Properties

Label 1008.2.df.d.929.3
Level $1008$
Weight $2$
Character 1008.929
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 929.3
Root \(-0.544978 + 1.64408i\) of defining polynomial
Character \(\chi\) \(=\) 1008.929
Dual form 1008.2.df.d.689.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.615921 + 1.61884i) q^{3} -3.91482 q^{5} +(2.51757 - 0.813537i) q^{7} +(-2.24128 - 1.99416i) q^{9} +3.69456i q^{11} +(-0.480242 + 0.277268i) q^{13} +(2.41122 - 6.33747i) q^{15} +(-2.91916 - 5.05613i) q^{17} +(-4.62434 - 2.66986i) q^{19} +(-0.233638 + 4.57662i) q^{21} -2.27435i q^{23} +10.3258 q^{25} +(4.60867 - 2.40003i) q^{27} +(3.53638 + 2.04173i) q^{29} +(7.00132 + 4.04222i) q^{31} +(-5.98090 - 2.27556i) q^{33} +(-9.85583 + 3.18485i) q^{35} +(3.89849 - 6.75239i) q^{37} +(-0.153061 - 0.948209i) q^{39} +(-3.59234 - 6.22212i) q^{41} +(0.754009 - 1.30598i) q^{43} +(8.77422 + 7.80676i) q^{45} +(1.41416 + 2.44940i) q^{47} +(5.67631 - 4.09627i) q^{49} +(9.98304 - 1.61147i) q^{51} +(0.0415658 - 0.0239980i) q^{53} -14.4635i q^{55} +(7.17031 - 5.84164i) q^{57} +(4.45656 - 7.71900i) q^{59} +(6.03343 - 3.48340i) q^{61} +(-7.26490 - 3.19706i) q^{63} +(1.88006 - 1.08545i) q^{65} +(0.587402 - 1.01741i) q^{67} +(3.68181 + 1.40082i) q^{69} +6.71061i q^{71} +(-3.52692 + 2.03627i) q^{73} +(-6.35989 + 16.7158i) q^{75} +(3.00566 + 9.30131i) q^{77} +(-1.97374 - 3.41861i) q^{79} +(1.04669 + 8.93893i) q^{81} +(3.84674 - 6.66275i) q^{83} +(11.4280 + 19.7938i) q^{85} +(-5.48337 + 4.46729i) q^{87} +(2.71300 - 4.69905i) q^{89} +(-0.983474 + 1.08874i) q^{91} +(-10.8560 + 8.84433i) q^{93} +(18.1035 + 10.4520i) q^{95} +(-13.9874 - 8.07563i) q^{97} +(7.36753 - 8.28055i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{7} + 3 q^{13} + 3 q^{15} - 9 q^{17} + 16 q^{25} + 9 q^{27} + 6 q^{29} - 6 q^{31} - 27 q^{33} - 15 q^{35} + q^{37} + 3 q^{39} + 6 q^{41} + 2 q^{43} - 15 q^{45} + 18 q^{47} + 13 q^{49} - 15 q^{51}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.615921 + 1.61884i −0.355602 + 0.934637i
\(4\) 0 0
\(5\) −3.91482 −1.75076 −0.875381 0.483434i \(-0.839389\pi\)
−0.875381 + 0.483434i \(0.839389\pi\)
\(6\) 0 0
\(7\) 2.51757 0.813537i 0.951552 0.307488i
\(8\) 0 0
\(9\) −2.24128 1.99416i −0.747094 0.664718i
\(10\) 0 0
\(11\) 3.69456i 1.11395i 0.830529 + 0.556976i \(0.188038\pi\)
−0.830529 + 0.556976i \(0.811962\pi\)
\(12\) 0 0
\(13\) −0.480242 + 0.277268i −0.133195 + 0.0769002i −0.565117 0.825011i \(-0.691169\pi\)
0.431922 + 0.901911i \(0.357836\pi\)
\(14\) 0 0
\(15\) 2.41122 6.33747i 0.622575 1.63633i
\(16\) 0 0
\(17\) −2.91916 5.05613i −0.708000 1.22629i −0.965598 0.260040i \(-0.916264\pi\)
0.257598 0.966252i \(-0.417069\pi\)
\(18\) 0 0
\(19\) −4.62434 2.66986i −1.06090 0.612509i −0.135216 0.990816i \(-0.543173\pi\)
−0.925680 + 0.378307i \(0.876506\pi\)
\(20\) 0 0
\(21\) −0.233638 + 4.57662i −0.0509841 + 0.998699i
\(22\) 0 0
\(23\) 2.27435i 0.474236i −0.971481 0.237118i \(-0.923797\pi\)
0.971481 0.237118i \(-0.0762027\pi\)
\(24\) 0 0
\(25\) 10.3258 2.06516
\(26\) 0 0
\(27\) 4.60867 2.40003i 0.886939 0.461887i
\(28\) 0 0
\(29\) 3.53638 + 2.04173i 0.656690 + 0.379140i 0.791014 0.611797i \(-0.209553\pi\)
−0.134325 + 0.990937i \(0.542887\pi\)
\(30\) 0 0
\(31\) 7.00132 + 4.04222i 1.25748 + 0.726004i 0.972583 0.232556i \(-0.0747089\pi\)
0.284892 + 0.958560i \(0.408042\pi\)
\(32\) 0 0
\(33\) −5.98090 2.27556i −1.04114 0.396124i
\(34\) 0 0
\(35\) −9.85583 + 3.18485i −1.66594 + 0.538338i
\(36\) 0 0
\(37\) 3.89849 6.75239i 0.640909 1.11009i −0.344322 0.938852i \(-0.611891\pi\)
0.985230 0.171235i \(-0.0547756\pi\)
\(38\) 0 0
\(39\) −0.153061 0.948209i −0.0245093 0.151835i
\(40\) 0 0
\(41\) −3.59234 6.22212i −0.561030 0.971732i −0.997407 0.0719684i \(-0.977072\pi\)
0.436377 0.899764i \(-0.356261\pi\)
\(42\) 0 0
\(43\) 0.754009 1.30598i 0.114985 0.199160i −0.802789 0.596264i \(-0.796651\pi\)
0.917774 + 0.397103i \(0.129985\pi\)
\(44\) 0 0
\(45\) 8.77422 + 7.80676i 1.30798 + 1.16376i
\(46\) 0 0
\(47\) 1.41416 + 2.44940i 0.206277 + 0.357282i 0.950539 0.310606i \(-0.100532\pi\)
−0.744262 + 0.667888i \(0.767199\pi\)
\(48\) 0 0
\(49\) 5.67631 4.09627i 0.810902 0.585182i
\(50\) 0 0
\(51\) 9.98304 1.61147i 1.39790 0.225651i
\(52\) 0 0
\(53\) 0.0415658 0.0239980i 0.00570950 0.00329638i −0.497143 0.867669i \(-0.665617\pi\)
0.502852 + 0.864373i \(0.332284\pi\)
\(54\) 0 0
\(55\) 14.4635i 1.95026i
\(56\) 0 0
\(57\) 7.17031 5.84164i 0.949731 0.773744i
\(58\) 0 0
\(59\) 4.45656 7.71900i 0.580195 1.00493i −0.415261 0.909703i \(-0.636310\pi\)
0.995456 0.0952251i \(-0.0303571\pi\)
\(60\) 0 0
\(61\) 6.03343 3.48340i 0.772501 0.446004i −0.0612648 0.998122i \(-0.519513\pi\)
0.833766 + 0.552118i \(0.186180\pi\)
\(62\) 0 0
\(63\) −7.26490 3.19706i −0.915292 0.402791i
\(64\) 0 0
\(65\) 1.88006 1.08545i 0.233193 0.134634i
\(66\) 0 0
\(67\) 0.587402 1.01741i 0.0717626 0.124296i −0.827911 0.560859i \(-0.810471\pi\)
0.899674 + 0.436563i \(0.143804\pi\)
\(68\) 0 0
\(69\) 3.68181 + 1.40082i 0.443238 + 0.168639i
\(70\) 0 0
\(71\) 6.71061i 0.796403i 0.917298 + 0.398202i \(0.130366\pi\)
−0.917298 + 0.398202i \(0.869634\pi\)
\(72\) 0 0
\(73\) −3.52692 + 2.03627i −0.412795 + 0.238327i −0.691990 0.721907i \(-0.743266\pi\)
0.279195 + 0.960234i \(0.409932\pi\)
\(74\) 0 0
\(75\) −6.35989 + 16.7158i −0.734377 + 1.93018i
\(76\) 0 0
\(77\) 3.00566 + 9.30131i 0.342527 + 1.05998i
\(78\) 0 0
\(79\) −1.97374 3.41861i −0.222063 0.384624i 0.733371 0.679828i \(-0.237946\pi\)
−0.955434 + 0.295204i \(0.904612\pi\)
\(80\) 0 0
\(81\) 1.04669 + 8.93893i 0.116299 + 0.993214i
\(82\) 0 0
\(83\) 3.84674 6.66275i 0.422235 0.731332i −0.573923 0.818909i \(-0.694579\pi\)
0.996158 + 0.0875774i \(0.0279125\pi\)
\(84\) 0 0
\(85\) 11.4280 + 19.7938i 1.23954 + 2.14694i
\(86\) 0 0
\(87\) −5.48337 + 4.46729i −0.587879 + 0.478944i
\(88\) 0 0
\(89\) 2.71300 4.69905i 0.287577 0.498099i −0.685654 0.727928i \(-0.740483\pi\)
0.973231 + 0.229829i \(0.0738168\pi\)
\(90\) 0 0
\(91\) −0.983474 + 1.08874i −0.103096 + 0.114130i
\(92\) 0 0
\(93\) −10.8560 + 8.84433i −1.12571 + 0.917115i
\(94\) 0 0
\(95\) 18.1035 + 10.4520i 1.85738 + 1.07236i
\(96\) 0 0
\(97\) −13.9874 8.07563i −1.42021 0.819956i −0.423890 0.905714i \(-0.639336\pi\)
−0.996316 + 0.0857571i \(0.972669\pi\)
\(98\) 0 0
\(99\) 7.36753 8.28055i 0.740464 0.832227i
\(100\) 0 0
\(101\) 1.62350 0.161544 0.0807722 0.996733i \(-0.474261\pi\)
0.0807722 + 0.996733i \(0.474261\pi\)
\(102\) 0 0
\(103\) 0.395662i 0.0389857i 0.999810 + 0.0194929i \(0.00620517\pi\)
−0.999810 + 0.0194929i \(0.993795\pi\)
\(104\) 0 0
\(105\) 0.914653 17.9166i 0.0892610 1.74848i
\(106\) 0 0
\(107\) −4.90777 2.83350i −0.474452 0.273925i 0.243650 0.969863i \(-0.421655\pi\)
−0.718101 + 0.695938i \(0.754989\pi\)
\(108\) 0 0
\(109\) −6.75667 11.7029i −0.647171 1.12093i −0.983795 0.179294i \(-0.942619\pi\)
0.336624 0.941639i \(-0.390715\pi\)
\(110\) 0 0
\(111\) 8.52987 + 10.4700i 0.809619 + 0.993766i
\(112\) 0 0
\(113\) 1.13651 0.656162i 0.106913 0.0617265i −0.445590 0.895237i \(-0.647006\pi\)
0.552503 + 0.833511i \(0.313673\pi\)
\(114\) 0 0
\(115\) 8.90369i 0.830273i
\(116\) 0 0
\(117\) 1.62927 + 0.336241i 0.150626 + 0.0310855i
\(118\) 0 0
\(119\) −11.4625 10.3543i −1.05077 0.949179i
\(120\) 0 0
\(121\) −2.64977 −0.240888
\(122\) 0 0
\(123\) 12.2852 1.98309i 1.10772 0.178809i
\(124\) 0 0
\(125\) −20.8496 −1.86485
\(126\) 0 0
\(127\) 17.3935 1.54342 0.771710 0.635975i \(-0.219402\pi\)
0.771710 + 0.635975i \(0.219402\pi\)
\(128\) 0 0
\(129\) 1.64976 + 2.02500i 0.145254 + 0.178291i
\(130\) 0 0
\(131\) −10.9072 −0.952968 −0.476484 0.879183i \(-0.658089\pi\)
−0.476484 + 0.879183i \(0.658089\pi\)
\(132\) 0 0
\(133\) −13.8141 2.95950i −1.19784 0.256621i
\(134\) 0 0
\(135\) −18.0421 + 9.39570i −1.55282 + 0.808653i
\(136\) 0 0
\(137\) 8.80514i 0.752274i 0.926564 + 0.376137i \(0.122748\pi\)
−0.926564 + 0.376137i \(0.877252\pi\)
\(138\) 0 0
\(139\) −14.2352 + 8.21869i −1.20741 + 0.697100i −0.962193 0.272367i \(-0.912193\pi\)
−0.245220 + 0.969468i \(0.578860\pi\)
\(140\) 0 0
\(141\) −4.83621 + 0.780664i −0.407282 + 0.0657438i
\(142\) 0 0
\(143\) −1.02438 1.77428i −0.0856631 0.148373i
\(144\) 0 0
\(145\) −13.8443 7.99301i −1.14971 0.663783i
\(146\) 0 0
\(147\) 3.13505 + 11.7120i 0.258574 + 0.965991i
\(148\) 0 0
\(149\) 14.5278i 1.19016i −0.803665 0.595082i \(-0.797120\pi\)
0.803665 0.595082i \(-0.202880\pi\)
\(150\) 0 0
\(151\) −5.60613 −0.456221 −0.228110 0.973635i \(-0.573255\pi\)
−0.228110 + 0.973635i \(0.573255\pi\)
\(152\) 0 0
\(153\) −3.54005 + 17.1535i −0.286196 + 1.38678i
\(154\) 0 0
\(155\) −27.4089 15.8246i −2.20154 1.27106i
\(156\) 0 0
\(157\) −15.4411 8.91493i −1.23233 0.711489i −0.264819 0.964298i \(-0.585312\pi\)
−0.967516 + 0.252809i \(0.918645\pi\)
\(158\) 0 0
\(159\) 0.0132477 + 0.0820692i 0.00105061 + 0.00650851i
\(160\) 0 0
\(161\) −1.85027 5.72584i −0.145822 0.451260i
\(162\) 0 0
\(163\) 0.576994 0.999383i 0.0451937 0.0782777i −0.842544 0.538628i \(-0.818943\pi\)
0.887737 + 0.460350i \(0.152276\pi\)
\(164\) 0 0
\(165\) 23.4141 + 8.90840i 1.82279 + 0.693518i
\(166\) 0 0
\(167\) −8.95550 15.5114i −0.692997 1.20031i −0.970851 0.239683i \(-0.922957\pi\)
0.277854 0.960623i \(-0.410377\pi\)
\(168\) 0 0
\(169\) −6.34625 + 10.9920i −0.488173 + 0.845540i
\(170\) 0 0
\(171\) 5.04033 + 15.2056i 0.385443 + 1.16280i
\(172\) 0 0
\(173\) 3.74814 + 6.49197i 0.284966 + 0.493576i 0.972601 0.232481i \(-0.0746843\pi\)
−0.687635 + 0.726057i \(0.741351\pi\)
\(174\) 0 0
\(175\) 25.9960 8.40044i 1.96511 0.635014i
\(176\) 0 0
\(177\) 9.75092 + 11.9688i 0.732924 + 0.899627i
\(178\) 0 0
\(179\) 0.624382 0.360487i 0.0466685 0.0269441i −0.476484 0.879183i \(-0.658089\pi\)
0.523153 + 0.852239i \(0.324756\pi\)
\(180\) 0 0
\(181\) 5.07121i 0.376940i −0.982079 0.188470i \(-0.939647\pi\)
0.982079 0.188470i \(-0.0603529\pi\)
\(182\) 0 0
\(183\) 1.92295 + 11.9127i 0.142149 + 0.880609i
\(184\) 0 0
\(185\) −15.2619 + 26.4344i −1.12208 + 1.94350i
\(186\) 0 0
\(187\) 18.6802 10.7850i 1.36603 0.788678i
\(188\) 0 0
\(189\) 9.65013 9.79158i 0.701944 0.712232i
\(190\) 0 0
\(191\) 11.0005 6.35111i 0.795965 0.459551i −0.0460934 0.998937i \(-0.514677\pi\)
0.842058 + 0.539387i \(0.181344\pi\)
\(192\) 0 0
\(193\) 11.4076 19.7586i 0.821140 1.42226i −0.0836931 0.996492i \(-0.526672\pi\)
0.904834 0.425765i \(-0.139995\pi\)
\(194\) 0 0
\(195\) 0.599205 + 3.71207i 0.0429100 + 0.265827i
\(196\) 0 0
\(197\) 0.0311360i 0.00221835i −0.999999 0.00110918i \(-0.999647\pi\)
0.999999 0.00110918i \(-0.000353062\pi\)
\(198\) 0 0
\(199\) −19.9144 + 11.4976i −1.41169 + 0.815042i −0.995548 0.0942556i \(-0.969953\pi\)
−0.416146 + 0.909298i \(0.636620\pi\)
\(200\) 0 0
\(201\) 1.28523 + 1.57755i 0.0906532 + 0.111272i
\(202\) 0 0
\(203\) 10.5641 + 2.26322i 0.741455 + 0.158847i
\(204\) 0 0
\(205\) 14.0634 + 24.3585i 0.982229 + 1.70127i
\(206\) 0 0
\(207\) −4.53542 + 5.09747i −0.315233 + 0.354299i
\(208\) 0 0
\(209\) 9.86397 17.0849i 0.682305 1.18179i
\(210\) 0 0
\(211\) −8.55841 14.8236i −0.589185 1.02050i −0.994339 0.106250i \(-0.966115\pi\)
0.405154 0.914248i \(-0.367218\pi\)
\(212\) 0 0
\(213\) −10.8634 4.13321i −0.744348 0.283203i
\(214\) 0 0
\(215\) −2.95181 + 5.11268i −0.201312 + 0.348682i
\(216\) 0 0
\(217\) 20.9148 + 4.48072i 1.41979 + 0.304171i
\(218\) 0 0
\(219\) −1.12409 6.96369i −0.0759587 0.470563i
\(220\) 0 0
\(221\) 2.80380 + 1.61878i 0.188604 + 0.108891i
\(222\) 0 0
\(223\) 1.25230 + 0.723016i 0.0838602 + 0.0484167i 0.541344 0.840801i \(-0.317916\pi\)
−0.457484 + 0.889218i \(0.651249\pi\)
\(224\) 0 0
\(225\) −23.1431 20.5913i −1.54287 1.37275i
\(226\) 0 0
\(227\) 4.47193 0.296812 0.148406 0.988926i \(-0.452586\pi\)
0.148406 + 0.988926i \(0.452586\pi\)
\(228\) 0 0
\(229\) 2.58736i 0.170978i 0.996339 + 0.0854888i \(0.0272452\pi\)
−0.996339 + 0.0854888i \(0.972755\pi\)
\(230\) 0 0
\(231\) −16.9086 0.863191i −1.11250 0.0567938i
\(232\) 0 0
\(233\) −15.0756 8.70389i −0.987634 0.570211i −0.0830679 0.996544i \(-0.526472\pi\)
−0.904566 + 0.426333i \(0.859805\pi\)
\(234\) 0 0
\(235\) −5.53620 9.58898i −0.361142 0.625516i
\(236\) 0 0
\(237\) 6.74985 1.08957i 0.438450 0.0707750i
\(238\) 0 0
\(239\) −4.23642 + 2.44590i −0.274031 + 0.158212i −0.630718 0.776012i \(-0.717240\pi\)
0.356687 + 0.934224i \(0.383906\pi\)
\(240\) 0 0
\(241\) 8.13235i 0.523851i −0.965088 0.261925i \(-0.915643\pi\)
0.965088 0.261925i \(-0.0843574\pi\)
\(242\) 0 0
\(243\) −15.1154 3.81125i −0.969651 0.244492i
\(244\) 0 0
\(245\) −22.2218 + 16.0362i −1.41970 + 1.02451i
\(246\) 0 0
\(247\) 2.96107 0.188408
\(248\) 0 0
\(249\) 8.41663 + 10.3310i 0.533382 + 0.654699i
\(250\) 0 0
\(251\) −25.9341 −1.63694 −0.818472 0.574546i \(-0.805179\pi\)
−0.818472 + 0.574546i \(0.805179\pi\)
\(252\) 0 0
\(253\) 8.40274 0.528276
\(254\) 0 0
\(255\) −39.0818 + 6.30862i −2.44740 + 0.395061i
\(256\) 0 0
\(257\) 30.8230 1.92269 0.961344 0.275349i \(-0.0887934\pi\)
0.961344 + 0.275349i \(0.0887934\pi\)
\(258\) 0 0
\(259\) 4.32141 20.1712i 0.268519 1.25338i
\(260\) 0 0
\(261\) −3.85450 11.6282i −0.238588 0.719767i
\(262\) 0 0
\(263\) 18.0855i 1.11520i 0.830110 + 0.557600i \(0.188278\pi\)
−0.830110 + 0.557600i \(0.811722\pi\)
\(264\) 0 0
\(265\) −0.162723 + 0.0939479i −0.00999597 + 0.00577117i
\(266\) 0 0
\(267\) 5.93602 + 7.28616i 0.363278 + 0.445906i
\(268\) 0 0
\(269\) 10.8203 + 18.7413i 0.659725 + 1.14268i 0.980687 + 0.195585i \(0.0626607\pi\)
−0.320961 + 0.947092i \(0.604006\pi\)
\(270\) 0 0
\(271\) 12.3453 + 7.12756i 0.749923 + 0.432968i 0.825666 0.564159i \(-0.190800\pi\)
−0.0757430 + 0.997127i \(0.524133\pi\)
\(272\) 0 0
\(273\) −1.15674 2.26266i −0.0700094 0.136943i
\(274\) 0 0
\(275\) 38.1494i 2.30049i
\(276\) 0 0
\(277\) 8.80327 0.528937 0.264469 0.964394i \(-0.414803\pi\)
0.264469 + 0.964394i \(0.414803\pi\)
\(278\) 0 0
\(279\) −7.63113 23.0215i −0.456864 1.37826i
\(280\) 0 0
\(281\) −16.6889 9.63537i −0.995579 0.574798i −0.0886417 0.996064i \(-0.528253\pi\)
−0.906937 + 0.421266i \(0.861586\pi\)
\(282\) 0 0
\(283\) 8.32822 + 4.80830i 0.495061 + 0.285824i 0.726672 0.686985i \(-0.241066\pi\)
−0.231611 + 0.972809i \(0.574399\pi\)
\(284\) 0 0
\(285\) −28.0705 + 22.8690i −1.66275 + 1.35464i
\(286\) 0 0
\(287\) −14.1059 12.7421i −0.832645 0.752144i
\(288\) 0 0
\(289\) −8.54297 + 14.7969i −0.502528 + 0.870404i
\(290\) 0 0
\(291\) 21.6883 17.6694i 1.27139 1.03580i
\(292\) 0 0
\(293\) −1.22598 2.12346i −0.0716225 0.124054i 0.827990 0.560743i \(-0.189484\pi\)
−0.899613 + 0.436689i \(0.856151\pi\)
\(294\) 0 0
\(295\) −17.4467 + 30.2185i −1.01578 + 1.75939i
\(296\) 0 0
\(297\) 8.86706 + 17.0270i 0.514519 + 0.988007i
\(298\) 0 0
\(299\) 0.630605 + 1.09224i 0.0364688 + 0.0631658i
\(300\) 0 0
\(301\) 0.835805 3.90131i 0.0481750 0.224868i
\(302\) 0 0
\(303\) −0.999949 + 2.62819i −0.0574455 + 0.150985i
\(304\) 0 0
\(305\) −23.6198 + 13.6369i −1.35247 + 0.780846i
\(306\) 0 0
\(307\) 10.6839i 0.609760i 0.952391 + 0.304880i \(0.0986163\pi\)
−0.952391 + 0.304880i \(0.901384\pi\)
\(308\) 0 0
\(309\) −0.640513 0.243697i −0.0364375 0.0138634i
\(310\) 0 0
\(311\) 10.3833 17.9843i 0.588780 1.01980i −0.405612 0.914045i \(-0.632942\pi\)
0.994393 0.105752i \(-0.0337250\pi\)
\(312\) 0 0
\(313\) 3.40449 1.96558i 0.192433 0.111101i −0.400688 0.916215i \(-0.631229\pi\)
0.593121 + 0.805113i \(0.297896\pi\)
\(314\) 0 0
\(315\) 28.4408 + 12.5159i 1.60246 + 0.705192i
\(316\) 0 0
\(317\) 1.98369 1.14528i 0.111415 0.0643256i −0.443257 0.896395i \(-0.646177\pi\)
0.554672 + 0.832069i \(0.312844\pi\)
\(318\) 0 0
\(319\) −7.54330 + 13.0654i −0.422344 + 0.731521i
\(320\) 0 0
\(321\) 7.60978 6.19967i 0.424736 0.346032i
\(322\) 0 0
\(323\) 31.1750i 1.73462i
\(324\) 0 0
\(325\) −4.95889 + 2.86302i −0.275070 + 0.158812i
\(326\) 0 0
\(327\) 23.1067 3.72990i 1.27780 0.206264i
\(328\) 0 0
\(329\) 5.55294 + 5.01607i 0.306143 + 0.276545i
\(330\) 0 0
\(331\) 3.46788 + 6.00655i 0.190612 + 0.330150i 0.945453 0.325758i \(-0.105619\pi\)
−0.754841 + 0.655908i \(0.772286\pi\)
\(332\) 0 0
\(333\) −22.2029 + 7.35981i −1.21671 + 0.403315i
\(334\) 0 0
\(335\) −2.29957 + 3.98298i −0.125639 + 0.217613i
\(336\) 0 0
\(337\) −9.59771 16.6237i −0.522821 0.905552i −0.999647 0.0265545i \(-0.991546\pi\)
0.476827 0.878997i \(-0.341787\pi\)
\(338\) 0 0
\(339\) 0.362223 + 2.24396i 0.0196732 + 0.121875i
\(340\) 0 0
\(341\) −14.9342 + 25.8668i −0.808733 + 1.40077i
\(342\) 0 0
\(343\) 10.9580 14.9305i 0.591679 0.806174i
\(344\) 0 0
\(345\) −14.4136 5.48397i −0.776004 0.295247i
\(346\) 0 0
\(347\) 7.35287 + 4.24518i 0.394723 + 0.227893i 0.684204 0.729290i \(-0.260150\pi\)
−0.289482 + 0.957184i \(0.593483\pi\)
\(348\) 0 0
\(349\) 16.5478 + 9.55386i 0.885782 + 0.511407i 0.872560 0.488506i \(-0.162458\pi\)
0.0132216 + 0.999913i \(0.495791\pi\)
\(350\) 0 0
\(351\) −1.54782 + 2.43043i −0.0826167 + 0.129727i
\(352\) 0 0
\(353\) 13.6590 0.726996 0.363498 0.931595i \(-0.381582\pi\)
0.363498 + 0.931595i \(0.381582\pi\)
\(354\) 0 0
\(355\) 26.2708i 1.39431i
\(356\) 0 0
\(357\) 23.8220 12.1786i 1.26079 0.644558i
\(358\) 0 0
\(359\) −14.8909 8.59724i −0.785909 0.453745i 0.0526113 0.998615i \(-0.483246\pi\)
−0.838520 + 0.544870i \(0.816579\pi\)
\(360\) 0 0
\(361\) 4.75635 + 8.23824i 0.250334 + 0.433592i
\(362\) 0 0
\(363\) 1.63205 4.28955i 0.0856604 0.225143i
\(364\) 0 0
\(365\) 13.8073 7.97162i 0.722705 0.417254i
\(366\) 0 0
\(367\) 16.8587i 0.880018i 0.897993 + 0.440009i \(0.145025\pi\)
−0.897993 + 0.440009i \(0.854975\pi\)
\(368\) 0 0
\(369\) −4.35642 + 21.1092i −0.226786 + 1.09890i
\(370\) 0 0
\(371\) 0.0851215 0.0942320i 0.00441929 0.00489228i
\(372\) 0 0
\(373\) −1.40858 −0.0729333 −0.0364667 0.999335i \(-0.511610\pi\)
−0.0364667 + 0.999335i \(0.511610\pi\)
\(374\) 0 0
\(375\) 12.8417 33.7522i 0.663144 1.74296i
\(376\) 0 0
\(377\) −2.26442 −0.116624
\(378\) 0 0
\(379\) 0.598572 0.0307466 0.0153733 0.999882i \(-0.495106\pi\)
0.0153733 + 0.999882i \(0.495106\pi\)
\(380\) 0 0
\(381\) −10.7130 + 28.1572i −0.548844 + 1.44254i
\(382\) 0 0
\(383\) 8.52077 0.435391 0.217696 0.976017i \(-0.430146\pi\)
0.217696 + 0.976017i \(0.430146\pi\)
\(384\) 0 0
\(385\) −11.7666 36.4130i −0.599683 1.85578i
\(386\) 0 0
\(387\) −4.29428 + 1.42346i −0.218290 + 0.0723586i
\(388\) 0 0
\(389\) 34.5976i 1.75417i −0.480336 0.877084i \(-0.659485\pi\)
0.480336 0.877084i \(-0.340515\pi\)
\(390\) 0 0
\(391\) −11.4994 + 6.63920i −0.581551 + 0.335759i
\(392\) 0 0
\(393\) 6.71799 17.6570i 0.338878 0.890680i
\(394\) 0 0
\(395\) 7.72683 + 13.3833i 0.388779 + 0.673385i
\(396\) 0 0
\(397\) 27.9571 + 16.1411i 1.40313 + 0.810097i 0.994712 0.102699i \(-0.0327478\pi\)
0.408416 + 0.912796i \(0.366081\pi\)
\(398\) 0 0
\(399\) 13.2994 20.5400i 0.665801 1.02829i
\(400\) 0 0
\(401\) 13.1028i 0.654321i −0.944969 0.327161i \(-0.893908\pi\)
0.944969 0.327161i \(-0.106092\pi\)
\(402\) 0 0
\(403\) −4.48310 −0.223319
\(404\) 0 0
\(405\) −4.09760 34.9943i −0.203611 1.73888i
\(406\) 0 0
\(407\) 24.9471 + 14.4032i 1.23658 + 0.713941i
\(408\) 0 0
\(409\) 32.3493 + 18.6769i 1.59957 + 0.923513i 0.991569 + 0.129577i \(0.0413620\pi\)
0.608002 + 0.793936i \(0.291971\pi\)
\(410\) 0 0
\(411\) −14.2541 5.42327i −0.703103 0.267510i
\(412\) 0 0
\(413\) 4.94002 23.0587i 0.243082 1.13464i
\(414\) 0 0
\(415\) −15.0593 + 26.0835i −0.739232 + 1.28039i
\(416\) 0 0
\(417\) −4.53698 28.1066i −0.222177 1.37638i
\(418\) 0 0
\(419\) 14.1954 + 24.5871i 0.693490 + 1.20116i 0.970687 + 0.240346i \(0.0772610\pi\)
−0.277198 + 0.960813i \(0.589406\pi\)
\(420\) 0 0
\(421\) −17.3359 + 30.0267i −0.844901 + 1.46341i 0.0408054 + 0.999167i \(0.487008\pi\)
−0.885707 + 0.464245i \(0.846326\pi\)
\(422\) 0 0
\(423\) 1.71495 8.30987i 0.0833838 0.404040i
\(424\) 0 0
\(425\) −30.1427 52.2087i −1.46214 2.53249i
\(426\) 0 0
\(427\) 12.3557 13.6781i 0.597934 0.661931i
\(428\) 0 0
\(429\) 3.50322 0.565492i 0.169137 0.0273022i
\(430\) 0 0
\(431\) 13.1844 7.61200i 0.635069 0.366657i −0.147643 0.989041i \(-0.547169\pi\)
0.782713 + 0.622383i \(0.213835\pi\)
\(432\) 0 0
\(433\) 3.97041i 0.190806i 0.995439 + 0.0954028i \(0.0304139\pi\)
−0.995439 + 0.0954028i \(0.969586\pi\)
\(434\) 0 0
\(435\) 21.4664 17.4886i 1.02924 0.838516i
\(436\) 0 0
\(437\) −6.07222 + 10.5174i −0.290474 + 0.503115i
\(438\) 0 0
\(439\) −8.21910 + 4.74530i −0.392276 + 0.226481i −0.683146 0.730282i \(-0.739389\pi\)
0.290870 + 0.956763i \(0.406055\pi\)
\(440\) 0 0
\(441\) −20.8908 2.13855i −0.994801 0.101836i
\(442\) 0 0
\(443\) 28.3955 16.3942i 1.34911 0.778910i 0.360989 0.932570i \(-0.382439\pi\)
0.988124 + 0.153660i \(0.0491060\pi\)
\(444\) 0 0
\(445\) −10.6209 + 18.3960i −0.503479 + 0.872052i
\(446\) 0 0
\(447\) 23.5182 + 8.94798i 1.11237 + 0.423225i
\(448\) 0 0
\(449\) 0.658896i 0.0310952i 0.999879 + 0.0155476i \(0.00494916\pi\)
−0.999879 + 0.0155476i \(0.995051\pi\)
\(450\) 0 0
\(451\) 22.9880 13.2721i 1.08246 0.624960i
\(452\) 0 0
\(453\) 3.45294 9.07543i 0.162233 0.426401i
\(454\) 0 0
\(455\) 3.85013 4.26220i 0.180497 0.199815i
\(456\) 0 0
\(457\) −7.94514 13.7614i −0.371658 0.643730i 0.618163 0.786050i \(-0.287877\pi\)
−0.989821 + 0.142320i \(0.954544\pi\)
\(458\) 0 0
\(459\) −25.5883 16.2960i −1.19436 0.760630i
\(460\) 0 0
\(461\) 9.81626 17.0023i 0.457189 0.791874i −0.541622 0.840622i \(-0.682190\pi\)
0.998811 + 0.0487477i \(0.0155230\pi\)
\(462\) 0 0
\(463\) −0.600159 1.03951i −0.0278918 0.0483099i 0.851743 0.523960i \(-0.175546\pi\)
−0.879634 + 0.475651i \(0.842213\pi\)
\(464\) 0 0
\(465\) 42.4992 34.6240i 1.97085 1.60565i
\(466\) 0 0
\(467\) 19.2809 33.3955i 0.892213 1.54536i 0.0549972 0.998487i \(-0.482485\pi\)
0.837216 0.546872i \(-0.184182\pi\)
\(468\) 0 0
\(469\) 0.651124 3.03927i 0.0300661 0.140341i
\(470\) 0 0
\(471\) 23.9424 19.5058i 1.10321 0.898779i
\(472\) 0 0
\(473\) 4.82503 + 2.78573i 0.221855 + 0.128088i
\(474\) 0 0
\(475\) −47.7501 27.5685i −2.19093 1.26493i
\(476\) 0 0
\(477\) −0.141016 0.0291023i −0.00645670 0.00133250i
\(478\) 0 0
\(479\) 7.22578 0.330154 0.165077 0.986281i \(-0.447213\pi\)
0.165077 + 0.986281i \(0.447213\pi\)
\(480\) 0 0
\(481\) 4.32371i 0.197144i
\(482\) 0 0
\(483\) 10.4088 + 0.531377i 0.473619 + 0.0241785i
\(484\) 0 0
\(485\) 54.7582 + 31.6147i 2.48644 + 1.43555i
\(486\) 0 0
\(487\) −4.85770 8.41378i −0.220123 0.381265i 0.734722 0.678368i \(-0.237313\pi\)
−0.954845 + 0.297104i \(0.903979\pi\)
\(488\) 0 0
\(489\) 1.26246 + 1.54960i 0.0570903 + 0.0700754i
\(490\) 0 0
\(491\) −17.2480 + 9.95814i −0.778392 + 0.449405i −0.835860 0.548943i \(-0.815031\pi\)
0.0574682 + 0.998347i \(0.481697\pi\)
\(492\) 0 0
\(493\) 23.8405i 1.07372i
\(494\) 0 0
\(495\) −28.8425 + 32.4169i −1.29638 + 1.45703i
\(496\) 0 0
\(497\) 5.45933 + 16.8944i 0.244885 + 0.757819i
\(498\) 0 0
\(499\) −34.3840 −1.53924 −0.769619 0.638503i \(-0.779554\pi\)
−0.769619 + 0.638503i \(0.779554\pi\)
\(500\) 0 0
\(501\) 30.6263 4.94372i 1.36828 0.220869i
\(502\) 0 0
\(503\) 1.22542 0.0546388 0.0273194 0.999627i \(-0.491303\pi\)
0.0273194 + 0.999627i \(0.491303\pi\)
\(504\) 0 0
\(505\) −6.35571 −0.282826
\(506\) 0 0
\(507\) −13.8855 17.0438i −0.616678 0.756940i
\(508\) 0 0
\(509\) 10.1016 0.447744 0.223872 0.974619i \(-0.428130\pi\)
0.223872 + 0.974619i \(0.428130\pi\)
\(510\) 0 0
\(511\) −7.22268 + 7.99572i −0.319513 + 0.353710i
\(512\) 0 0
\(513\) −27.7198 1.20596i −1.22386 0.0532442i
\(514\) 0 0
\(515\) 1.54895i 0.0682547i
\(516\) 0 0
\(517\) −9.04947 + 5.22471i −0.397995 + 0.229783i
\(518\) 0 0
\(519\) −12.8180 + 2.06910i −0.562649 + 0.0908233i
\(520\) 0 0
\(521\) −10.5390 18.2541i −0.461723 0.799728i 0.537324 0.843376i \(-0.319435\pi\)
−0.999047 + 0.0436480i \(0.986102\pi\)
\(522\) 0 0
\(523\) −17.0733 9.85727i −0.746563 0.431028i 0.0778877 0.996962i \(-0.475182\pi\)
−0.824451 + 0.565934i \(0.808516\pi\)
\(524\) 0 0
\(525\) −2.41251 + 47.2573i −0.105291 + 2.06248i
\(526\) 0 0
\(527\) 47.1995i 2.05604i
\(528\) 0 0
\(529\) 17.8273 0.775101
\(530\) 0 0
\(531\) −25.3813 + 8.41336i −1.10145 + 0.365109i
\(532\) 0 0
\(533\) 3.45039 + 1.99208i 0.149453 + 0.0862866i
\(534\) 0 0
\(535\) 19.2130 + 11.0926i 0.830652 + 0.479577i
\(536\) 0 0
\(537\) 0.199000 + 1.23281i 0.00858750 + 0.0531995i
\(538\) 0 0
\(539\) 15.1339 + 20.9715i 0.651864 + 0.903306i
\(540\) 0 0
\(541\) −4.22475 + 7.31748i −0.181636 + 0.314603i −0.942438 0.334381i \(-0.891473\pi\)
0.760802 + 0.648984i \(0.224806\pi\)
\(542\) 0 0
\(543\) 8.20948 + 3.12347i 0.352302 + 0.134041i
\(544\) 0 0
\(545\) 26.4511 + 45.8147i 1.13304 + 1.96249i
\(546\) 0 0
\(547\) 4.02889 6.97824i 0.172263 0.298368i −0.766948 0.641709i \(-0.778226\pi\)
0.939211 + 0.343342i \(0.111559\pi\)
\(548\) 0 0
\(549\) −20.4691 4.22431i −0.873598 0.180289i
\(550\) 0 0
\(551\) −10.9023 18.8833i −0.464453 0.804456i
\(552\) 0 0
\(553\) −7.75019 7.00089i −0.329572 0.297708i
\(554\) 0 0
\(555\) −33.3929 40.9881i −1.41745 1.73985i
\(556\) 0 0
\(557\) 18.2294 10.5247i 0.772403 0.445947i −0.0613279 0.998118i \(-0.519534\pi\)
0.833731 + 0.552170i \(0.186200\pi\)
\(558\) 0 0
\(559\) 0.836249i 0.0353696i
\(560\) 0 0
\(561\) 5.95367 + 36.8829i 0.251364 + 1.55720i
\(562\) 0 0
\(563\) −20.6410 + 35.7513i −0.869916 + 1.50674i −0.00783378 + 0.999969i \(0.502494\pi\)
−0.862082 + 0.506769i \(0.830840\pi\)
\(564\) 0 0
\(565\) −4.44922 + 2.56876i −0.187180 + 0.108068i
\(566\) 0 0
\(567\) 9.90727 + 21.6529i 0.416066 + 0.909334i
\(568\) 0 0
\(569\) 31.2691 18.0532i 1.31087 0.756829i 0.328627 0.944460i \(-0.393414\pi\)
0.982240 + 0.187630i \(0.0600807\pi\)
\(570\) 0 0
\(571\) −9.62111 + 16.6642i −0.402631 + 0.697377i −0.994043 0.108993i \(-0.965237\pi\)
0.591412 + 0.806370i \(0.298571\pi\)
\(572\) 0 0
\(573\) 3.50602 + 21.7198i 0.146466 + 0.907356i
\(574\) 0 0
\(575\) 23.4846i 0.979375i
\(576\) 0 0
\(577\) −25.8102 + 14.9015i −1.07449 + 0.620359i −0.929406 0.369060i \(-0.879680\pi\)
−0.145088 + 0.989419i \(0.546346\pi\)
\(578\) 0 0
\(579\) 24.9598 + 30.6369i 1.03730 + 1.27323i
\(580\) 0 0
\(581\) 4.26404 19.9034i 0.176902 0.825732i
\(582\) 0 0
\(583\) 0.0886621 + 0.153567i 0.00367201 + 0.00636010i
\(584\) 0 0
\(585\) −6.37831 1.31633i −0.263711 0.0544233i
\(586\) 0 0
\(587\) 4.72218 8.17905i 0.194905 0.337586i −0.751964 0.659204i \(-0.770893\pi\)
0.946869 + 0.321618i \(0.104227\pi\)
\(588\) 0 0
\(589\) −21.5843 37.3852i −0.889367 1.54043i
\(590\) 0 0
\(591\) 0.0504043 + 0.0191774i 0.00207335 + 0.000788851i
\(592\) 0 0
\(593\) −12.4176 + 21.5079i −0.509929 + 0.883223i 0.490005 + 0.871720i \(0.336995\pi\)
−0.999934 + 0.0115033i \(0.996338\pi\)
\(594\) 0 0
\(595\) 44.8738 + 40.5353i 1.83965 + 1.66179i
\(596\) 0 0
\(597\) −6.34704 39.3198i −0.259767 1.60925i
\(598\) 0 0
\(599\) 10.3052 + 5.94974i 0.421061 + 0.243100i 0.695531 0.718496i \(-0.255169\pi\)
−0.274470 + 0.961596i \(0.588502\pi\)
\(600\) 0 0
\(601\) −22.1276 12.7754i −0.902604 0.521118i −0.0245596 0.999698i \(-0.507818\pi\)
−0.878044 + 0.478580i \(0.841152\pi\)
\(602\) 0 0
\(603\) −3.34541 + 1.10893i −0.136236 + 0.0451592i
\(604\) 0 0
\(605\) 10.3734 0.421738
\(606\) 0 0
\(607\) 22.5794i 0.916471i 0.888831 + 0.458235i \(0.151518\pi\)
−0.888831 + 0.458235i \(0.848482\pi\)
\(608\) 0 0
\(609\) −10.1705 + 15.7076i −0.412128 + 0.636506i
\(610\) 0 0
\(611\) −1.35828 0.784204i −0.0549502 0.0317255i
\(612\) 0 0
\(613\) −11.4294 19.7963i −0.461628 0.799564i 0.537414 0.843319i \(-0.319401\pi\)
−0.999042 + 0.0437549i \(0.986068\pi\)
\(614\) 0 0
\(615\) −48.0944 + 7.76344i −1.93935 + 0.313052i
\(616\) 0 0
\(617\) 1.78792 1.03226i 0.0719791 0.0415572i −0.463578 0.886056i \(-0.653435\pi\)
0.535558 + 0.844499i \(0.320101\pi\)
\(618\) 0 0
\(619\) 32.5894i 1.30988i −0.755681 0.654940i \(-0.772694\pi\)
0.755681 0.654940i \(-0.227306\pi\)
\(620\) 0 0
\(621\) −5.45852 10.4817i −0.219043 0.420618i
\(622\) 0 0
\(623\) 3.00731 14.0373i 0.120485 0.562393i
\(624\) 0 0
\(625\) 29.9935 1.19974
\(626\) 0 0
\(627\) 21.5823 + 26.4911i 0.861913 + 1.05795i
\(628\) 0 0
\(629\) −45.5213 −1.81505
\(630\) 0 0
\(631\) −38.4706 −1.53149 −0.765744 0.643145i \(-0.777629\pi\)
−0.765744 + 0.643145i \(0.777629\pi\)
\(632\) 0 0
\(633\) 29.2683 4.72452i 1.16331 0.187783i
\(634\) 0 0
\(635\) −68.0923 −2.70216
\(636\) 0 0
\(637\) −1.59024 + 3.54106i −0.0630075 + 0.140302i
\(638\) 0 0
\(639\) 13.3820 15.0404i 0.529384 0.594988i
\(640\) 0 0
\(641\) 47.7636i 1.88655i 0.332014 + 0.943274i \(0.392272\pi\)
−0.332014 + 0.943274i \(0.607728\pi\)
\(642\) 0 0
\(643\) 29.2346 16.8786i 1.15290 0.665626i 0.203306 0.979115i \(-0.434831\pi\)
0.949592 + 0.313489i \(0.101498\pi\)
\(644\) 0 0
\(645\) −6.45853 7.92752i −0.254304 0.312146i
\(646\) 0 0
\(647\) 0.536008 + 0.928393i 0.0210727 + 0.0364989i 0.876369 0.481640i \(-0.159959\pi\)
−0.855297 + 0.518138i \(0.826625\pi\)
\(648\) 0 0
\(649\) 28.5183 + 16.4650i 1.11944 + 0.646309i
\(650\) 0 0
\(651\) −20.1355 + 31.0980i −0.789171 + 1.21882i
\(652\) 0 0
\(653\) 33.3135i 1.30366i −0.758367 0.651828i \(-0.774002\pi\)
0.758367 0.651828i \(-0.225998\pi\)
\(654\) 0 0
\(655\) 42.6998 1.66842
\(656\) 0 0
\(657\) 11.9654 + 2.46937i 0.466817 + 0.0963394i
\(658\) 0 0
\(659\) 8.41890 + 4.86065i 0.327954 + 0.189344i 0.654932 0.755688i \(-0.272697\pi\)
−0.326979 + 0.945032i \(0.606031\pi\)
\(660\) 0 0
\(661\) −14.7856 8.53647i −0.575093 0.332030i 0.184088 0.982910i \(-0.441067\pi\)
−0.759181 + 0.650880i \(0.774400\pi\)
\(662\) 0 0
\(663\) −4.34746 + 3.54187i −0.168841 + 0.137555i
\(664\) 0 0
\(665\) 54.0799 + 11.5859i 2.09713 + 0.449282i
\(666\) 0 0
\(667\) 4.64362 8.04298i 0.179802 0.311426i
\(668\) 0 0
\(669\) −1.94176 + 1.58195i −0.0750730 + 0.0611618i
\(670\) 0 0
\(671\) 12.8696 + 22.2909i 0.496827 + 0.860529i
\(672\) 0 0
\(673\) −18.3359 + 31.7588i −0.706798 + 1.22421i 0.259240 + 0.965813i \(0.416528\pi\)
−0.966039 + 0.258398i \(0.916805\pi\)
\(674\) 0 0
\(675\) 47.5883 24.7823i 1.83167 0.953872i
\(676\) 0 0
\(677\) −20.1769 34.9474i −0.775461 1.34314i −0.934535 0.355872i \(-0.884184\pi\)
0.159073 0.987267i \(-0.449149\pi\)
\(678\) 0 0
\(679\) −41.7841 8.95169i −1.60353 0.343534i
\(680\) 0 0
\(681\) −2.75436 + 7.23933i −0.105547 + 0.277412i
\(682\) 0 0
\(683\) 8.23662 4.75541i 0.315165 0.181961i −0.334070 0.942548i \(-0.608422\pi\)
0.649236 + 0.760587i \(0.275089\pi\)
\(684\) 0 0
\(685\) 34.4705i 1.31705i
\(686\) 0 0
\(687\) −4.18852 1.59361i −0.159802 0.0608000i
\(688\) 0 0
\(689\) −0.0133077 + 0.0230497i −0.000506985 + 0.000878123i
\(690\) 0 0
\(691\) 6.67519 3.85392i 0.253936 0.146610i −0.367629 0.929972i \(-0.619830\pi\)
0.621565 + 0.783362i \(0.286497\pi\)
\(692\) 0 0
\(693\) 11.8117 26.8406i 0.448690 1.01959i
\(694\) 0 0
\(695\) 55.7282 32.1747i 2.11389 1.22046i
\(696\) 0 0
\(697\) −20.9732 + 36.3267i −0.794418 + 1.37597i
\(698\) 0 0
\(699\) 23.3756 19.0440i 0.884145 0.720311i
\(700\) 0 0
\(701\) 15.6388i 0.590671i 0.955394 + 0.295336i \(0.0954314\pi\)
−0.955394 + 0.295336i \(0.904569\pi\)
\(702\) 0 0
\(703\) −36.0559 + 20.8169i −1.35988 + 0.785124i
\(704\) 0 0
\(705\) 18.9329 3.05616i 0.713053 0.115102i
\(706\) 0 0
\(707\) 4.08728 1.32078i 0.153718 0.0496730i
\(708\) 0 0
\(709\) −6.72025 11.6398i −0.252384 0.437142i 0.711797 0.702385i \(-0.247881\pi\)
−0.964182 + 0.265242i \(0.914548\pi\)
\(710\) 0 0
\(711\) −2.39354 + 11.5980i −0.0897649 + 0.434959i
\(712\) 0 0
\(713\) 9.19343 15.9235i 0.344297 0.596339i
\(714\) 0 0
\(715\) 4.01027 + 6.94599i 0.149976 + 0.259765i
\(716\) 0 0
\(717\) −1.35021 8.36456i −0.0504247 0.312380i
\(718\) 0 0
\(719\) 20.0309 34.6946i 0.747027 1.29389i −0.202214 0.979341i \(-0.564814\pi\)
0.949242 0.314548i \(-0.101853\pi\)
\(720\) 0 0
\(721\) 0.321886 + 0.996107i 0.0119877 + 0.0370970i
\(722\) 0 0
\(723\) 13.1650 + 5.00889i 0.489610 + 0.186283i
\(724\) 0 0
\(725\) 36.5161 + 21.0826i 1.35617 + 0.782986i
\(726\) 0 0
\(727\) 43.2091 + 24.9468i 1.60254 + 0.925225i 0.990978 + 0.134027i \(0.0427910\pi\)
0.611560 + 0.791198i \(0.290542\pi\)
\(728\) 0 0
\(729\) 15.4797 22.1219i 0.573322 0.819330i
\(730\) 0 0
\(731\) −8.80428 −0.325638
\(732\) 0 0
\(733\) 11.4480i 0.422843i −0.977395 0.211422i \(-0.932191\pi\)
0.977395 0.211422i \(-0.0678093\pi\)
\(734\) 0 0
\(735\) −12.2731 45.8505i −0.452702 1.69122i
\(736\) 0 0
\(737\) 3.75888 + 2.17019i 0.138460 + 0.0799400i
\(738\) 0 0
\(739\) −4.46303 7.73020i −0.164175 0.284360i 0.772187 0.635396i \(-0.219163\pi\)
−0.936362 + 0.351036i \(0.885830\pi\)
\(740\) 0 0
\(741\) −1.82378 + 4.79349i −0.0669984 + 0.176093i
\(742\) 0 0
\(743\) 45.8621 26.4785i 1.68252 0.971403i 0.722540 0.691329i \(-0.242974\pi\)
0.959979 0.280074i \(-0.0903589\pi\)
\(744\) 0 0
\(745\) 56.8737i 2.08369i
\(746\) 0 0
\(747\) −21.9082 + 7.26210i −0.801579 + 0.265706i
\(748\) 0 0
\(749\) −14.6608 3.14088i −0.535694 0.114765i
\(750\) 0 0
\(751\) 26.4652 0.965729 0.482865 0.875695i \(-0.339596\pi\)
0.482865 + 0.875695i \(0.339596\pi\)
\(752\) 0 0
\(753\) 15.9734 41.9831i 0.582101 1.52995i
\(754\) 0 0
\(755\) 21.9470 0.798733
\(756\) 0 0
\(757\) 8.46749 0.307756 0.153878 0.988090i \(-0.450824\pi\)
0.153878 + 0.988090i \(0.450824\pi\)
\(758\) 0 0
\(759\) −5.17542 + 13.6027i −0.187856 + 0.493746i
\(760\) 0 0
\(761\) −53.9937 −1.95727 −0.978635 0.205605i \(-0.934084\pi\)
−0.978635 + 0.205605i \(0.934084\pi\)
\(762\) 0 0
\(763\) −26.5311 23.9660i −0.960491 0.867629i
\(764\) 0 0
\(765\) 13.8587 67.1528i 0.501061 2.42791i
\(766\) 0 0
\(767\) 4.94264i 0.178469i
\(768\) 0 0
\(769\) −30.1912 + 17.4309i −1.08872 + 0.628575i −0.933236 0.359263i \(-0.883028\pi\)
−0.155487 + 0.987838i \(0.549695\pi\)
\(770\) 0 0
\(771\) −18.9846 + 49.8976i −0.683713 + 1.79702i
\(772\) 0 0
\(773\) 1.06375 + 1.84246i 0.0382603 + 0.0662688i 0.884521 0.466499i \(-0.154485\pi\)
−0.846261 + 0.532768i \(0.821152\pi\)
\(774\) 0 0
\(775\) 72.2944 + 41.7392i 2.59689 + 1.49932i
\(776\) 0 0
\(777\) 29.9923 + 19.4195i 1.07597 + 0.696672i
\(778\) 0 0
\(779\) 38.3643i 1.37454i
\(780\) 0 0
\(781\) −24.7928 −0.887155
\(782\) 0 0
\(783\) 21.1982 + 0.922233i 0.757563 + 0.0329579i
\(784\) 0 0
\(785\) 60.4492 + 34.9004i 2.15752 + 1.24565i
\(786\) 0 0
\(787\) −24.5457 14.1715i −0.874959 0.505158i −0.00596615 0.999982i \(-0.501899\pi\)
−0.868993 + 0.494824i \(0.835232\pi\)
\(788\) 0 0
\(789\) −29.2775 11.1393i −1.04231 0.396568i
\(790\) 0 0
\(791\) 2.32742 2.57652i 0.0827535 0.0916106i
\(792\) 0 0
\(793\) −1.93167 + 3.34575i −0.0685956 + 0.118811i
\(794\) 0 0
\(795\) −0.0518623 0.321286i −0.00183937 0.0113948i
\(796\) 0 0
\(797\) 18.9123 + 32.7570i 0.669907 + 1.16031i 0.977930 + 0.208935i \(0.0669996\pi\)
−0.308022 + 0.951379i \(0.599667\pi\)
\(798\) 0 0
\(799\) 8.25634 14.3004i 0.292088 0.505912i
\(800\) 0 0
\(801\) −15.4512 + 5.12176i −0.545943 + 0.180969i
\(802\) 0 0
\(803\) −7.52311 13.0304i −0.265485 0.459833i
\(804\) 0 0
\(805\) 7.24348 + 22.4157i 0.255299 + 0.790048i
\(806\) 0 0
\(807\) −37.0036 + 5.97316i −1.30259 + 0.210265i
\(808\) 0 0
\(809\) −39.2475 + 22.6595i −1.37987 + 0.796667i −0.992143 0.125109i \(-0.960072\pi\)
−0.387724 + 0.921776i \(0.626739\pi\)
\(810\) 0 0
\(811\) 5.45145i 0.191426i 0.995409 + 0.0957132i \(0.0305132\pi\)
−0.995409 + 0.0957132i \(0.969487\pi\)
\(812\) 0 0
\(813\) −19.1421 + 15.5950i −0.671343 + 0.546942i
\(814\) 0 0
\(815\) −2.25883 + 3.91241i −0.0791233 + 0.137046i
\(816\) 0 0
\(817\) −6.97359 + 4.02620i −0.243975 + 0.140859i
\(818\) 0 0
\(819\) 4.37535 0.478962i 0.152887 0.0167363i
\(820\) 0 0
\(821\) −42.7121 + 24.6598i −1.49066 + 0.860634i −0.999943 0.0106847i \(-0.996599\pi\)
−0.490718 + 0.871318i \(0.663266\pi\)
\(822\) 0 0
\(823\) −11.8496 + 20.5241i −0.413050 + 0.715424i −0.995222 0.0976419i \(-0.968870\pi\)
0.582171 + 0.813066i \(0.302203\pi\)
\(824\) 0 0
\(825\) −61.7577 23.4970i −2.15013 0.818061i
\(826\) 0 0
\(827\) 19.9706i 0.694445i 0.937783 + 0.347222i \(0.112875\pi\)
−0.937783 + 0.347222i \(0.887125\pi\)
\(828\) 0 0
\(829\) −13.3741 + 7.72155i −0.464503 + 0.268181i −0.713936 0.700211i \(-0.753089\pi\)
0.249433 + 0.968392i \(0.419756\pi\)
\(830\) 0 0
\(831\) −5.42212 + 14.2511i −0.188091 + 0.494365i
\(832\) 0 0
\(833\) −37.2814 16.7425i −1.29172 0.580094i
\(834\) 0 0
\(835\) 35.0592 + 60.7242i 1.21327 + 2.10145i
\(836\) 0 0
\(837\) 41.9682 + 1.82584i 1.45063 + 0.0631101i
\(838\) 0 0
\(839\) −5.53910 + 9.59401i −0.191231 + 0.331222i −0.945658 0.325162i \(-0.894581\pi\)
0.754427 + 0.656383i \(0.227915\pi\)
\(840\) 0 0
\(841\) −6.16267 10.6741i −0.212506 0.368071i
\(842\) 0 0
\(843\) 25.8772 21.0821i 0.891258 0.726106i
\(844\) 0 0
\(845\) 24.8444 43.0318i 0.854674 1.48034i
\(846\) 0 0
\(847\) −6.67098 + 2.15569i −0.229218 + 0.0740703i
\(848\) 0 0
\(849\) −12.9134 + 10.5205i −0.443186 + 0.361063i
\(850\) 0 0
\(851\) −15.3573 8.86656i −0.526442 0.303942i
\(852\) 0 0
\(853\) 42.1706 + 24.3472i 1.44389 + 0.833633i 0.998107 0.0615058i \(-0.0195903\pi\)
0.445788 + 0.895139i \(0.352924\pi\)
\(854\) 0 0
\(855\) −19.7320 59.5271i −0.674819 2.03578i
\(856\) 0 0
\(857\) 16.7826 0.573283 0.286641 0.958038i \(-0.407461\pi\)
0.286641 + 0.958038i \(0.407461\pi\)
\(858\) 0 0
\(859\) 25.1358i 0.857622i 0.903394 + 0.428811i \(0.141067\pi\)
−0.903394 + 0.428811i \(0.858933\pi\)
\(860\) 0 0
\(861\) 29.3156 14.9871i 0.999072 0.510757i
\(862\) 0 0
\(863\) 5.87377 + 3.39122i 0.199945 + 0.115438i 0.596630 0.802516i \(-0.296506\pi\)
−0.396685 + 0.917955i \(0.629839\pi\)
\(864\) 0 0
\(865\) −14.6733 25.4149i −0.498907 0.864133i
\(866\) 0 0
\(867\) −18.6919 22.9434i −0.634812 0.779199i
\(868\) 0 0
\(869\) 12.6303 7.29209i 0.428452 0.247367i
\(870\) 0 0
\(871\) 0.651470i 0.0220742i
\(872\) 0 0
\(873\) 15.2457 + 45.9928i 0.515987 + 1.55662i
\(874\) 0 0
\(875\) −52.4904 + 16.9620i −1.77450 + 0.573419i
\(876\) 0 0
\(877\) −43.7259 −1.47652 −0.738260 0.674517i \(-0.764352\pi\)
−0.738260 + 0.674517i \(0.764352\pi\)
\(878\) 0 0
\(879\) 4.19264 0.676780i 0.141414 0.0228272i
\(880\) 0 0
\(881\) 27.5307 0.927531 0.463766 0.885958i \(-0.346498\pi\)
0.463766 + 0.885958i \(0.346498\pi\)
\(882\) 0 0
\(883\) −5.56040 −0.187122 −0.0935612 0.995614i \(-0.529825\pi\)
−0.0935612 + 0.995614i \(0.529825\pi\)
\(884\) 0 0
\(885\) −38.1731 46.8555i −1.28318 1.57503i
\(886\) 0 0
\(887\) −24.6185 −0.826607 −0.413303 0.910593i \(-0.635625\pi\)
−0.413303 + 0.910593i \(0.635625\pi\)
\(888\) 0 0
\(889\) 43.7892 14.1502i 1.46864 0.474583i
\(890\) 0 0
\(891\) −33.0254 + 3.86706i −1.10639 + 0.129551i
\(892\) 0 0
\(893\) 15.1025i 0.505386i
\(894\) 0 0
\(895\) −2.44434 + 1.41124i −0.0817054 + 0.0471726i
\(896\) 0 0
\(897\) −2.15656 + 0.348114i −0.0720056 + 0.0116232i
\(898\) 0 0
\(899\) 16.5062 + 28.5896i 0.550514 + 0.953518i
\(900\) 0 0
\(901\) −0.242674 0.140108i −0.00808465 0.00466767i
\(902\) 0 0
\(903\) 5.80081 + 3.75594i 0.193039 + 0.124990i
\(904\) 0 0
\(905\) 19.8529i 0.659932i
\(906\) 0 0
\(907\) 10.0867 0.334925 0.167462 0.985878i \(-0.446443\pi\)
0.167462 + 0.985878i \(0.446443\pi\)
\(908\) 0 0
\(909\) −3.63872 3.23751i −0.120689 0.107381i
\(910\) 0 0
\(911\) −23.5808 13.6144i −0.781267 0.451065i 0.0556121 0.998452i \(-0.482289\pi\)
−0.836879 + 0.547388i \(0.815622\pi\)
\(912\) 0 0
\(913\) 24.6159 + 14.2120i 0.814668 + 0.470349i
\(914\) 0 0
\(915\) −7.52801 46.6359i −0.248868 1.54174i
\(916\) 0 0
\(917\) −27.4597 + 8.87343i −0.906799 + 0.293026i
\(918\) 0 0
\(919\) 19.8493 34.3800i 0.654769 1.13409i −0.327183 0.944961i \(-0.606099\pi\)
0.981952 0.189132i \(-0.0605673\pi\)
\(920\) 0 0
\(921\) −17.2954 6.58041i −0.569904 0.216832i
\(922\) 0 0
\(923\) −1.86064 3.22272i −0.0612436 0.106077i
\(924\) 0 0
\(925\) 40.2552 69.7240i 1.32358 2.29251i
\(926\) 0 0
\(927\) 0.789012 0.886790i 0.0259145 0.0291260i
\(928\) 0 0
\(929\) −0.142283 0.246442i −0.00466816 0.00808550i 0.863682 0.504037i \(-0.168153\pi\)
−0.868350 + 0.495952i \(0.834819\pi\)
\(930\) 0 0
\(931\) −37.1857 + 3.78758i −1.21871 + 0.124133i
\(932\) 0 0
\(933\) 22.7185 + 27.8857i 0.743769 + 0.912938i
\(934\) 0 0
\(935\) −73.1295 + 42.2214i −2.39159 + 1.38079i
\(936\) 0 0
\(937\) 21.7298i 0.709881i 0.934889 + 0.354940i \(0.115499\pi\)
−0.934889 + 0.354940i \(0.884501\pi\)
\(938\) 0 0
\(939\) 1.08507 + 6.72197i 0.0354098 + 0.219363i
\(940\) 0 0
\(941\) −5.64242 + 9.77295i −0.183938 + 0.318589i −0.943218 0.332174i \(-0.892218\pi\)
0.759280 + 0.650764i \(0.225551\pi\)
\(942\) 0 0
\(943\) −14.1513 + 8.17026i −0.460830 + 0.266060i
\(944\) 0 0
\(945\) −37.7785 + 38.3323i −1.22894 + 1.24695i
\(946\) 0 0
\(947\) −19.6701 + 11.3566i −0.639194 + 0.369039i −0.784304 0.620377i \(-0.786980\pi\)
0.145110 + 0.989416i \(0.453646\pi\)
\(948\) 0 0
\(949\) 1.12918 1.95580i 0.0366548 0.0634880i
\(950\) 0 0
\(951\) 0.632234 + 3.91668i 0.0205016 + 0.127007i
\(952\) 0 0
\(953\) 16.5638i 0.536554i 0.963342 + 0.268277i \(0.0864543\pi\)
−0.963342 + 0.268277i \(0.913546\pi\)
\(954\) 0 0
\(955\) −43.0648 + 24.8635i −1.39354 + 0.804563i
\(956\) 0 0
\(957\) −16.5047 20.2586i −0.533520 0.654868i
\(958\) 0 0
\(959\) 7.16331 + 22.1675i 0.231315 + 0.715827i
\(960\) 0 0
\(961\) 17.1790 + 29.7550i 0.554162 + 0.959837i
\(962\) 0 0
\(963\) 5.34925 + 16.1375i 0.172377 + 0.520024i
\(964\) 0 0
\(965\) −44.6589 + 77.3515i −1.43762 + 2.49003i
\(966\) 0 0
\(967\) −8.38867 14.5296i −0.269762 0.467241i 0.699039 0.715084i \(-0.253612\pi\)
−0.968800 + 0.247843i \(0.920278\pi\)
\(968\) 0 0
\(969\) −50.4674 19.2014i −1.62125 0.616837i
\(970\) 0 0
\(971\) −15.6820 + 27.1620i −0.503259 + 0.871670i 0.496734 + 0.867903i \(0.334532\pi\)
−0.999993 + 0.00376705i \(0.998801\pi\)
\(972\) 0 0
\(973\) −29.1519 + 32.2720i −0.934566 + 1.03459i
\(974\) 0 0
\(975\) −1.58048 9.79104i −0.0506158 0.313564i
\(976\) 0 0
\(977\) 49.0953 + 28.3452i 1.57070 + 0.906843i 0.996083 + 0.0884183i \(0.0281812\pi\)
0.574614 + 0.818424i \(0.305152\pi\)
\(978\) 0 0
\(979\) 17.3609 + 10.0233i 0.554858 + 0.320347i
\(980\) 0 0
\(981\) −8.19378 + 39.7033i −0.261607 + 1.26763i
\(982\) 0 0
\(983\) −39.8408 −1.27072 −0.635362 0.772214i \(-0.719149\pi\)
−0.635362 + 0.772214i \(0.719149\pi\)
\(984\) 0 0
\(985\) 0.121892i 0.00388380i
\(986\) 0 0
\(987\) −11.5404 + 5.89981i −0.367334 + 0.187793i
\(988\) 0 0
\(989\) −2.97026 1.71488i −0.0944489 0.0545301i
\(990\) 0 0
\(991\) −31.2975 54.2089i −0.994199 1.72200i −0.590247 0.807223i \(-0.700970\pi\)
−0.403952 0.914780i \(-0.632364\pi\)
\(992\) 0 0
\(993\) −11.8596 + 1.91438i −0.376352 + 0.0607511i
\(994\) 0 0
\(995\) 77.9613 45.0110i 2.47154 1.42694i
\(996\) 0 0
\(997\) 45.1041i 1.42846i −0.699911 0.714230i \(-0.746777\pi\)
0.699911 0.714230i \(-0.253223\pi\)
\(998\) 0 0
\(999\) 1.76092 40.4761i 0.0557130 1.28061i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.d.929.3 16
3.2 odd 2 3024.2.df.d.1601.8 16
4.3 odd 2 252.2.bm.a.173.6 yes 16
7.3 odd 6 1008.2.ca.d.353.1 16
9.4 even 3 3024.2.ca.d.2609.8 16
9.5 odd 6 1008.2.ca.d.257.1 16
12.11 even 2 756.2.bm.a.89.8 16
21.17 even 6 3024.2.ca.d.2033.8 16
28.3 even 6 252.2.w.a.101.8 yes 16
28.11 odd 6 1764.2.w.b.1109.1 16
28.19 even 6 1764.2.x.a.1469.3 16
28.23 odd 6 1764.2.x.b.1469.6 16
28.27 even 2 1764.2.bm.a.1685.3 16
36.7 odd 6 2268.2.t.a.2105.8 16
36.11 even 6 2268.2.t.b.2105.1 16
36.23 even 6 252.2.w.a.5.8 16
36.31 odd 6 756.2.w.a.341.8 16
63.31 odd 6 3024.2.df.d.17.8 16
63.59 even 6 inner 1008.2.df.d.689.3 16
84.11 even 6 5292.2.w.b.521.1 16
84.23 even 6 5292.2.x.b.4409.1 16
84.47 odd 6 5292.2.x.a.4409.8 16
84.59 odd 6 756.2.w.a.521.8 16
84.83 odd 2 5292.2.bm.a.4625.1 16
252.23 even 6 1764.2.x.a.293.3 16
252.31 even 6 756.2.bm.a.17.8 16
252.59 odd 6 252.2.bm.a.185.6 yes 16
252.67 odd 6 5292.2.bm.a.2285.1 16
252.95 even 6 1764.2.bm.a.1697.3 16
252.103 even 6 5292.2.x.b.881.1 16
252.115 even 6 2268.2.t.b.1781.1 16
252.131 odd 6 1764.2.x.b.293.6 16
252.139 even 6 5292.2.w.b.1097.1 16
252.167 odd 6 1764.2.w.b.509.1 16
252.227 odd 6 2268.2.t.a.1781.8 16
252.247 odd 6 5292.2.x.a.881.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.8 16 36.23 even 6
252.2.w.a.101.8 yes 16 28.3 even 6
252.2.bm.a.173.6 yes 16 4.3 odd 2
252.2.bm.a.185.6 yes 16 252.59 odd 6
756.2.w.a.341.8 16 36.31 odd 6
756.2.w.a.521.8 16 84.59 odd 6
756.2.bm.a.17.8 16 252.31 even 6
756.2.bm.a.89.8 16 12.11 even 2
1008.2.ca.d.257.1 16 9.5 odd 6
1008.2.ca.d.353.1 16 7.3 odd 6
1008.2.df.d.689.3 16 63.59 even 6 inner
1008.2.df.d.929.3 16 1.1 even 1 trivial
1764.2.w.b.509.1 16 252.167 odd 6
1764.2.w.b.1109.1 16 28.11 odd 6
1764.2.x.a.293.3 16 252.23 even 6
1764.2.x.a.1469.3 16 28.19 even 6
1764.2.x.b.293.6 16 252.131 odd 6
1764.2.x.b.1469.6 16 28.23 odd 6
1764.2.bm.a.1685.3 16 28.27 even 2
1764.2.bm.a.1697.3 16 252.95 even 6
2268.2.t.a.1781.8 16 252.227 odd 6
2268.2.t.a.2105.8 16 36.7 odd 6
2268.2.t.b.1781.1 16 252.115 even 6
2268.2.t.b.2105.1 16 36.11 even 6
3024.2.ca.d.2033.8 16 21.17 even 6
3024.2.ca.d.2609.8 16 9.4 even 3
3024.2.df.d.17.8 16 63.31 odd 6
3024.2.df.d.1601.8 16 3.2 odd 2
5292.2.w.b.521.1 16 84.11 even 6
5292.2.w.b.1097.1 16 252.139 even 6
5292.2.x.a.881.8 16 252.247 odd 6
5292.2.x.a.4409.8 16 84.47 odd 6
5292.2.x.b.881.1 16 252.103 even 6
5292.2.x.b.4409.1 16 84.23 even 6
5292.2.bm.a.2285.1 16 252.67 odd 6
5292.2.bm.a.4625.1 16 84.83 odd 2