Properties

Label 1008.2.df.d.689.1
Level $1008$
Weight $2$
Character 1008.689
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 689.1
Root \(1.68124 + 0.416458i\) of defining polynomial
Character \(\chi\) \(=\) 1008.689
Dual form 1008.2.df.d.929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71501 - 0.242362i) q^{3} +0.699656 q^{5} +(0.461278 - 2.60523i) q^{7} +(2.88252 + 0.831308i) q^{9} +0.265217i q^{11} +(-1.13823 - 0.657156i) q^{13} +(-1.19992 - 0.169570i) q^{15} +(1.86392 - 3.22840i) q^{17} +(0.382449 - 0.220807i) q^{19} +(-1.42251 + 4.35620i) q^{21} +4.96463i q^{23} -4.51048 q^{25} +(-4.74208 - 2.12432i) q^{27} +(-0.273287 + 0.157782i) q^{29} +(4.85521 - 2.80316i) q^{31} +(0.0642786 - 0.454850i) q^{33} +(0.322736 - 1.82276i) q^{35} +(-0.351124 - 0.608164i) q^{37} +(1.79280 + 1.40289i) q^{39} +(5.39354 - 9.34189i) q^{41} +(-3.73131 - 6.46283i) q^{43} +(2.01677 + 0.581630i) q^{45} +(3.50285 - 6.06712i) q^{47} +(-6.57445 - 2.40347i) q^{49} +(-3.97908 + 5.08500i) q^{51} +(-8.51919 - 4.91856i) q^{53} +0.185561i q^{55} +(-0.709419 + 0.285995i) q^{57} +(6.73182 + 11.6598i) q^{59} +(-4.89484 - 2.82604i) q^{61} +(3.49539 - 7.12617i) q^{63} +(-0.796368 - 0.459783i) q^{65} +(-2.97060 - 5.14523i) q^{67} +(1.20324 - 8.51439i) q^{69} -13.4323i q^{71} +(-6.66182 - 3.84620i) q^{73} +(7.73552 + 1.09317i) q^{75} +(0.690951 + 0.122339i) q^{77} +(0.698360 - 1.20959i) q^{79} +(7.61785 + 4.79253i) q^{81} +(-3.72399 - 6.45014i) q^{83} +(1.30410 - 2.25877i) q^{85} +(0.506930 - 0.204363i) q^{87} +(-5.59261 - 9.68668i) q^{89} +(-2.23708 + 2.66221i) q^{91} +(-9.00612 + 3.63073i) q^{93} +(0.267582 - 0.154489i) q^{95} +(9.18225 - 5.30138i) q^{97} +(-0.220477 + 0.764493i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{7} + 3 q^{13} + 3 q^{15} - 9 q^{17} + 16 q^{25} + 9 q^{27} + 6 q^{29} - 6 q^{31} - 27 q^{33} - 15 q^{35} + q^{37} + 3 q^{39} + 6 q^{41} + 2 q^{43} - 15 q^{45} + 18 q^{47} + 13 q^{49} - 15 q^{51}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71501 0.242362i −0.990162 0.139928i
\(4\) 0 0
\(5\) 0.699656 0.312896 0.156448 0.987686i \(-0.449996\pi\)
0.156448 + 0.987686i \(0.449996\pi\)
\(6\) 0 0
\(7\) 0.461278 2.60523i 0.174347 0.984684i
\(8\) 0 0
\(9\) 2.88252 + 0.831308i 0.960840 + 0.277103i
\(10\) 0 0
\(11\) 0.265217i 0.0799659i 0.999200 + 0.0399829i \(0.0127304\pi\)
−0.999200 + 0.0399829i \(0.987270\pi\)
\(12\) 0 0
\(13\) −1.13823 0.657156i −0.315688 0.182262i 0.333781 0.942651i \(-0.391675\pi\)
−0.649469 + 0.760388i \(0.725009\pi\)
\(14\) 0 0
\(15\) −1.19992 0.169570i −0.309817 0.0437829i
\(16\) 0 0
\(17\) 1.86392 3.22840i 0.452067 0.783003i −0.546447 0.837493i \(-0.684020\pi\)
0.998514 + 0.0544906i \(0.0173535\pi\)
\(18\) 0 0
\(19\) 0.382449 0.220807i 0.0877398 0.0506566i −0.455488 0.890242i \(-0.650535\pi\)
0.543228 + 0.839585i \(0.317202\pi\)
\(20\) 0 0
\(21\) −1.42251 + 4.35620i −0.310416 + 0.950601i
\(22\) 0 0
\(23\) 4.96463i 1.03520i 0.855624 + 0.517598i \(0.173174\pi\)
−0.855624 + 0.517598i \(0.826826\pi\)
\(24\) 0 0
\(25\) −4.51048 −0.902096
\(26\) 0 0
\(27\) −4.74208 2.12432i −0.912613 0.408825i
\(28\) 0 0
\(29\) −0.273287 + 0.157782i −0.0507480 + 0.0292994i −0.525159 0.851004i \(-0.675994\pi\)
0.474411 + 0.880303i \(0.342661\pi\)
\(30\) 0 0
\(31\) 4.85521 2.80316i 0.872022 0.503462i 0.00400255 0.999992i \(-0.498726\pi\)
0.868020 + 0.496530i \(0.165393\pi\)
\(32\) 0 0
\(33\) 0.0642786 0.454850i 0.0111895 0.0791792i
\(34\) 0 0
\(35\) 0.322736 1.82276i 0.0545523 0.308103i
\(36\) 0 0
\(37\) −0.351124 0.608164i −0.0577244 0.0999816i 0.835719 0.549157i \(-0.185051\pi\)
−0.893444 + 0.449175i \(0.851718\pi\)
\(38\) 0 0
\(39\) 1.79280 + 1.40289i 0.287078 + 0.224643i
\(40\) 0 0
\(41\) 5.39354 9.34189i 0.842330 1.45896i −0.0455900 0.998960i \(-0.514517\pi\)
0.887920 0.459998i \(-0.152150\pi\)
\(42\) 0 0
\(43\) −3.73131 6.46283i −0.569020 0.985572i −0.996663 0.0816240i \(-0.973989\pi\)
0.427643 0.903948i \(-0.359344\pi\)
\(44\) 0 0
\(45\) 2.01677 + 0.581630i 0.300643 + 0.0867042i
\(46\) 0 0
\(47\) 3.50285 6.06712i 0.510943 0.884980i −0.488976 0.872297i \(-0.662630\pi\)
0.999920 0.0126827i \(-0.00403713\pi\)
\(48\) 0 0
\(49\) −6.57445 2.40347i −0.939207 0.343353i
\(50\) 0 0
\(51\) −3.97908 + 5.08500i −0.557183 + 0.712043i
\(52\) 0 0
\(53\) −8.51919 4.91856i −1.17020 0.675616i −0.216474 0.976288i \(-0.569456\pi\)
−0.953727 + 0.300672i \(0.902789\pi\)
\(54\) 0 0
\(55\) 0.185561i 0.0250210i
\(56\) 0 0
\(57\) −0.709419 + 0.285995i −0.0939648 + 0.0378809i
\(58\) 0 0
\(59\) 6.73182 + 11.6598i 0.876408 + 1.51798i 0.855256 + 0.518206i \(0.173400\pi\)
0.0211522 + 0.999776i \(0.493267\pi\)
\(60\) 0 0
\(61\) −4.89484 2.82604i −0.626720 0.361837i 0.152761 0.988263i \(-0.451184\pi\)
−0.779481 + 0.626426i \(0.784517\pi\)
\(62\) 0 0
\(63\) 3.49539 7.12617i 0.440378 0.897812i
\(64\) 0 0
\(65\) −0.796368 0.459783i −0.0987773 0.0570291i
\(66\) 0 0
\(67\) −2.97060 5.14523i −0.362916 0.628590i 0.625523 0.780206i \(-0.284886\pi\)
−0.988439 + 0.151616i \(0.951552\pi\)
\(68\) 0 0
\(69\) 1.20324 8.51439i 0.144853 1.02501i
\(70\) 0 0
\(71\) 13.4323i 1.59412i −0.603900 0.797060i \(-0.706387\pi\)
0.603900 0.797060i \(-0.293613\pi\)
\(72\) 0 0
\(73\) −6.66182 3.84620i −0.779707 0.450164i 0.0566194 0.998396i \(-0.481968\pi\)
−0.836326 + 0.548232i \(0.815301\pi\)
\(74\) 0 0
\(75\) 7.73552 + 1.09317i 0.893221 + 0.126229i
\(76\) 0 0
\(77\) 0.690951 + 0.122339i 0.0787412 + 0.0139418i
\(78\) 0 0
\(79\) 0.698360 1.20959i 0.0785716 0.136090i −0.824062 0.566499i \(-0.808297\pi\)
0.902634 + 0.430409i \(0.141631\pi\)
\(80\) 0 0
\(81\) 7.61785 + 4.79253i 0.846428 + 0.532503i
\(82\) 0 0
\(83\) −3.72399 6.45014i −0.408761 0.707995i 0.585990 0.810318i \(-0.300706\pi\)
−0.994751 + 0.102323i \(0.967372\pi\)
\(84\) 0 0
\(85\) 1.30410 2.25877i 0.141450 0.244998i
\(86\) 0 0
\(87\) 0.506930 0.204363i 0.0543486 0.0219101i
\(88\) 0 0
\(89\) −5.59261 9.68668i −0.592815 1.02679i −0.993851 0.110724i \(-0.964683\pi\)
0.401036 0.916062i \(-0.368650\pi\)
\(90\) 0 0
\(91\) −2.23708 + 2.66221i −0.234510 + 0.279076i
\(92\) 0 0
\(93\) −9.00612 + 3.63073i −0.933892 + 0.376489i
\(94\) 0 0
\(95\) 0.267582 0.154489i 0.0274534 0.0158502i
\(96\) 0 0
\(97\) 9.18225 5.30138i 0.932316 0.538273i 0.0447729 0.998997i \(-0.485744\pi\)
0.887543 + 0.460724i \(0.152410\pi\)
\(98\) 0 0
\(99\) −0.220477 + 0.764493i −0.0221588 + 0.0768345i
\(100\) 0 0
\(101\) 17.5071 1.74203 0.871013 0.491260i \(-0.163463\pi\)
0.871013 + 0.491260i \(0.163463\pi\)
\(102\) 0 0
\(103\) 8.54219i 0.841687i 0.907133 + 0.420844i \(0.138266\pi\)
−0.907133 + 0.420844i \(0.861734\pi\)
\(104\) 0 0
\(105\) −0.995265 + 3.04784i −0.0971279 + 0.297439i
\(106\) 0 0
\(107\) 9.09489 5.25093i 0.879236 0.507627i 0.00882940 0.999961i \(-0.497189\pi\)
0.870406 + 0.492334i \(0.163856\pi\)
\(108\) 0 0
\(109\) −7.12110 + 12.3341i −0.682078 + 1.18139i 0.292268 + 0.956337i \(0.405590\pi\)
−0.974346 + 0.225057i \(0.927743\pi\)
\(110\) 0 0
\(111\) 0.454785 + 1.12811i 0.0431663 + 0.107075i
\(112\) 0 0
\(113\) 13.3783 + 7.72396i 1.25852 + 0.726609i 0.972788 0.231699i \(-0.0744284\pi\)
0.285737 + 0.958308i \(0.407762\pi\)
\(114\) 0 0
\(115\) 3.47353i 0.323908i
\(116\) 0 0
\(117\) −2.73467 2.84048i −0.252820 0.262603i
\(118\) 0 0
\(119\) −7.55095 6.34513i −0.692194 0.581657i
\(120\) 0 0
\(121\) 10.9297 0.993605
\(122\) 0 0
\(123\) −11.5141 + 14.7142i −1.03819 + 1.32674i
\(124\) 0 0
\(125\) −6.65406 −0.595157
\(126\) 0 0
\(127\) −21.8304 −1.93713 −0.968566 0.248758i \(-0.919978\pi\)
−0.968566 + 0.248758i \(0.919978\pi\)
\(128\) 0 0
\(129\) 4.83290 + 11.9881i 0.425513 + 1.05550i
\(130\) 0 0
\(131\) −5.20922 −0.455132 −0.227566 0.973763i \(-0.573077\pi\)
−0.227566 + 0.973763i \(0.573077\pi\)
\(132\) 0 0
\(133\) −0.398838 1.09822i −0.0345836 0.0952278i
\(134\) 0 0
\(135\) −3.31782 1.48629i −0.285552 0.127920i
\(136\) 0 0
\(137\) 2.69725i 0.230442i 0.993340 + 0.115221i \(0.0367576\pi\)
−0.993340 + 0.115221i \(0.963242\pi\)
\(138\) 0 0
\(139\) −10.1448 5.85710i −0.860470 0.496793i 0.00369951 0.999993i \(-0.498822\pi\)
−0.864170 + 0.503200i \(0.832156\pi\)
\(140\) 0 0
\(141\) −7.47787 + 9.55621i −0.629750 + 0.804778i
\(142\) 0 0
\(143\) 0.174289 0.301877i 0.0145748 0.0252442i
\(144\) 0 0
\(145\) −0.191206 + 0.110393i −0.0158788 + 0.00916765i
\(146\) 0 0
\(147\) 10.6927 + 5.71537i 0.881922 + 0.471396i
\(148\) 0 0
\(149\) 18.8280i 1.54245i 0.636564 + 0.771224i \(0.280355\pi\)
−0.636564 + 0.771224i \(0.719645\pi\)
\(150\) 0 0
\(151\) −10.0029 −0.814021 −0.407010 0.913424i \(-0.633429\pi\)
−0.407010 + 0.913424i \(0.633429\pi\)
\(152\) 0 0
\(153\) 8.05659 7.75645i 0.651336 0.627072i
\(154\) 0 0
\(155\) 3.39698 1.96125i 0.272852 0.157531i
\(156\) 0 0
\(157\) −0.218293 + 0.126032i −0.0174217 + 0.0100584i −0.508686 0.860952i \(-0.669868\pi\)
0.491264 + 0.871011i \(0.336535\pi\)
\(158\) 0 0
\(159\) 13.4184 + 10.5001i 1.06415 + 0.832713i
\(160\) 0 0
\(161\) 12.9340 + 2.29007i 1.01934 + 0.180483i
\(162\) 0 0
\(163\) −4.29780 7.44400i −0.336629 0.583059i 0.647167 0.762348i \(-0.275954\pi\)
−0.983796 + 0.179289i \(0.942620\pi\)
\(164\) 0 0
\(165\) 0.0449729 0.318238i 0.00350114 0.0247748i
\(166\) 0 0
\(167\) 2.24437 3.88736i 0.173674 0.300813i −0.766027 0.642808i \(-0.777769\pi\)
0.939702 + 0.341995i \(0.111103\pi\)
\(168\) 0 0
\(169\) −5.63629 9.76234i −0.433561 0.750949i
\(170\) 0 0
\(171\) 1.28598 0.318548i 0.0983410 0.0243599i
\(172\) 0 0
\(173\) −3.56072 + 6.16736i −0.270717 + 0.468895i −0.969046 0.246882i \(-0.920594\pi\)
0.698329 + 0.715777i \(0.253927\pi\)
\(174\) 0 0
\(175\) −2.08059 + 11.7508i −0.157277 + 0.888280i
\(176\) 0 0
\(177\) −8.71922 21.6283i −0.655377 1.62568i
\(178\) 0 0
\(179\) 22.1270 + 12.7750i 1.65385 + 0.954848i 0.975470 + 0.220134i \(0.0706494\pi\)
0.678376 + 0.734715i \(0.262684\pi\)
\(180\) 0 0
\(181\) 0.943175i 0.0701057i −0.999385 0.0350528i \(-0.988840\pi\)
0.999385 0.0350528i \(-0.0111599\pi\)
\(182\) 0 0
\(183\) 7.70977 + 6.03301i 0.569923 + 0.445973i
\(184\) 0 0
\(185\) −0.245666 0.425506i −0.0180617 0.0312838i
\(186\) 0 0
\(187\) 0.856227 + 0.494343i 0.0626135 + 0.0361499i
\(188\) 0 0
\(189\) −7.72175 + 11.3743i −0.561675 + 0.827358i
\(190\) 0 0
\(191\) 2.57413 + 1.48617i 0.186258 + 0.107536i 0.590229 0.807236i \(-0.299037\pi\)
−0.403972 + 0.914771i \(0.632371\pi\)
\(192\) 0 0
\(193\) 9.25721 + 16.0340i 0.666348 + 1.15415i 0.978918 + 0.204254i \(0.0654769\pi\)
−0.312570 + 0.949895i \(0.601190\pi\)
\(194\) 0 0
\(195\) 1.25434 + 0.981542i 0.0898255 + 0.0702897i
\(196\) 0 0
\(197\) 14.1774i 1.01010i 0.863091 + 0.505048i \(0.168525\pi\)
−0.863091 + 0.505048i \(0.831475\pi\)
\(198\) 0 0
\(199\) 20.5293 + 11.8526i 1.45529 + 0.840209i 0.998774 0.0495081i \(-0.0157654\pi\)
0.456512 + 0.889717i \(0.349099\pi\)
\(200\) 0 0
\(201\) 3.84760 + 9.54408i 0.271389 + 0.673187i
\(202\) 0 0
\(203\) 0.284998 + 0.784756i 0.0200029 + 0.0550790i
\(204\) 0 0
\(205\) 3.77362 6.53611i 0.263561 0.456502i
\(206\) 0 0
\(207\) −4.12714 + 14.3106i −0.286856 + 0.994659i
\(208\) 0 0
\(209\) 0.0585617 + 0.101432i 0.00405080 + 0.00701619i
\(210\) 0 0
\(211\) −3.04004 + 5.26550i −0.209285 + 0.362492i −0.951489 0.307681i \(-0.900447\pi\)
0.742205 + 0.670173i \(0.233780\pi\)
\(212\) 0 0
\(213\) −3.25549 + 23.0365i −0.223062 + 1.57844i
\(214\) 0 0
\(215\) −2.61063 4.52175i −0.178044 0.308381i
\(216\) 0 0
\(217\) −5.06327 13.9420i −0.343717 0.946444i
\(218\) 0 0
\(219\) 10.4929 + 8.21085i 0.709045 + 0.554838i
\(220\) 0 0
\(221\) −4.24313 + 2.44977i −0.285424 + 0.164790i
\(222\) 0 0
\(223\) 0.796137 0.459650i 0.0533133 0.0307804i −0.473106 0.881005i \(-0.656867\pi\)
0.526420 + 0.850225i \(0.323534\pi\)
\(224\) 0 0
\(225\) −13.0016 3.74960i −0.866771 0.249973i
\(226\) 0 0
\(227\) −10.0059 −0.664118 −0.332059 0.943259i \(-0.607743\pi\)
−0.332059 + 0.943259i \(0.607743\pi\)
\(228\) 0 0
\(229\) 2.75025i 0.181742i 0.995863 + 0.0908710i \(0.0289651\pi\)
−0.995863 + 0.0908710i \(0.971035\pi\)
\(230\) 0 0
\(231\) −1.15534 0.377273i −0.0760156 0.0248227i
\(232\) 0 0
\(233\) 5.55513 3.20725i 0.363928 0.210114i −0.306874 0.951750i \(-0.599283\pi\)
0.670803 + 0.741636i \(0.265950\pi\)
\(234\) 0 0
\(235\) 2.45079 4.24489i 0.159872 0.276906i
\(236\) 0 0
\(237\) −1.49085 + 1.90521i −0.0968414 + 0.123757i
\(238\) 0 0
\(239\) 11.4288 + 6.59844i 0.739270 + 0.426818i 0.821804 0.569770i \(-0.192968\pi\)
−0.0825337 + 0.996588i \(0.526301\pi\)
\(240\) 0 0
\(241\) 2.54868i 0.164175i −0.996625 0.0820874i \(-0.973841\pi\)
0.996625 0.0820874i \(-0.0261587\pi\)
\(242\) 0 0
\(243\) −11.9032 10.0655i −0.763589 0.645703i
\(244\) 0 0
\(245\) −4.59985 1.68160i −0.293874 0.107434i
\(246\) 0 0
\(247\) −0.580418 −0.0369311
\(248\) 0 0
\(249\) 4.82341 + 11.9646i 0.305671 + 0.758227i
\(250\) 0 0
\(251\) 18.7893 1.18597 0.592986 0.805213i \(-0.297949\pi\)
0.592986 + 0.805213i \(0.297949\pi\)
\(252\) 0 0
\(253\) −1.31670 −0.0827804
\(254\) 0 0
\(255\) −2.78399 + 3.55775i −0.174340 + 0.222795i
\(256\) 0 0
\(257\) 14.3945 0.897907 0.448953 0.893555i \(-0.351797\pi\)
0.448953 + 0.893555i \(0.351797\pi\)
\(258\) 0 0
\(259\) −1.74637 + 0.634226i −0.108514 + 0.0394089i
\(260\) 0 0
\(261\) −0.918920 + 0.227625i −0.0568797 + 0.0140896i
\(262\) 0 0
\(263\) 7.84976i 0.484037i 0.970272 + 0.242019i \(0.0778095\pi\)
−0.970272 + 0.242019i \(0.922190\pi\)
\(264\) 0 0
\(265\) −5.96050 3.44130i −0.366151 0.211397i
\(266\) 0 0
\(267\) 7.24369 + 17.9682i 0.443307 + 1.09964i
\(268\) 0 0
\(269\) 7.72267 13.3760i 0.470859 0.815552i −0.528585 0.848880i \(-0.677277\pi\)
0.999444 + 0.0333281i \(0.0106106\pi\)
\(270\) 0 0
\(271\) −10.9476 + 6.32057i −0.665016 + 0.383947i −0.794186 0.607675i \(-0.792102\pi\)
0.129169 + 0.991623i \(0.458769\pi\)
\(272\) 0 0
\(273\) 4.48184 4.02354i 0.271253 0.243516i
\(274\) 0 0
\(275\) 1.19626i 0.0721369i
\(276\) 0 0
\(277\) −11.8906 −0.714439 −0.357219 0.934021i \(-0.616275\pi\)
−0.357219 + 0.934021i \(0.616275\pi\)
\(278\) 0 0
\(279\) 16.3255 4.04399i 0.977385 0.242107i
\(280\) 0 0
\(281\) −2.75411 + 1.59009i −0.164297 + 0.0948568i −0.579894 0.814692i \(-0.696906\pi\)
0.415597 + 0.909549i \(0.363573\pi\)
\(282\) 0 0
\(283\) 16.0195 9.24889i 0.952263 0.549789i 0.0584799 0.998289i \(-0.481375\pi\)
0.893783 + 0.448499i \(0.148041\pi\)
\(284\) 0 0
\(285\) −0.496349 + 0.200098i −0.0294012 + 0.0118528i
\(286\) 0 0
\(287\) −21.8499 18.3606i −1.28976 1.08379i
\(288\) 0 0
\(289\) 1.55161 + 2.68746i 0.0912711 + 0.158086i
\(290\) 0 0
\(291\) −17.0325 + 6.86648i −0.998463 + 0.402520i
\(292\) 0 0
\(293\) 1.42975 2.47639i 0.0835266 0.144672i −0.821236 0.570589i \(-0.806715\pi\)
0.904762 + 0.425917i \(0.140048\pi\)
\(294\) 0 0
\(295\) 4.70995 + 8.15788i 0.274224 + 0.474970i
\(296\) 0 0
\(297\) 0.563405 1.25768i 0.0326921 0.0729779i
\(298\) 0 0
\(299\) 3.26254 5.65088i 0.188677 0.326799i
\(300\) 0 0
\(301\) −18.5583 + 6.73977i −1.06968 + 0.388474i
\(302\) 0 0
\(303\) −30.0249 4.24308i −1.72489 0.243758i
\(304\) 0 0
\(305\) −3.42470 1.97725i −0.196098 0.113217i
\(306\) 0 0
\(307\) 21.6746i 1.23704i −0.785771 0.618518i \(-0.787734\pi\)
0.785771 0.618518i \(-0.212266\pi\)
\(308\) 0 0
\(309\) 2.07031 14.6499i 0.117776 0.833406i
\(310\) 0 0
\(311\) 11.8462 + 20.5183i 0.671738 + 1.16348i 0.977411 + 0.211348i \(0.0677852\pi\)
−0.305673 + 0.952136i \(0.598881\pi\)
\(312\) 0 0
\(313\) 23.6283 + 13.6418i 1.33555 + 0.771081i 0.986144 0.165890i \(-0.0530496\pi\)
0.349407 + 0.936971i \(0.386383\pi\)
\(314\) 0 0
\(315\) 2.44557 4.98586i 0.137792 0.280922i
\(316\) 0 0
\(317\) −21.2647 12.2772i −1.19435 0.689556i −0.235057 0.971982i \(-0.575528\pi\)
−0.959289 + 0.282426i \(0.908861\pi\)
\(318\) 0 0
\(319\) −0.0418465 0.0724802i −0.00234295 0.00405811i
\(320\) 0 0
\(321\) −16.8705 + 6.80115i −0.941617 + 0.379603i
\(322\) 0 0
\(323\) 1.64626i 0.0916006i
\(324\) 0 0
\(325\) 5.13396 + 2.96409i 0.284781 + 0.164418i
\(326\) 0 0
\(327\) 15.2021 19.4272i 0.840678 1.07433i
\(328\) 0 0
\(329\) −14.1904 11.9244i −0.782344 0.657411i
\(330\) 0 0
\(331\) 8.15579 14.1262i 0.448283 0.776449i −0.549991 0.835170i \(-0.685369\pi\)
0.998274 + 0.0587215i \(0.0187024\pi\)
\(332\) 0 0
\(333\) −0.506550 2.04494i −0.0277588 0.112062i
\(334\) 0 0
\(335\) −2.07840 3.59989i −0.113555 0.196683i
\(336\) 0 0
\(337\) 13.6580 23.6563i 0.743998 1.28864i −0.206663 0.978412i \(-0.566261\pi\)
0.950661 0.310230i \(-0.100406\pi\)
\(338\) 0 0
\(339\) −21.0719 16.4891i −1.14447 0.895564i
\(340\) 0 0
\(341\) 0.743445 + 1.28768i 0.0402598 + 0.0697320i
\(342\) 0 0
\(343\) −9.29424 + 16.0193i −0.501842 + 0.864960i
\(344\) 0 0
\(345\) 0.841854 5.95714i 0.0453239 0.320722i
\(346\) 0 0
\(347\) 5.37986 3.10606i 0.288806 0.166742i −0.348597 0.937273i \(-0.613342\pi\)
0.637403 + 0.770530i \(0.280009\pi\)
\(348\) 0 0
\(349\) −24.6529 + 14.2334i −1.31964 + 0.761896i −0.983671 0.179977i \(-0.942398\pi\)
−0.335971 + 0.941872i \(0.609064\pi\)
\(350\) 0 0
\(351\) 4.00155 + 5.53424i 0.213587 + 0.295396i
\(352\) 0 0
\(353\) 2.98691 0.158977 0.0794887 0.996836i \(-0.474671\pi\)
0.0794887 + 0.996836i \(0.474671\pi\)
\(354\) 0 0
\(355\) 9.39798i 0.498793i
\(356\) 0 0
\(357\) 11.4121 + 12.7120i 0.603994 + 0.672792i
\(358\) 0 0
\(359\) −26.5977 + 15.3562i −1.40377 + 0.810468i −0.994777 0.102070i \(-0.967454\pi\)
−0.408994 + 0.912537i \(0.634120\pi\)
\(360\) 0 0
\(361\) −9.40249 + 16.2856i −0.494868 + 0.857136i
\(362\) 0 0
\(363\) −18.7445 2.64894i −0.983830 0.139033i
\(364\) 0 0
\(365\) −4.66098 2.69102i −0.243967 0.140854i
\(366\) 0 0
\(367\) 19.0384i 0.993794i −0.867809 0.496897i \(-0.834473\pi\)
0.867809 0.496897i \(-0.165527\pi\)
\(368\) 0 0
\(369\) 23.3130 22.4445i 1.21363 1.16841i
\(370\) 0 0
\(371\) −16.7437 + 19.9256i −0.869289 + 1.03449i
\(372\) 0 0
\(373\) 4.11738 0.213190 0.106595 0.994303i \(-0.466005\pi\)
0.106595 + 0.994303i \(0.466005\pi\)
\(374\) 0 0
\(375\) 11.4118 + 1.61270i 0.589302 + 0.0832792i
\(376\) 0 0
\(377\) 0.414750 0.0213607
\(378\) 0 0
\(379\) 11.2436 0.577546 0.288773 0.957398i \(-0.406753\pi\)
0.288773 + 0.957398i \(0.406753\pi\)
\(380\) 0 0
\(381\) 37.4393 + 5.29086i 1.91807 + 0.271059i
\(382\) 0 0
\(383\) −31.6093 −1.61516 −0.807580 0.589758i \(-0.799223\pi\)
−0.807580 + 0.589758i \(0.799223\pi\)
\(384\) 0 0
\(385\) 0.483428 + 0.0855949i 0.0246378 + 0.00436232i
\(386\) 0 0
\(387\) −5.38299 21.7311i −0.273633 1.10465i
\(388\) 0 0
\(389\) 21.2485i 1.07734i −0.842516 0.538672i \(-0.818926\pi\)
0.842516 0.538672i \(-0.181074\pi\)
\(390\) 0 0
\(391\) 16.0278 + 9.25367i 0.810562 + 0.467978i
\(392\) 0 0
\(393\) 8.93387 + 1.26252i 0.450654 + 0.0636857i
\(394\) 0 0
\(395\) 0.488611 0.846300i 0.0245847 0.0425820i
\(396\) 0 0
\(397\) 20.6927 11.9469i 1.03854 0.599599i 0.119118 0.992880i \(-0.461993\pi\)
0.919419 + 0.393281i \(0.128660\pi\)
\(398\) 0 0
\(399\) 0.417843 + 1.98012i 0.0209183 + 0.0991301i
\(400\) 0 0
\(401\) 25.4174i 1.26928i 0.772806 + 0.634642i \(0.218853\pi\)
−0.772806 + 0.634642i \(0.781147\pi\)
\(402\) 0 0
\(403\) −7.36845 −0.367049
\(404\) 0 0
\(405\) 5.32987 + 3.35312i 0.264844 + 0.166618i
\(406\) 0 0
\(407\) 0.161295 0.0931240i 0.00799512 0.00461598i
\(408\) 0 0
\(409\) −19.3831 + 11.1908i −0.958433 + 0.553351i −0.895690 0.444678i \(-0.853318\pi\)
−0.0627424 + 0.998030i \(0.519985\pi\)
\(410\) 0 0
\(411\) 0.653713 4.62582i 0.0322453 0.228175i
\(412\) 0 0
\(413\) 33.4818 12.1595i 1.64753 0.598330i
\(414\) 0 0
\(415\) −2.60551 4.51288i −0.127900 0.221528i
\(416\) 0 0
\(417\) 15.9789 + 12.5037i 0.782489 + 0.612309i
\(418\) 0 0
\(419\) 7.04181 12.1968i 0.344015 0.595851i −0.641159 0.767408i \(-0.721546\pi\)
0.985174 + 0.171556i \(0.0548796\pi\)
\(420\) 0 0
\(421\) 8.07639 + 13.9887i 0.393619 + 0.681768i 0.992924 0.118753i \(-0.0378896\pi\)
−0.599305 + 0.800521i \(0.704556\pi\)
\(422\) 0 0
\(423\) 15.1407 14.5766i 0.736165 0.708740i
\(424\) 0 0
\(425\) −8.40717 + 14.5617i −0.407808 + 0.706344i
\(426\) 0 0
\(427\) −9.62036 + 11.4486i −0.465562 + 0.554036i
\(428\) 0 0
\(429\) −0.372071 + 0.475482i −0.0179638 + 0.0229565i
\(430\) 0 0
\(431\) −7.16179 4.13486i −0.344971 0.199169i 0.317497 0.948259i \(-0.397158\pi\)
−0.662468 + 0.749090i \(0.730491\pi\)
\(432\) 0 0
\(433\) 4.35102i 0.209097i −0.994520 0.104548i \(-0.966660\pi\)
0.994520 0.104548i \(-0.0333397\pi\)
\(434\) 0 0
\(435\) 0.354676 0.142984i 0.0170054 0.00685556i
\(436\) 0 0
\(437\) 1.09622 + 1.89872i 0.0524395 + 0.0908279i
\(438\) 0 0
\(439\) 18.0200 + 10.4039i 0.860048 + 0.496549i 0.864028 0.503443i \(-0.167934\pi\)
−0.00398054 + 0.999992i \(0.501267\pi\)
\(440\) 0 0
\(441\) −16.9530 12.3934i −0.807283 0.590164i
\(442\) 0 0
\(443\) 26.7927 + 15.4688i 1.27296 + 0.734945i 0.975544 0.219803i \(-0.0705414\pi\)
0.297417 + 0.954748i \(0.403875\pi\)
\(444\) 0 0
\(445\) −3.91290 6.77734i −0.185489 0.321277i
\(446\) 0 0
\(447\) 4.56320 32.2902i 0.215832 1.52727i
\(448\) 0 0
\(449\) 20.9215i 0.987346i −0.869648 0.493673i \(-0.835654\pi\)
0.869648 0.493673i \(-0.164346\pi\)
\(450\) 0 0
\(451\) 2.47763 + 1.43046i 0.116667 + 0.0673577i
\(452\) 0 0
\(453\) 17.1550 + 2.42432i 0.806012 + 0.113904i
\(454\) 0 0
\(455\) −1.56519 + 1.86263i −0.0733771 + 0.0873216i
\(456\) 0 0
\(457\) −1.15058 + 1.99286i −0.0538217 + 0.0932218i −0.891681 0.452664i \(-0.850474\pi\)
0.837859 + 0.545886i \(0.183807\pi\)
\(458\) 0 0
\(459\) −15.6970 + 11.3498i −0.732673 + 0.529762i
\(460\) 0 0
\(461\) −8.92497 15.4585i −0.415677 0.719974i 0.579822 0.814743i \(-0.303122\pi\)
−0.995499 + 0.0947688i \(0.969789\pi\)
\(462\) 0 0
\(463\) 6.24034 10.8086i 0.290013 0.502318i −0.683799 0.729670i \(-0.739674\pi\)
0.973813 + 0.227353i \(0.0730070\pi\)
\(464\) 0 0
\(465\) −6.30119 + 2.54026i −0.292211 + 0.117802i
\(466\) 0 0
\(467\) −2.42799 4.20541i −0.112354 0.194603i 0.804365 0.594136i \(-0.202506\pi\)
−0.916719 + 0.399533i \(0.869172\pi\)
\(468\) 0 0
\(469\) −14.7748 + 5.36571i −0.682236 + 0.247766i
\(470\) 0 0
\(471\) 0.404920 0.163239i 0.0186577 0.00752168i
\(472\) 0 0
\(473\) 1.71405 0.989607i 0.0788121 0.0455022i
\(474\) 0 0
\(475\) −1.72503 + 0.995945i −0.0791497 + 0.0456971i
\(476\) 0 0
\(477\) −20.4679 21.2599i −0.937161 0.973425i
\(478\) 0 0
\(479\) −8.81084 −0.402577 −0.201289 0.979532i \(-0.564513\pi\)
−0.201289 + 0.979532i \(0.564513\pi\)
\(480\) 0 0
\(481\) 0.922973i 0.0420839i
\(482\) 0 0
\(483\) −21.6269 7.06221i −0.984059 0.321342i
\(484\) 0 0
\(485\) 6.42441 3.70914i 0.291718 0.168423i
\(486\) 0 0
\(487\) −4.66185 + 8.07456i −0.211249 + 0.365893i −0.952106 0.305770i \(-0.901086\pi\)
0.740857 + 0.671663i \(0.234420\pi\)
\(488\) 0 0
\(489\) 5.56662 + 13.8082i 0.251731 + 0.624427i
\(490\) 0 0
\(491\) 26.9192 + 15.5418i 1.21485 + 0.701391i 0.963811 0.266587i \(-0.0858960\pi\)
0.251034 + 0.967978i \(0.419229\pi\)
\(492\) 0 0
\(493\) 1.17637i 0.0529811i
\(494\) 0 0
\(495\) −0.154258 + 0.534882i −0.00693338 + 0.0240412i
\(496\) 0 0
\(497\) −34.9942 6.19602i −1.56971 0.277930i
\(498\) 0 0
\(499\) 22.3388 1.00002 0.500010 0.866020i \(-0.333330\pi\)
0.500010 + 0.866020i \(0.333330\pi\)
\(500\) 0 0
\(501\) −4.79127 + 6.12291i −0.214058 + 0.273552i
\(502\) 0 0
\(503\) −12.2396 −0.545738 −0.272869 0.962051i \(-0.587973\pi\)
−0.272869 + 0.962051i \(0.587973\pi\)
\(504\) 0 0
\(505\) 12.2490 0.545072
\(506\) 0 0
\(507\) 7.30027 + 18.1085i 0.324216 + 0.804229i
\(508\) 0 0
\(509\) −14.1099 −0.625411 −0.312706 0.949850i \(-0.601235\pi\)
−0.312706 + 0.949850i \(0.601235\pi\)
\(510\) 0 0
\(511\) −13.0932 + 15.5814i −0.579209 + 0.689281i
\(512\) 0 0
\(513\) −2.28266 + 0.234640i −0.100782 + 0.0103596i
\(514\) 0 0
\(515\) 5.97659i 0.263360i
\(516\) 0 0
\(517\) 1.60910 + 0.929015i 0.0707682 + 0.0408580i
\(518\) 0 0
\(519\) 7.60141 9.71409i 0.333665 0.426401i
\(520\) 0 0
\(521\) −2.81632 + 4.87800i −0.123385 + 0.213709i −0.921101 0.389325i \(-0.872708\pi\)
0.797715 + 0.603034i \(0.206042\pi\)
\(522\) 0 0
\(523\) 33.2293 19.1849i 1.45302 0.838899i 0.454364 0.890816i \(-0.349867\pi\)
0.998651 + 0.0519176i \(0.0165333\pi\)
\(524\) 0 0
\(525\) 6.41619 19.6486i 0.280025 0.857533i
\(526\) 0 0
\(527\) 20.8995i 0.910395i
\(528\) 0 0
\(529\) −1.64754 −0.0716321
\(530\) 0 0
\(531\) 9.71167 + 39.2060i 0.421451 + 1.70139i
\(532\) 0 0
\(533\) −12.2782 + 7.08880i −0.531826 + 0.307050i
\(534\) 0 0
\(535\) 6.36329 3.67385i 0.275109 0.158834i
\(536\) 0 0
\(537\) −34.8518 27.2720i −1.50396 1.17687i
\(538\) 0 0
\(539\) 0.637441 1.74365i 0.0274565 0.0751045i
\(540\) 0 0
\(541\) −3.21673 5.57154i −0.138298 0.239539i 0.788555 0.614965i \(-0.210830\pi\)
−0.926852 + 0.375426i \(0.877496\pi\)
\(542\) 0 0
\(543\) −0.228590 + 1.61756i −0.00980975 + 0.0694159i
\(544\) 0 0
\(545\) −4.98232 + 8.62963i −0.213419 + 0.369653i
\(546\) 0 0
\(547\) 6.52889 + 11.3084i 0.279155 + 0.483511i 0.971175 0.238368i \(-0.0766124\pi\)
−0.692020 + 0.721878i \(0.743279\pi\)
\(548\) 0 0
\(549\) −11.7602 12.2152i −0.501912 0.521333i
\(550\) 0 0
\(551\) −0.0696787 + 0.120687i −0.00296841 + 0.00514144i
\(552\) 0 0
\(553\) −2.82913 2.37735i −0.120307 0.101095i
\(554\) 0 0
\(555\) 0.318193 + 0.789287i 0.0135065 + 0.0335034i
\(556\) 0 0
\(557\) 25.5409 + 14.7460i 1.08220 + 0.624809i 0.931489 0.363769i \(-0.118510\pi\)
0.150712 + 0.988578i \(0.451843\pi\)
\(558\) 0 0
\(559\) 9.80822i 0.414844i
\(560\) 0 0
\(561\) −1.34863 1.05532i −0.0569391 0.0445557i
\(562\) 0 0
\(563\) 5.25934 + 9.10944i 0.221655 + 0.383917i 0.955311 0.295604i \(-0.0955209\pi\)
−0.733656 + 0.679521i \(0.762188\pi\)
\(564\) 0 0
\(565\) 9.36020 + 5.40411i 0.393787 + 0.227353i
\(566\) 0 0
\(567\) 15.9996 17.6356i 0.671919 0.740624i
\(568\) 0 0
\(569\) −22.8054 13.1667i −0.956053 0.551977i −0.0610967 0.998132i \(-0.519460\pi\)
−0.894956 + 0.446155i \(0.852793\pi\)
\(570\) 0 0
\(571\) −22.0295 38.1562i −0.921906 1.59679i −0.796463 0.604688i \(-0.793298\pi\)
−0.125444 0.992101i \(-0.540035\pi\)
\(572\) 0 0
\(573\) −4.05447 3.17268i −0.169378 0.132540i
\(574\) 0 0
\(575\) 22.3929i 0.933847i
\(576\) 0 0
\(577\) 12.1535 + 7.01684i 0.505957 + 0.292115i 0.731170 0.682195i \(-0.238974\pi\)
−0.225213 + 0.974310i \(0.572308\pi\)
\(578\) 0 0
\(579\) −11.9902 29.7420i −0.498295 1.23604i
\(580\) 0 0
\(581\) −18.5219 + 6.72654i −0.768418 + 0.279064i
\(582\) 0 0
\(583\) 1.30448 2.25943i 0.0540262 0.0935762i
\(584\) 0 0
\(585\) −1.91332 1.98736i −0.0791062 0.0821673i
\(586\) 0 0
\(587\) 1.52469 + 2.64085i 0.0629308 + 0.108999i 0.895774 0.444509i \(-0.146622\pi\)
−0.832843 + 0.553509i \(0.813289\pi\)
\(588\) 0 0
\(589\) 1.23791 2.14413i 0.0510073 0.0883473i
\(590\) 0 0
\(591\) 3.43607 24.3144i 0.141341 1.00016i
\(592\) 0 0
\(593\) −13.3041 23.0434i −0.546334 0.946278i −0.998522 0.0543552i \(-0.982690\pi\)
0.452188 0.891923i \(-0.350644\pi\)
\(594\) 0 0
\(595\) −5.28306 4.43941i −0.216585 0.181998i
\(596\) 0 0
\(597\) −32.3354 25.3029i −1.32340 1.03558i
\(598\) 0 0
\(599\) 3.86333 2.23050i 0.157852 0.0911356i −0.418993 0.907989i \(-0.637617\pi\)
0.576845 + 0.816854i \(0.304284\pi\)
\(600\) 0 0
\(601\) −5.25019 + 3.03120i −0.214160 + 0.123645i −0.603243 0.797557i \(-0.706125\pi\)
0.389083 + 0.921203i \(0.372792\pi\)
\(602\) 0 0
\(603\) −4.28554 17.3007i −0.174521 0.704539i
\(604\) 0 0
\(605\) 7.64700 0.310895
\(606\) 0 0
\(607\) 45.3313i 1.83994i 0.391986 + 0.919971i \(0.371788\pi\)
−0.391986 + 0.919971i \(0.628212\pi\)
\(608\) 0 0
\(609\) −0.298578 1.41494i −0.0120990 0.0573361i
\(610\) 0 0
\(611\) −7.97409 + 4.60384i −0.322597 + 0.186251i
\(612\) 0 0
\(613\) 16.6294 28.8029i 0.671654 1.16334i −0.305781 0.952102i \(-0.598917\pi\)
0.977435 0.211237i \(-0.0677492\pi\)
\(614\) 0 0
\(615\) −8.05591 + 10.2949i −0.324846 + 0.415131i
\(616\) 0 0
\(617\) 31.3001 + 18.0711i 1.26010 + 0.727516i 0.973093 0.230414i \(-0.0740079\pi\)
0.287002 + 0.957930i \(0.407341\pi\)
\(618\) 0 0
\(619\) 26.4462i 1.06296i 0.847069 + 0.531482i \(0.178365\pi\)
−0.847069 + 0.531482i \(0.821635\pi\)
\(620\) 0 0
\(621\) 10.5464 23.5426i 0.423214 0.944734i
\(622\) 0 0
\(623\) −27.8158 + 10.1018i −1.11442 + 0.404719i
\(624\) 0 0
\(625\) 17.8969 0.715874
\(626\) 0 0
\(627\) −0.0758507 0.188150i −0.00302918 0.00751398i
\(628\) 0 0
\(629\) −2.61787 −0.104381
\(630\) 0 0
\(631\) 32.0484 1.27583 0.637914 0.770107i \(-0.279797\pi\)
0.637914 + 0.770107i \(0.279797\pi\)
\(632\) 0 0
\(633\) 6.48985 8.29359i 0.257949 0.329641i
\(634\) 0 0
\(635\) −15.2737 −0.606120
\(636\) 0 0
\(637\) 5.90376 + 7.05613i 0.233916 + 0.279574i
\(638\) 0 0
\(639\) 11.1664 38.7189i 0.441735 1.53170i
\(640\) 0 0
\(641\) 24.4154i 0.964351i 0.876075 + 0.482176i \(0.160153\pi\)
−0.876075 + 0.482176i \(0.839847\pi\)
\(642\) 0 0
\(643\) −31.9014 18.4183i −1.25807 0.726346i −0.285370 0.958418i \(-0.592116\pi\)
−0.972699 + 0.232071i \(0.925450\pi\)
\(644\) 0 0
\(645\) 3.38136 + 8.38757i 0.133141 + 0.330260i
\(646\) 0 0
\(647\) 13.2847 23.0098i 0.522276 0.904608i −0.477389 0.878692i \(-0.658417\pi\)
0.999664 0.0259155i \(-0.00825009\pi\)
\(648\) 0 0
\(649\) −3.09239 + 1.78539i −0.121387 + 0.0700827i
\(650\) 0 0
\(651\) 5.30455 + 25.1378i 0.207902 + 0.985228i
\(652\) 0 0
\(653\) 30.3418i 1.18737i 0.804699 + 0.593683i \(0.202327\pi\)
−0.804699 + 0.593683i \(0.797673\pi\)
\(654\) 0 0
\(655\) −3.64466 −0.142409
\(656\) 0 0
\(657\) −16.0055 16.6248i −0.624432 0.648595i
\(658\) 0 0
\(659\) −40.9873 + 23.6640i −1.59664 + 0.921820i −0.604511 + 0.796597i \(0.706631\pi\)
−0.992129 + 0.125223i \(0.960035\pi\)
\(660\) 0 0
\(661\) 30.4187 17.5623i 1.18315 0.683092i 0.226409 0.974032i \(-0.427301\pi\)
0.956741 + 0.290940i \(0.0939679\pi\)
\(662\) 0 0
\(663\) 7.87075 3.17301i 0.305674 0.123229i
\(664\) 0 0
\(665\) −0.279049 0.768376i −0.0108211 0.0297963i
\(666\) 0 0
\(667\) −0.783329 1.35677i −0.0303306 0.0525342i
\(668\) 0 0
\(669\) −1.47679 + 0.595351i −0.0570958 + 0.0230176i
\(670\) 0 0
\(671\) 0.749513 1.29819i 0.0289346 0.0501162i
\(672\) 0 0
\(673\) −2.54758 4.41254i −0.0982020 0.170091i 0.812738 0.582629i \(-0.197976\pi\)
−0.910940 + 0.412538i \(0.864642\pi\)
\(674\) 0 0
\(675\) 21.3890 + 9.58169i 0.823265 + 0.368800i
\(676\) 0 0
\(677\) −8.42072 + 14.5851i −0.323635 + 0.560551i −0.981235 0.192815i \(-0.938238\pi\)
0.657601 + 0.753367i \(0.271571\pi\)
\(678\) 0 0
\(679\) −9.57573 26.3673i −0.367483 1.01188i
\(680\) 0 0
\(681\) 17.1603 + 2.42506i 0.657584 + 0.0929287i
\(682\) 0 0
\(683\) 15.7555 + 9.09645i 0.602868 + 0.348066i 0.770169 0.637840i \(-0.220172\pi\)
−0.167301 + 0.985906i \(0.553505\pi\)
\(684\) 0 0
\(685\) 1.88715i 0.0721042i
\(686\) 0 0
\(687\) 0.666559 4.71672i 0.0254308 0.179954i
\(688\) 0 0
\(689\) 6.46452 + 11.1969i 0.246279 + 0.426567i
\(690\) 0 0
\(691\) 3.05405 + 1.76326i 0.116182 + 0.0670775i 0.556965 0.830536i \(-0.311966\pi\)
−0.440783 + 0.897614i \(0.645299\pi\)
\(692\) 0 0
\(693\) 1.88998 + 0.927037i 0.0717944 + 0.0352152i
\(694\) 0 0
\(695\) −7.09786 4.09795i −0.269237 0.155444i
\(696\) 0 0
\(697\) −20.1063 34.8251i −0.761579 1.31909i
\(698\) 0 0
\(699\) −10.3044 + 4.15412i −0.389749 + 0.157123i
\(700\) 0 0
\(701\) 13.3502i 0.504229i 0.967697 + 0.252114i \(0.0811259\pi\)
−0.967697 + 0.252114i \(0.918874\pi\)
\(702\) 0 0
\(703\) −0.268574 0.155061i −0.0101295 0.00584824i
\(704\) 0 0
\(705\) −5.23193 + 6.68605i −0.197046 + 0.251811i
\(706\) 0 0
\(707\) 8.07566 45.6101i 0.303716 1.71535i
\(708\) 0 0
\(709\) 21.1447 36.6237i 0.794107 1.37543i −0.129298 0.991606i \(-0.541273\pi\)
0.923405 0.383827i \(-0.125394\pi\)
\(710\) 0 0
\(711\) 3.01858 2.90613i 0.113206 0.108988i
\(712\) 0 0
\(713\) 13.9166 + 24.1043i 0.521182 + 0.902715i
\(714\) 0 0
\(715\) 0.121942 0.211210i 0.00456038 0.00789881i
\(716\) 0 0
\(717\) −18.0014 14.0863i −0.672273 0.526063i
\(718\) 0 0
\(719\) 15.2035 + 26.3332i 0.566994 + 0.982062i 0.996861 + 0.0791697i \(0.0252269\pi\)
−0.429868 + 0.902892i \(0.641440\pi\)
\(720\) 0 0
\(721\) 22.2544 + 3.94032i 0.828796 + 0.146745i
\(722\) 0 0
\(723\) −0.617704 + 4.37101i −0.0229727 + 0.162560i
\(724\) 0 0
\(725\) 1.23265 0.711673i 0.0457796 0.0264309i
\(726\) 0 0
\(727\) −11.3671 + 6.56280i −0.421583 + 0.243401i −0.695754 0.718280i \(-0.744930\pi\)
0.274171 + 0.961681i \(0.411596\pi\)
\(728\) 0 0
\(729\) 17.9746 + 20.1473i 0.665724 + 0.746198i
\(730\) 0 0
\(731\) −27.8195 −1.02894
\(732\) 0 0
\(733\) 37.7588i 1.39465i 0.716753 + 0.697327i \(0.245628\pi\)
−0.716753 + 0.697327i \(0.754372\pi\)
\(734\) 0 0
\(735\) 7.48123 + 3.99879i 0.275949 + 0.147498i
\(736\) 0 0
\(737\) 1.36460 0.787853i 0.0502657 0.0290209i
\(738\) 0 0
\(739\) 13.1215 22.7271i 0.482683 0.836031i −0.517119 0.855913i \(-0.672996\pi\)
0.999802 + 0.0198820i \(0.00632906\pi\)
\(740\) 0 0
\(741\) 0.995424 + 0.140672i 0.0365678 + 0.00516770i
\(742\) 0 0
\(743\) 8.78379 + 5.07132i 0.322246 + 0.186049i 0.652393 0.757881i \(-0.273765\pi\)
−0.330147 + 0.943929i \(0.607098\pi\)
\(744\) 0 0
\(745\) 13.1731i 0.482625i
\(746\) 0 0
\(747\) −5.37242 21.6884i −0.196567 0.793539i
\(748\) 0 0
\(749\) −9.48462 26.1164i −0.346561 0.954273i
\(750\) 0 0
\(751\) −7.90737 −0.288544 −0.144272 0.989538i \(-0.546084\pi\)
−0.144272 + 0.989538i \(0.546084\pi\)
\(752\) 0 0
\(753\) −32.2239 4.55383i −1.17430 0.165951i
\(754\) 0 0
\(755\) −6.99855 −0.254703
\(756\) 0 0
\(757\) 29.8903 1.08638 0.543191 0.839609i \(-0.317216\pi\)
0.543191 + 0.839609i \(0.317216\pi\)
\(758\) 0 0
\(759\) 2.25816 + 0.319119i 0.0819660 + 0.0115833i
\(760\) 0 0
\(761\) −6.11374 −0.221623 −0.110811 0.993841i \(-0.535345\pi\)
−0.110811 + 0.993841i \(0.535345\pi\)
\(762\) 0 0
\(763\) 28.8484 + 24.2416i 1.04438 + 0.877604i
\(764\) 0 0
\(765\) 5.63684 5.42684i 0.203800 0.196208i
\(766\) 0 0
\(767\) 17.6954i 0.638944i
\(768\) 0 0
\(769\) 9.79863 + 5.65724i 0.353348 + 0.204005i 0.666159 0.745810i \(-0.267937\pi\)
−0.312811 + 0.949815i \(0.601271\pi\)
\(770\) 0 0
\(771\) −24.6868 3.48870i −0.889073 0.125642i
\(772\) 0 0
\(773\) −19.2106 + 33.2737i −0.690956 + 1.19677i 0.280569 + 0.959834i \(0.409477\pi\)
−0.971525 + 0.236937i \(0.923856\pi\)
\(774\) 0 0
\(775\) −21.8994 + 12.6436i −0.786648 + 0.454172i
\(776\) 0 0
\(777\) 3.14876 0.664448i 0.112961 0.0238369i
\(778\) 0 0
\(779\) 4.76373i 0.170678i
\(780\) 0 0
\(781\) 3.56247 0.127475
\(782\) 0 0
\(783\) 1.63112 0.167667i 0.0582916 0.00599193i
\(784\) 0 0
\(785\) −0.152730 + 0.0881788i −0.00545117 + 0.00314723i
\(786\) 0 0
\(787\) −41.2747 + 23.8300i −1.47129 + 0.849447i −0.999480 0.0322557i \(-0.989731\pi\)
−0.471806 + 0.881703i \(0.656398\pi\)
\(788\) 0 0
\(789\) 1.90249 13.4624i 0.0677304 0.479275i
\(790\) 0 0
\(791\) 26.2938 31.2906i 0.934900 1.11257i
\(792\) 0 0
\(793\) 3.71430 + 6.43335i 0.131898 + 0.228455i
\(794\) 0 0
\(795\) 9.38828 + 7.34646i 0.332968 + 0.260552i
\(796\) 0 0
\(797\) 15.1359 26.2161i 0.536139 0.928621i −0.462968 0.886375i \(-0.653215\pi\)
0.999107 0.0422457i \(-0.0134512\pi\)
\(798\) 0 0
\(799\) −13.0581 22.6172i −0.461961 0.800140i
\(800\) 0 0
\(801\) −8.06819 32.5712i −0.285075 1.15085i
\(802\) 0 0
\(803\) 1.02008 1.76683i 0.0359978 0.0623500i
\(804\) 0 0
\(805\) 9.04935 + 1.60226i 0.318948 + 0.0564723i
\(806\) 0 0
\(807\) −16.4863 + 21.0684i −0.580345 + 0.741642i
\(808\) 0 0
\(809\) −0.219373 0.126655i −0.00771273 0.00445295i 0.496139 0.868243i \(-0.334751\pi\)
−0.503851 + 0.863790i \(0.668084\pi\)
\(810\) 0 0
\(811\) 22.0629i 0.774735i 0.921925 + 0.387367i \(0.126615\pi\)
−0.921925 + 0.387367i \(0.873385\pi\)
\(812\) 0 0
\(813\) 20.3070 8.18657i 0.712199 0.287116i
\(814\) 0 0
\(815\) −3.00698 5.20824i −0.105330 0.182437i
\(816\) 0 0
\(817\) −2.85407 1.64780i −0.0998514 0.0576492i
\(818\) 0 0
\(819\) −8.66156 + 5.81418i −0.302659 + 0.203164i
\(820\) 0 0
\(821\) 24.2467 + 13.9988i 0.846214 + 0.488562i 0.859372 0.511352i \(-0.170855\pi\)
−0.0131576 + 0.999913i \(0.504188\pi\)
\(822\) 0 0
\(823\) 24.4771 + 42.3955i 0.853217 + 1.47782i 0.878289 + 0.478130i \(0.158685\pi\)
−0.0250719 + 0.999686i \(0.507981\pi\)
\(824\) 0 0
\(825\) −0.289928 + 2.05159i −0.0100940 + 0.0714272i
\(826\) 0 0
\(827\) 0.641658i 0.0223126i 0.999938 + 0.0111563i \(0.00355124\pi\)
−0.999938 + 0.0111563i \(0.996449\pi\)
\(828\) 0 0
\(829\) 9.57180 + 5.52628i 0.332442 + 0.191936i 0.656925 0.753956i \(-0.271857\pi\)
−0.324483 + 0.945892i \(0.605190\pi\)
\(830\) 0 0
\(831\) 20.3926 + 2.88184i 0.707410 + 0.0999700i
\(832\) 0 0
\(833\) −20.0136 + 16.7451i −0.693430 + 0.580183i
\(834\) 0 0
\(835\) 1.57029 2.71981i 0.0543420 0.0941230i
\(836\) 0 0
\(837\) −28.9786 + 2.97878i −1.00165 + 0.102962i
\(838\) 0 0
\(839\) −4.62330 8.00780i −0.159614 0.276460i 0.775115 0.631820i \(-0.217692\pi\)
−0.934730 + 0.355360i \(0.884358\pi\)
\(840\) 0 0
\(841\) −14.4502 + 25.0285i −0.498283 + 0.863052i
\(842\) 0 0
\(843\) 5.10871 2.05952i 0.175953 0.0709338i
\(844\) 0 0
\(845\) −3.94346 6.83028i −0.135659 0.234969i
\(846\) 0 0
\(847\) 5.04161 28.4743i 0.173232 0.978388i
\(848\) 0 0
\(849\) −29.7153 + 11.9794i −1.01983 + 0.411132i
\(850\) 0 0
\(851\) 3.01931 1.74320i 0.103501 0.0597561i
\(852\) 0 0
\(853\) 34.3256 19.8179i 1.17529 0.678551i 0.220366 0.975417i \(-0.429275\pi\)
0.954919 + 0.296866i \(0.0959414\pi\)
\(854\) 0 0
\(855\) 0.899740 0.222874i 0.0307705 0.00762212i
\(856\) 0 0
\(857\) −23.8520 −0.814770 −0.407385 0.913256i \(-0.633559\pi\)
−0.407385 + 0.913256i \(0.633559\pi\)
\(858\) 0 0
\(859\) 11.1138i 0.379197i −0.981862 0.189598i \(-0.939281\pi\)
0.981862 0.189598i \(-0.0607186\pi\)
\(860\) 0 0
\(861\) 33.0228 + 36.7842i 1.12541 + 1.25360i
\(862\) 0 0
\(863\) −38.7780 + 22.3885i −1.32002 + 0.762113i −0.983731 0.179646i \(-0.942505\pi\)
−0.336287 + 0.941759i \(0.609171\pi\)
\(864\) 0 0
\(865\) −2.49128 + 4.31503i −0.0847061 + 0.146715i
\(866\) 0 0
\(867\) −2.00968 4.98508i −0.0682525 0.169302i
\(868\) 0 0
\(869\) 0.320805 + 0.185217i 0.0108826 + 0.00628305i
\(870\) 0 0
\(871\) 7.80859i 0.264584i
\(872\) 0 0
\(873\) 30.8751 7.64804i 1.04496 0.258847i
\(874\) 0 0
\(875\) −3.06937 + 17.3354i −0.103764 + 0.586042i
\(876\) 0 0
\(877\) 3.68191 0.124329 0.0621647 0.998066i \(-0.480200\pi\)
0.0621647 + 0.998066i \(0.480200\pi\)
\(878\) 0 0
\(879\) −3.05221 + 3.90052i −0.102949 + 0.131561i
\(880\) 0 0
\(881\) −17.3992 −0.586194 −0.293097 0.956083i \(-0.594686\pi\)
−0.293097 + 0.956083i \(0.594686\pi\)
\(882\) 0 0
\(883\) 2.02834 0.0682592 0.0341296 0.999417i \(-0.489134\pi\)
0.0341296 + 0.999417i \(0.489134\pi\)
\(884\) 0 0
\(885\) −6.10045 15.1324i −0.205065 0.508669i
\(886\) 0 0
\(887\) −46.3780 −1.55722 −0.778610 0.627508i \(-0.784075\pi\)
−0.778610 + 0.627508i \(0.784075\pi\)
\(888\) 0 0
\(889\) −10.0699 + 56.8731i −0.337732 + 1.90746i
\(890\) 0 0
\(891\) −1.27106 + 2.02038i −0.0425821 + 0.0676854i
\(892\) 0 0
\(893\) 3.09381i 0.103531i
\(894\) 0 0
\(895\) 15.4812 + 8.93810i 0.517481 + 0.298768i
\(896\) 0 0
\(897\) −6.96484 + 8.90060i −0.232549 + 0.297182i
\(898\) 0 0
\(899\) −0.884576 + 1.53213i −0.0295023 + 0.0510994i
\(900\) 0 0
\(901\) −31.7582 + 18.3356i −1.05802 + 0.610847i
\(902\) 0 0
\(903\) 33.4612 7.06094i 1.11352 0.234973i
\(904\) 0 0
\(905\) 0.659898i 0.0219357i
\(906\) 0 0
\(907\) −16.0391 −0.532571 −0.266285 0.963894i \(-0.585796\pi\)
−0.266285 + 0.963894i \(0.585796\pi\)
\(908\) 0 0
\(909\) 50.4647 + 14.5538i 1.67381 + 0.482720i
\(910\) 0 0
\(911\) −17.7833 + 10.2672i −0.589187 + 0.340167i −0.764776 0.644296i \(-0.777150\pi\)
0.175589 + 0.984464i \(0.443817\pi\)
\(912\) 0 0
\(913\) 1.71069 0.987665i 0.0566154 0.0326869i
\(914\) 0 0
\(915\) 5.39419 + 4.22103i 0.178326 + 0.139543i
\(916\) 0 0
\(917\) −2.40290 + 13.5712i −0.0793507 + 0.448161i
\(918\) 0 0
\(919\) 17.7069 + 30.6693i 0.584097 + 1.01169i 0.994987 + 0.100001i \(0.0318846\pi\)
−0.410890 + 0.911685i \(0.634782\pi\)
\(920\) 0 0
\(921\) −5.25311 + 37.1722i −0.173096 + 1.22486i
\(922\) 0 0
\(923\) −8.82712 + 15.2890i −0.290548 + 0.503244i
\(924\) 0 0
\(925\) 1.58374 + 2.74311i 0.0520730 + 0.0901930i
\(926\) 0 0
\(927\) −7.10119 + 24.6230i −0.233234 + 0.808727i
\(928\) 0 0
\(929\) −19.8626 + 34.4030i −0.651670 + 1.12873i 0.331048 + 0.943614i \(0.392598\pi\)
−0.982718 + 0.185111i \(0.940735\pi\)
\(930\) 0 0
\(931\) −3.04509 + 0.532479i −0.0997988 + 0.0174513i
\(932\) 0 0
\(933\) −15.3435 38.0601i −0.502325 1.24603i
\(934\) 0 0
\(935\) 0.599064 + 0.345870i 0.0195915 + 0.0113112i
\(936\) 0 0
\(937\) 23.2142i 0.758376i −0.925320 0.379188i \(-0.876203\pi\)
0.925320 0.379188i \(-0.123797\pi\)
\(938\) 0 0
\(939\) −37.2165 29.1225i −1.21452 0.950376i
\(940\) 0 0
\(941\) −17.9616 31.1104i −0.585531 1.01417i −0.994809 0.101760i \(-0.967553\pi\)
0.409278 0.912410i \(-0.365781\pi\)
\(942\) 0 0
\(943\) 46.3790 + 26.7769i 1.51031 + 0.871977i
\(944\) 0 0
\(945\) −5.40257 + 7.95809i −0.175745 + 0.258877i
\(946\) 0 0
\(947\) 26.7365 + 15.4363i 0.868818 + 0.501612i 0.866955 0.498386i \(-0.166074\pi\)
0.00186277 + 0.999998i \(0.499407\pi\)
\(948\) 0 0
\(949\) 5.05511 + 8.75571i 0.164096 + 0.284222i
\(950\) 0 0
\(951\) 33.4937 + 26.2093i 1.08611 + 0.849894i
\(952\) 0 0
\(953\) 30.4640i 0.986826i −0.869795 0.493413i \(-0.835749\pi\)
0.869795 0.493413i \(-0.164251\pi\)
\(954\) 0 0
\(955\) 1.80100 + 1.03981i 0.0582791 + 0.0336475i
\(956\) 0 0
\(957\) 0.0542006 + 0.134446i 0.00175206 + 0.00434603i
\(958\) 0 0
\(959\) 7.02696 + 1.24418i 0.226912 + 0.0401768i
\(960\) 0 0
\(961\) 0.215406 0.373095i 0.00694859 0.0120353i
\(962\) 0 0
\(963\) 30.5813 7.57527i 0.985470 0.244110i
\(964\) 0 0
\(965\) 6.47686 + 11.2182i 0.208497 + 0.361128i
\(966\) 0 0
\(967\) 6.75865 11.7063i 0.217343 0.376450i −0.736652 0.676272i \(-0.763594\pi\)
0.953995 + 0.299823i \(0.0969275\pi\)
\(968\) 0 0
\(969\) −0.398993 + 2.82336i −0.0128175 + 0.0906994i
\(970\) 0 0
\(971\) 16.6428 + 28.8261i 0.534092 + 0.925074i 0.999207 + 0.0398238i \(0.0126797\pi\)
−0.465115 + 0.885250i \(0.653987\pi\)
\(972\) 0 0
\(973\) −19.9387 + 23.7278i −0.639204 + 0.760677i
\(974\) 0 0
\(975\) −8.08640 6.32773i −0.258972 0.202649i
\(976\) 0 0
\(977\) 38.9127 22.4662i 1.24493 0.718758i 0.274833 0.961492i \(-0.411377\pi\)
0.970093 + 0.242734i \(0.0780441\pi\)
\(978\) 0 0
\(979\) 2.56907 1.48325i 0.0821079 0.0474050i
\(980\) 0 0
\(981\) −30.7802 + 29.6335i −0.982736 + 0.946125i
\(982\) 0 0
\(983\) 26.8949 0.857813 0.428907 0.903349i \(-0.358899\pi\)
0.428907 + 0.903349i \(0.358899\pi\)
\(984\) 0 0
\(985\) 9.91929i 0.316055i
\(986\) 0 0
\(987\) 21.4467 + 23.8896i 0.682657 + 0.760415i
\(988\) 0 0
\(989\) 32.0855 18.5246i 1.02026 0.589048i
\(990\) 0 0
\(991\) −17.7201 + 30.6920i −0.562896 + 0.974965i 0.434346 + 0.900746i \(0.356980\pi\)
−0.997242 + 0.0742186i \(0.976354\pi\)
\(992\) 0 0
\(993\) −17.4109 + 22.2500i −0.552520 + 0.706082i
\(994\) 0 0
\(995\) 14.3635 + 8.29275i 0.455352 + 0.262898i
\(996\) 0 0
\(997\) 32.4953i 1.02914i −0.857449 0.514568i \(-0.827952\pi\)
0.857449 0.514568i \(-0.172048\pi\)
\(998\) 0 0
\(999\) 0.373122 + 3.62986i 0.0118050 + 0.114844i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.d.689.1 16
3.2 odd 2 3024.2.df.d.17.4 16
4.3 odd 2 252.2.bm.a.185.8 yes 16
7.5 odd 6 1008.2.ca.d.257.3 16
9.2 odd 6 1008.2.ca.d.353.3 16
9.7 even 3 3024.2.ca.d.2033.4 16
12.11 even 2 756.2.bm.a.17.4 16
21.5 even 6 3024.2.ca.d.2609.4 16
28.3 even 6 1764.2.x.a.293.6 16
28.11 odd 6 1764.2.x.b.293.3 16
28.19 even 6 252.2.w.a.5.6 16
28.23 odd 6 1764.2.w.b.509.3 16
28.27 even 2 1764.2.bm.a.1697.1 16
36.7 odd 6 756.2.w.a.521.4 16
36.11 even 6 252.2.w.a.101.6 yes 16
36.23 even 6 2268.2.t.b.1781.5 16
36.31 odd 6 2268.2.t.a.1781.4 16
63.47 even 6 inner 1008.2.df.d.929.1 16
63.61 odd 6 3024.2.df.d.1601.4 16
84.11 even 6 5292.2.x.b.881.5 16
84.23 even 6 5292.2.w.b.1097.5 16
84.47 odd 6 756.2.w.a.341.4 16
84.59 odd 6 5292.2.x.a.881.4 16
84.83 odd 2 5292.2.bm.a.2285.5 16
252.11 even 6 1764.2.x.a.1469.6 16
252.47 odd 6 252.2.bm.a.173.8 yes 16
252.79 odd 6 5292.2.bm.a.4625.5 16
252.83 odd 6 1764.2.w.b.1109.3 16
252.103 even 6 2268.2.t.b.2105.5 16
252.115 even 6 5292.2.x.b.4409.5 16
252.131 odd 6 2268.2.t.a.2105.4 16
252.151 odd 6 5292.2.x.a.4409.4 16
252.187 even 6 756.2.bm.a.89.4 16
252.191 even 6 1764.2.bm.a.1685.1 16
252.223 even 6 5292.2.w.b.521.5 16
252.227 odd 6 1764.2.x.b.1469.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.6 16 28.19 even 6
252.2.w.a.101.6 yes 16 36.11 even 6
252.2.bm.a.173.8 yes 16 252.47 odd 6
252.2.bm.a.185.8 yes 16 4.3 odd 2
756.2.w.a.341.4 16 84.47 odd 6
756.2.w.a.521.4 16 36.7 odd 6
756.2.bm.a.17.4 16 12.11 even 2
756.2.bm.a.89.4 16 252.187 even 6
1008.2.ca.d.257.3 16 7.5 odd 6
1008.2.ca.d.353.3 16 9.2 odd 6
1008.2.df.d.689.1 16 1.1 even 1 trivial
1008.2.df.d.929.1 16 63.47 even 6 inner
1764.2.w.b.509.3 16 28.23 odd 6
1764.2.w.b.1109.3 16 252.83 odd 6
1764.2.x.a.293.6 16 28.3 even 6
1764.2.x.a.1469.6 16 252.11 even 6
1764.2.x.b.293.3 16 28.11 odd 6
1764.2.x.b.1469.3 16 252.227 odd 6
1764.2.bm.a.1685.1 16 252.191 even 6
1764.2.bm.a.1697.1 16 28.27 even 2
2268.2.t.a.1781.4 16 36.31 odd 6
2268.2.t.a.2105.4 16 252.131 odd 6
2268.2.t.b.1781.5 16 36.23 even 6
2268.2.t.b.2105.5 16 252.103 even 6
3024.2.ca.d.2033.4 16 9.7 even 3
3024.2.ca.d.2609.4 16 21.5 even 6
3024.2.df.d.17.4 16 3.2 odd 2
3024.2.df.d.1601.4 16 63.61 odd 6
5292.2.w.b.521.5 16 252.223 even 6
5292.2.w.b.1097.5 16 84.23 even 6
5292.2.x.a.881.4 16 84.59 odd 6
5292.2.x.a.4409.4 16 252.151 odd 6
5292.2.x.b.881.5 16 84.11 even 6
5292.2.x.b.4409.5 16 252.115 even 6
5292.2.bm.a.2285.5 16 84.83 odd 2
5292.2.bm.a.4625.5 16 252.79 odd 6