \(0.265048\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 544.704i − 0.841892i −0.907086 0.420946i \(-0.861698\pi\)
0.907086 0.420946i \(-0.138302\pi\)
\(648\) 0 0
\(649\) −225.638 −0.347670
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 647.090i 0.990949i 0.868623 + 0.495474i \(0.165006\pi\)
−0.868623 + 0.495474i \(0.834994\pi\)
\(654\) 0 0
\(655\) −385.782 −0.588981
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 265.738i 0.403245i 0.979463 + 0.201622i \(0.0646213\pi\)
−0.979463 + 0.201622i \(0.935379\pi\)
\(660\) 0 0
\(661\) −865.558 −1.30947 −0.654734 0.755859i \(-0.727219\pi\)
−0.654734 + 0.755859i \(0.727219\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −303.300 −0.454722
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 252.510i 0.376320i
\(672\) 0 0
\(673\) −344.022 −0.511176 −0.255588 0.966786i \(-0.582269\pi\)
−0.255588 + 0.966786i \(0.582269\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 100.365i − 0.148249i −0.997249 0.0741247i \(-0.976384\pi\)
0.997249 0.0741247i \(-0.0236163\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 267.273i 0.391322i 0.980672 + 0.195661i \(0.0626852\pi\)
−0.980672 + 0.195661i \(0.937315\pi\)
\(684\) 0 0
\(685\) −1213.20 −1.77109
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 122.662i 0.178029i
\(690\) 0 0
\(691\) −539.880 −0.781302 −0.390651 0.920539i \(-0.627750\pi\)
−0.390651 + 0.920539i \(0.627750\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.9013i 0.0200019i
\(696\) 0 0
\(697\) 309.918 0.444646
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1083.03i 1.54498i 0.635025 + 0.772492i \(0.280990\pi\)
−0.635025 + 0.772492i \(0.719010\pi\)
\(702\) 0 0
\(703\) 1348.57 1.91831
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −573.962 −0.809537 −0.404768 0.914419i \(-0.632648\pi\)
−0.404768 + 0.914419i \(0.632648\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 468.711i 0.657379i
\(714\) 0 0
\(715\) 808.675 1.13101
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 672.907i − 0.935892i −0.883757 0.467946i \(-0.844994\pi\)
0.883757 0.467946i \(-0.155006\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 252.587i − 0.348395i
\(726\) 0 0
\(727\) 924.627 1.27184 0.635920 0.771755i \(-0.280621\pi\)
0.635920 + 0.771755i \(0.280621\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 796.742i − 1.08993i
\(732\) 0 0
\(733\) −982.239 −1.34003 −0.670013 0.742349i \(-0.733712\pi\)
−0.670013 + 0.742349i \(0.733712\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 322.191i 0.437165i
\(738\) 0 0
\(739\) −104.233 −0.141046 −0.0705230 0.997510i \(-0.522467\pi\)
−0.0705230 + 0.997510i \(0.522467\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1381.60i − 1.85949i −0.368203 0.929745i \(-0.620027\pi\)
0.368203 0.929745i \(-0.379973\pi\)
\(744\) 0 0
\(745\) −1293.88 −1.73675
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −318.312 −0.423851 −0.211926 0.977286i \(-0.567973\pi\)
−0.211926 + 0.977286i \(0.567973\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 983.480i 1.30262i
\(756\) 0 0
\(757\) 541.097 0.714792 0.357396 0.933953i \(-0.383665\pi\)
0.357396 + 0.933953i \(0.383665\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 686.134i − 0.901622i −0.892619 0.450811i \(-0.851135\pi\)
0.892619 0.450811i \(-0.148865\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 918.806i 1.19792i
\(768\) 0 0
\(769\) −1233.76 −1.60437 −0.802187 0.597073i \(-0.796330\pi\)
−0.802187 + 0.597073i \(0.796330\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 355.382i 0.459744i 0.973221 + 0.229872i \(0.0738308\pi\)
−0.973221 + 0.229872i \(0.926169\pi\)
\(774\) 0 0
\(775\) −390.341 −0.503665
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 263.793i 0.338631i
\(780\) 0 0
\(781\) −212.455 −0.272029
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 432.250i − 0.550636i
\(786\) 0 0
\(787\) 62.7823 0.0797742 0.0398871 0.999204i \(-0.487300\pi\)
0.0398871 + 0.999204i \(0.487300\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1028.23 1.29664
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 294.027i − 0.368917i −0.982840 0.184459i \(-0.940947\pi\)
0.982840 0.184459i \(-0.0590531\pi\)
\(798\) 0 0
\(799\) −1002.49 −1.25468
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 21.3165i 0.0265460i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 172.400i − 0.213103i −0.994307 0.106551i \(-0.966019\pi\)
0.994307 0.106551i \(-0.0339808\pi\)
\(810\) 0 0
\(811\) −28.1511 −0.0347115 −0.0173558 0.999849i \(-0.505525\pi\)
−0.0173558 + 0.999849i \(0.505525\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1028.96i 1.26253i
\(816\) 0 0
\(817\) 678.164 0.830066
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 895.260i − 1.09045i −0.838290 0.545225i \(-0.816444\pi\)
0.838290 0.545225i \(-0.183556\pi\)
\(822\) 0 0
\(823\) 1337.99 1.62574 0.812872 0.582442i \(-0.197903\pi\)
0.812872 + 0.582442i \(0.197903\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 330.739i 0.399926i 0.979803 + 0.199963i \(0.0640821\pi\)
−0.979803 + 0.199963i \(0.935918\pi\)
\(828\) 0 0
\(829\) 1070.57 1.29140 0.645698 0.763593i \(-0.276567\pi\)
0.645698 + 0.763593i \(0.276567\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2456.47 2.94188
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 818.205i − 0.975214i −0.873063 0.487607i \(-0.837870\pi\)
0.873063 0.487607i \(-0.162130\pi\)
\(840\) 0 0
\(841\) 782.871 0.930881
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 2004.46i − 2.37214i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 2400.66i − 2.82098i
\(852\) 0 0
\(853\) 1455.47 1.70630 0.853148 0.521670i \(-0.174691\pi\)
0.853148 + 0.521670i \(0.174691\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31.1706i 0.0363718i 0.999835 + 0.0181859i \(0.00578907\pi\)
−0.999835 + 0.0181859i \(0.994211\pi\)
\(858\) 0 0
\(859\) 1178.67 1.37215 0.686074 0.727532i \(-0.259333\pi\)
0.686074 + 0.727532i \(0.259333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 540.684i 0.626517i 0.949668 + 0.313258i \(0.101421\pi\)
−0.949668 + 0.313258i \(0.898579\pi\)
\(864\) 0 0
\(865\) −437.823 −0.506154
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 213.243i − 0.245389i
\(870\) 0 0
\(871\) 1311.97 1.50629
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1475.95 1.68295 0.841476 0.540295i \(-0.181687\pi\)
0.841476 + 0.540295i \(0.181687\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 919.702i 1.04393i 0.852967 + 0.521965i \(0.174801\pi\)
−0.852967 + 0.521965i \(0.825199\pi\)
\(882\) 0 0
\(883\) −938.164 −1.06247 −0.531237 0.847223i \(-0.678272\pi\)
−0.531237 + 0.847223i \(0.678272\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 756.836i 0.853254i 0.904428 + 0.426627i \(0.140298\pi\)
−0.904428 + 0.426627i \(0.859702\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 853.292i − 0.955534i
\(894\) 0 0
\(895\) −1445.72 −1.61532
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 89.8315i 0.0999238i
\(900\) 0 0
\(901\) −154.959 −0.171986
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1681.91i − 1.85846i
\(906\) 0 0
\(907\) −383.679 −0.423019 −0.211510 0.977376i \(-0.567838\pi\)
−0.211510 + 0.977376i \(0.567838\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.2548i 0.0277221i 0.999904 + 0.0138610i \(0.00441225\pi\)
−0.999904 + 0.0138610i \(0.995588\pi\)
\(912\) 0 0
\(913\) −744.035 −0.814934
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −813.116 −0.884784 −0.442392 0.896822i \(-0.645870\pi\)
−0.442392 + 0.896822i \(0.645870\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 865.124i 0.937296i
\(924\) 0 0
\(925\) 1999.25 2.16136
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 322.989i 0.347674i 0.984774 + 0.173837i \(0.0556166\pi\)
−0.984774 + 0.173837i \(0.944383\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1021.60i 1.09262i
\(936\) 0 0
\(937\) −649.858 −0.693552 −0.346776 0.937948i \(-0.612724\pi\)
−0.346776 + 0.937948i \(0.612724\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 665.782i − 0.707526i −0.935335 0.353763i \(-0.884902\pi\)
0.935335 0.353763i \(-0.115098\pi\)
\(942\) 0 0
\(943\) 469.590 0.497975
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1450.83i 1.53203i 0.642824 + 0.766014i \(0.277763\pi\)
−0.642824 + 0.766014i \(0.722237\pi\)
\(948\) 0 0
\(949\) 86.8016 0.0914663
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 562.272i − 0.590002i −0.955497 0.295001i \(-0.904680\pi\)
0.955497 0.295001i \(-0.0953200\pi\)
\(954\) 0 0
\(955\) 1122.25 1.17513
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −822.177 −0.855543
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 918.494i 0.951807i
\(966\) 0 0
\(967\) −1238.53 −1.28080 −0.640399 0.768042i \(-0.721231\pi\)
−0.640399 + 0.768042i \(0.721231\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 439.923i 0.453061i 0.974004 + 0.226531i \(0.0727384\pi\)
−0.974004 + 0.226531i \(0.927262\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 775.654i − 0.793914i −0.917837 0.396957i \(-0.870066\pi\)
0.917837 0.396957i \(-0.129934\pi\)
\(978\) 0 0
\(979\) −224.043 −0.228849
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1353.23i 1.37663i 0.725411 + 0.688316i \(0.241650\pi\)
−0.725411 + 0.688316i \(0.758350\pi\)
\(984\) 0 0
\(985\) −164.965 −0.167478
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1207.23i − 1.22066i
\(990\) 0 0
\(991\) −214.615 −0.216564 −0.108282 0.994120i \(-0.534535\pi\)
−0.108282 + 0.994120i \(0.534535\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 151.860i − 0.152624i
\(996\) 0 0
\(997\) 1038.61 1.04174 0.520869 0.853637i \(-0.325608\pi\)
0.520869 + 0.853637i \(0.325608\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.3.c.g.197.1 4
3.2 odd 2 inner 1764.3.c.g.197.4 4
7.2 even 3 1764.3.bk.f.557.1 8
7.3 odd 6 252.3.bk.b.233.1 yes 8
7.4 even 3 1764.3.bk.f.1745.4 8
7.5 odd 6 252.3.bk.b.53.4 yes 8
7.6 odd 2 1764.3.c.e.197.4 4
21.2 odd 6 1764.3.bk.f.557.4 8
21.5 even 6 252.3.bk.b.53.1 8
21.11 odd 6 1764.3.bk.f.1745.1 8
21.17 even 6 252.3.bk.b.233.4 yes 8
21.20 even 2 1764.3.c.e.197.1 4
28.3 even 6 1008.3.dc.d.737.1 8
28.19 even 6 1008.3.dc.d.305.4 8
84.47 odd 6 1008.3.dc.d.305.1 8
84.59 odd 6 1008.3.dc.d.737.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.bk.b.53.1 8 21.5 even 6
252.3.bk.b.53.4 yes 8 7.5 odd 6
252.3.bk.b.233.1 yes 8 7.3 odd 6
252.3.bk.b.233.4 yes 8 21.17 even 6
1008.3.dc.d.305.1 8 84.47 odd 6
1008.3.dc.d.305.4 8 28.19 even 6
1008.3.dc.d.737.1 8 28.3 even 6
1008.3.dc.d.737.4 8 84.59 odd 6
1764.3.c.e.197.1 4 21.20 even 2
1764.3.c.e.197.4 4 7.6 odd 2
1764.3.c.g.197.1 4 1.1 even 1 trivial
1764.3.c.g.197.4 4 3.2 odd 2 inner
1764.3.bk.f.557.1 8 7.2 even 3
1764.3.bk.f.557.4 8 21.2 odd 6
1764.3.bk.f.1745.1 8 21.11 odd 6
1764.3.bk.f.1745.4 8 7.4 even 3