Properties

Label 1008.2.cx.i.895.5
Level $1008$
Weight $2$
Character 1008.895
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(223,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,-6,0,20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 895.5
Character \(\chi\) \(=\) 1008.895
Dual form 1008.2.cx.i.223.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11570 + 1.32484i) q^{3} +(-0.263424 - 0.152088i) q^{5} +(-2.20588 + 1.46085i) q^{7} +(-0.510411 - 2.95626i) q^{9} +(-0.437319 + 0.252486i) q^{11} +(4.11032 + 2.37309i) q^{13} +(0.495396 - 0.179310i) q^{15} +4.53143i q^{17} -4.38692 q^{19} +(0.525718 - 4.55232i) q^{21} +(-2.76828 - 1.59826i) q^{23} +(-2.45374 - 4.25000i) q^{25} +(4.48605 + 2.62210i) q^{27} +(-4.86854 - 8.43256i) q^{29} +(-1.83961 + 3.18629i) q^{31} +(0.153414 - 0.861079i) q^{33} +(0.803260 - 0.0493346i) q^{35} -3.70424 q^{37} +(-7.72987 + 2.79785i) q^{39} +(-7.01616 - 4.05078i) q^{41} +(3.99621 - 2.30721i) q^{43} +(-0.315157 + 0.856378i) q^{45} +(-3.23026 - 5.59497i) q^{47} +(2.73184 - 6.44492i) q^{49} +(-6.00342 - 5.05573i) q^{51} +6.52863 q^{53} +0.153601 q^{55} +(4.89450 - 5.81197i) q^{57} +(6.40501 - 11.0938i) q^{59} +(2.16357 - 1.24914i) q^{61} +(5.44456 + 5.77553i) q^{63} +(-0.721838 - 1.25026i) q^{65} +(-6.03544 - 3.48457i) q^{67} +(5.20602 - 1.88434i) q^{69} +10.1334i q^{71} +7.13486i q^{73} +(8.36822 + 1.49093i) q^{75} +(0.595831 - 1.19581i) q^{77} +(-5.96149 + 3.44187i) q^{79} +(-8.47896 + 3.01781i) q^{81} +(-3.66905 - 6.35498i) q^{83} +(0.689176 - 1.19369i) q^{85} +(16.6036 + 2.95819i) q^{87} -11.8721i q^{89} +(-12.5336 + 0.769788i) q^{91} +(-2.16888 - 5.99215i) q^{93} +(1.15562 + 0.667198i) q^{95} +(-10.9944 + 6.34762i) q^{97} +(0.969628 + 1.16396i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{7} + 20 q^{9} + 24 q^{15} + 10 q^{21} + 18 q^{23} + 24 q^{25} - 6 q^{29} - 12 q^{37} - 12 q^{39} + 42 q^{43} + 12 q^{49} - 42 q^{51} + 96 q^{53} - 22 q^{57} + 18 q^{63} + 42 q^{65} + 36 q^{67}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.11570 + 1.32484i −0.644152 + 0.764898i
\(4\) 0 0
\(5\) −0.263424 0.152088i −0.117807 0.0680158i 0.439939 0.898028i \(-0.355000\pi\)
−0.557746 + 0.830012i \(0.688334\pi\)
\(6\) 0 0
\(7\) −2.20588 + 1.46085i −0.833745 + 0.552149i
\(8\) 0 0
\(9\) −0.510411 2.95626i −0.170137 0.985420i
\(10\) 0 0
\(11\) −0.437319 + 0.252486i −0.131857 + 0.0761275i −0.564477 0.825449i \(-0.690922\pi\)
0.432621 + 0.901576i \(0.357589\pi\)
\(12\) 0 0
\(13\) 4.11032 + 2.37309i 1.14000 + 0.658177i 0.946430 0.322910i \(-0.104661\pi\)
0.193567 + 0.981087i \(0.437994\pi\)
\(14\) 0 0
\(15\) 0.495396 0.179310i 0.127911 0.0462977i
\(16\) 0 0
\(17\) 4.53143i 1.09903i 0.835483 + 0.549516i \(0.185188\pi\)
−0.835483 + 0.549516i \(0.814812\pi\)
\(18\) 0 0
\(19\) −4.38692 −1.00643 −0.503214 0.864162i \(-0.667849\pi\)
−0.503214 + 0.864162i \(0.667849\pi\)
\(20\) 0 0
\(21\) 0.525718 4.55232i 0.114721 0.993398i
\(22\) 0 0
\(23\) −2.76828 1.59826i −0.577225 0.333261i 0.182805 0.983149i \(-0.441482\pi\)
−0.760030 + 0.649888i \(0.774816\pi\)
\(24\) 0 0
\(25\) −2.45374 4.25000i −0.490748 0.850000i
\(26\) 0 0
\(27\) 4.48605 + 2.62210i 0.863340 + 0.504623i
\(28\) 0 0
\(29\) −4.86854 8.43256i −0.904065 1.56589i −0.822168 0.569246i \(-0.807235\pi\)
−0.0818973 0.996641i \(-0.526098\pi\)
\(30\) 0 0
\(31\) −1.83961 + 3.18629i −0.330403 + 0.572275i −0.982591 0.185782i \(-0.940518\pi\)
0.652188 + 0.758058i \(0.273851\pi\)
\(32\) 0 0
\(33\) 0.153414 0.861079i 0.0267060 0.149895i
\(34\) 0 0
\(35\) 0.803260 0.0493346i 0.135776 0.00833907i
\(36\) 0 0
\(37\) −3.70424 −0.608973 −0.304487 0.952517i \(-0.598485\pi\)
−0.304487 + 0.952517i \(0.598485\pi\)
\(38\) 0 0
\(39\) −7.72987 + 2.79785i −1.23777 + 0.448015i
\(40\) 0 0
\(41\) −7.01616 4.05078i −1.09574 0.632626i −0.160641 0.987013i \(-0.551356\pi\)
−0.935099 + 0.354387i \(0.884690\pi\)
\(42\) 0 0
\(43\) 3.99621 2.30721i 0.609417 0.351847i −0.163320 0.986573i \(-0.552220\pi\)
0.772737 + 0.634726i \(0.218887\pi\)
\(44\) 0 0
\(45\) −0.315157 + 0.856378i −0.0469809 + 0.127661i
\(46\) 0 0
\(47\) −3.23026 5.59497i −0.471181 0.816110i 0.528275 0.849073i \(-0.322839\pi\)
−0.999457 + 0.0329634i \(0.989506\pi\)
\(48\) 0 0
\(49\) 2.73184 6.44492i 0.390263 0.920704i
\(50\) 0 0
\(51\) −6.00342 5.05573i −0.840648 0.707944i
\(52\) 0 0
\(53\) 6.52863 0.896776 0.448388 0.893839i \(-0.351998\pi\)
0.448388 + 0.893839i \(0.351998\pi\)
\(54\) 0 0
\(55\) 0.153601 0.0207115
\(56\) 0 0
\(57\) 4.89450 5.81197i 0.648293 0.769815i
\(58\) 0 0
\(59\) 6.40501 11.0938i 0.833861 1.44429i −0.0610931 0.998132i \(-0.519459\pi\)
0.894954 0.446158i \(-0.147208\pi\)
\(60\) 0 0
\(61\) 2.16357 1.24914i 0.277017 0.159936i −0.355055 0.934845i \(-0.615538\pi\)
0.632072 + 0.774910i \(0.282205\pi\)
\(62\) 0 0
\(63\) 5.44456 + 5.77553i 0.685950 + 0.727649i
\(64\) 0 0
\(65\) −0.721838 1.25026i −0.0895329 0.155076i
\(66\) 0 0
\(67\) −6.03544 3.48457i −0.737347 0.425707i 0.0837570 0.996486i \(-0.473308\pi\)
−0.821104 + 0.570779i \(0.806641\pi\)
\(68\) 0 0
\(69\) 5.20602 1.88434i 0.626731 0.226848i
\(70\) 0 0
\(71\) 10.1334i 1.20261i 0.799019 + 0.601306i \(0.205353\pi\)
−0.799019 + 0.601306i \(0.794647\pi\)
\(72\) 0 0
\(73\) 7.13486i 0.835072i 0.908660 + 0.417536i \(0.137106\pi\)
−0.908660 + 0.417536i \(0.862894\pi\)
\(74\) 0 0
\(75\) 8.36822 + 1.49093i 0.966279 + 0.172157i
\(76\) 0 0
\(77\) 0.595831 1.19581i 0.0679012 0.136276i
\(78\) 0 0
\(79\) −5.96149 + 3.44187i −0.670720 + 0.387240i −0.796349 0.604837i \(-0.793238\pi\)
0.125630 + 0.992077i \(0.459905\pi\)
\(80\) 0 0
\(81\) −8.47896 + 3.01781i −0.942107 + 0.335313i
\(82\) 0 0
\(83\) −3.66905 6.35498i −0.402731 0.697550i 0.591324 0.806434i \(-0.298606\pi\)
−0.994054 + 0.108884i \(0.965272\pi\)
\(84\) 0 0
\(85\) 0.689176 1.19369i 0.0747516 0.129474i
\(86\) 0 0
\(87\) 16.6036 + 2.95819i 1.78010 + 0.317151i
\(88\) 0 0
\(89\) 11.8721i 1.25844i −0.777226 0.629221i \(-0.783374\pi\)
0.777226 0.629221i \(-0.216626\pi\)
\(90\) 0 0
\(91\) −12.5336 + 0.769788i −1.31388 + 0.0806958i
\(92\) 0 0
\(93\) −2.16888 5.99215i −0.224902 0.621357i
\(94\) 0 0
\(95\) 1.15562 + 0.667198i 0.118564 + 0.0684531i
\(96\) 0 0
\(97\) −10.9944 + 6.34762i −1.11631 + 0.644503i −0.940457 0.339913i \(-0.889602\pi\)
−0.175855 + 0.984416i \(0.556269\pi\)
\(98\) 0 0
\(99\) 0.969628 + 1.16396i 0.0974513 + 0.116982i
\(100\) 0 0
\(101\) −7.37796 + 4.25966i −0.734134 + 0.423852i −0.819933 0.572460i \(-0.805989\pi\)
0.0857986 + 0.996313i \(0.472656\pi\)
\(102\) 0 0
\(103\) −5.50115 + 9.52828i −0.542045 + 0.938849i 0.456742 + 0.889599i \(0.349016\pi\)
−0.998786 + 0.0492499i \(0.984317\pi\)
\(104\) 0 0
\(105\) −0.830840 + 1.11924i −0.0810817 + 0.109226i
\(106\) 0 0
\(107\) 12.8308i 1.24040i −0.784445 0.620198i \(-0.787052\pi\)
0.784445 0.620198i \(-0.212948\pi\)
\(108\) 0 0
\(109\) 3.17561 0.304169 0.152084 0.988368i \(-0.451401\pi\)
0.152084 + 0.988368i \(0.451401\pi\)
\(110\) 0 0
\(111\) 4.13283 4.90753i 0.392271 0.465802i
\(112\) 0 0
\(113\) −2.65916 + 4.60580i −0.250152 + 0.433277i −0.963568 0.267465i \(-0.913814\pi\)
0.713415 + 0.700742i \(0.247147\pi\)
\(114\) 0 0
\(115\) 0.486154 + 0.842043i 0.0453341 + 0.0785209i
\(116\) 0 0
\(117\) 4.91753 13.3624i 0.454626 1.23536i
\(118\) 0 0
\(119\) −6.61973 9.99580i −0.606830 0.916313i
\(120\) 0 0
\(121\) −5.37250 + 9.30544i −0.488409 + 0.845950i
\(122\) 0 0
\(123\) 13.1946 4.77583i 1.18972 0.430622i
\(124\) 0 0
\(125\) 3.01362i 0.269546i
\(126\) 0 0
\(127\) 9.70351i 0.861047i 0.902579 + 0.430523i \(0.141671\pi\)
−0.902579 + 0.430523i \(0.858329\pi\)
\(128\) 0 0
\(129\) −1.40190 + 7.86852i −0.123430 + 0.692784i
\(130\) 0 0
\(131\) 3.44590 5.96848i 0.301070 0.521468i −0.675309 0.737535i \(-0.735990\pi\)
0.976379 + 0.216067i \(0.0693230\pi\)
\(132\) 0 0
\(133\) 9.67703 6.40863i 0.839105 0.555699i
\(134\) 0 0
\(135\) −0.782943 1.37300i −0.0673850 0.118169i
\(136\) 0 0
\(137\) −3.70803 6.42249i −0.316798 0.548710i 0.663020 0.748602i \(-0.269274\pi\)
−0.979818 + 0.199891i \(0.935941\pi\)
\(138\) 0 0
\(139\) −8.55841 + 14.8236i −0.725915 + 1.25732i 0.232681 + 0.972553i \(0.425250\pi\)
−0.958596 + 0.284769i \(0.908083\pi\)
\(140\) 0 0
\(141\) 11.0165 + 1.96275i 0.927753 + 0.165293i
\(142\) 0 0
\(143\) −2.39669 −0.200422
\(144\) 0 0
\(145\) 2.96179i 0.245963i
\(146\) 0 0
\(147\) 5.49058 + 10.8099i 0.452856 + 0.891584i
\(148\) 0 0
\(149\) −8.24061 + 14.2732i −0.675097 + 1.16930i 0.301343 + 0.953516i \(0.402565\pi\)
−0.976440 + 0.215787i \(0.930768\pi\)
\(150\) 0 0
\(151\) 5.27913 3.04790i 0.429609 0.248035i −0.269571 0.962981i \(-0.586882\pi\)
0.699180 + 0.714946i \(0.253549\pi\)
\(152\) 0 0
\(153\) 13.3961 2.31289i 1.08301 0.186986i
\(154\) 0 0
\(155\) 0.969194 0.559565i 0.0778476 0.0449453i
\(156\) 0 0
\(157\) 9.90234 + 5.71712i 0.790293 + 0.456276i 0.840066 0.542485i \(-0.182516\pi\)
−0.0497728 + 0.998761i \(0.515850\pi\)
\(158\) 0 0
\(159\) −7.28401 + 8.64939i −0.577660 + 0.685942i
\(160\) 0 0
\(161\) 8.44132 0.518448i 0.665269 0.0408594i
\(162\) 0 0
\(163\) 21.3884i 1.67527i −0.546230 0.837635i \(-0.683938\pi\)
0.546230 0.837635i \(-0.316062\pi\)
\(164\) 0 0
\(165\) −0.171373 + 0.203497i −0.0133414 + 0.0158422i
\(166\) 0 0
\(167\) 3.05790 5.29644i 0.236627 0.409850i −0.723117 0.690725i \(-0.757291\pi\)
0.959744 + 0.280875i \(0.0906246\pi\)
\(168\) 0 0
\(169\) 4.76313 + 8.24999i 0.366395 + 0.634614i
\(170\) 0 0
\(171\) 2.23913 + 12.9689i 0.171231 + 0.991755i
\(172\) 0 0
\(173\) −14.7638 + 8.52391i −1.12247 + 0.648061i −0.942031 0.335524i \(-0.891086\pi\)
−0.180443 + 0.983585i \(0.557753\pi\)
\(174\) 0 0
\(175\) 11.6213 + 5.79046i 0.878485 + 0.437718i
\(176\) 0 0
\(177\) 7.55144 + 20.8630i 0.567601 + 1.56816i
\(178\) 0 0
\(179\) 13.3401i 0.997083i −0.866866 0.498541i \(-0.833869\pi\)
0.866866 0.498541i \(-0.166131\pi\)
\(180\) 0 0
\(181\) 18.7431i 1.39316i 0.717478 + 0.696581i \(0.245296\pi\)
−0.717478 + 0.696581i \(0.754704\pi\)
\(182\) 0 0
\(183\) −0.758994 + 4.26006i −0.0561064 + 0.314912i
\(184\) 0 0
\(185\) 0.975786 + 0.563370i 0.0717412 + 0.0414198i
\(186\) 0 0
\(187\) −1.14412 1.98168i −0.0836666 0.144915i
\(188\) 0 0
\(189\) −13.7262 + 0.769393i −0.998433 + 0.0559651i
\(190\) 0 0
\(191\) −10.4812 + 6.05130i −0.758389 + 0.437856i −0.828717 0.559668i \(-0.810929\pi\)
0.0703277 + 0.997524i \(0.477595\pi\)
\(192\) 0 0
\(193\) −3.76431 + 6.51998i −0.270961 + 0.469318i −0.969108 0.246636i \(-0.920675\pi\)
0.698147 + 0.715954i \(0.254008\pi\)
\(194\) 0 0
\(195\) 2.46175 + 0.438599i 0.176290 + 0.0314087i
\(196\) 0 0
\(197\) 20.2028 1.43939 0.719695 0.694290i \(-0.244282\pi\)
0.719695 + 0.694290i \(0.244282\pi\)
\(198\) 0 0
\(199\) −22.8387 −1.61900 −0.809498 0.587123i \(-0.800260\pi\)
−0.809498 + 0.587123i \(0.800260\pi\)
\(200\) 0 0
\(201\) 11.3503 4.10827i 0.800586 0.289775i
\(202\) 0 0
\(203\) 23.0581 + 11.4890i 1.61836 + 0.806372i
\(204\) 0 0
\(205\) 1.23215 + 2.13415i 0.0860571 + 0.149055i
\(206\) 0 0
\(207\) −3.31193 + 8.99952i −0.230195 + 0.625510i
\(208\) 0 0
\(209\) 1.91849 1.10764i 0.132704 0.0766169i
\(210\) 0 0
\(211\) 12.0100 + 6.93397i 0.826802 + 0.477354i 0.852756 0.522309i \(-0.174929\pi\)
−0.0259543 + 0.999663i \(0.508262\pi\)
\(212\) 0 0
\(213\) −13.4251 11.3059i −0.919874 0.774664i
\(214\) 0 0
\(215\) −1.40360 −0.0957246
\(216\) 0 0
\(217\) −0.596736 9.71598i −0.0405091 0.659564i
\(218\) 0 0
\(219\) −9.45256 7.96039i −0.638745 0.537913i
\(220\) 0 0
\(221\) −10.7535 + 18.6256i −0.723358 + 1.25289i
\(222\) 0 0
\(223\) 0.736818 + 1.27621i 0.0493410 + 0.0854611i 0.889641 0.456660i \(-0.150955\pi\)
−0.840300 + 0.542122i \(0.817621\pi\)
\(224\) 0 0
\(225\) −11.3117 + 9.42314i −0.754113 + 0.628209i
\(226\) 0 0
\(227\) 3.97759 + 6.88940i 0.264002 + 0.457265i 0.967302 0.253628i \(-0.0816240\pi\)
−0.703299 + 0.710894i \(0.748291\pi\)
\(228\) 0 0
\(229\) 10.4194 + 6.01565i 0.688534 + 0.397525i 0.803063 0.595895i \(-0.203202\pi\)
−0.114528 + 0.993420i \(0.536536\pi\)
\(230\) 0 0
\(231\) 0.919493 + 2.12355i 0.0604982 + 0.139720i
\(232\) 0 0
\(233\) −0.753935 −0.0493919 −0.0246960 0.999695i \(-0.507862\pi\)
−0.0246960 + 0.999695i \(0.507862\pi\)
\(234\) 0 0
\(235\) 1.96513i 0.128191i
\(236\) 0 0
\(237\) 2.09133 11.7381i 0.135846 0.762473i
\(238\) 0 0
\(239\) 17.2884 + 9.98149i 1.11830 + 0.645649i 0.940965 0.338503i \(-0.109920\pi\)
0.177331 + 0.984151i \(0.443254\pi\)
\(240\) 0 0
\(241\) 8.36779 4.83114i 0.539017 0.311201i −0.205664 0.978623i \(-0.565935\pi\)
0.744680 + 0.667421i \(0.232602\pi\)
\(242\) 0 0
\(243\) 5.46188 14.6003i 0.350380 0.936608i
\(244\) 0 0
\(245\) −1.69983 + 1.28227i −0.108598 + 0.0819211i
\(246\) 0 0
\(247\) −18.0316 10.4106i −1.14732 0.662408i
\(248\) 0 0
\(249\) 12.5129 + 2.22937i 0.792974 + 0.141280i
\(250\) 0 0
\(251\) −10.7572 −0.678988 −0.339494 0.940608i \(-0.610256\pi\)
−0.339494 + 0.940608i \(0.610256\pi\)
\(252\) 0 0
\(253\) 1.61416 0.101481
\(254\) 0 0
\(255\) 0.812531 + 2.24485i 0.0508827 + 0.140578i
\(256\) 0 0
\(257\) −4.58326 2.64615i −0.285896 0.165062i 0.350194 0.936677i \(-0.386116\pi\)
−0.636090 + 0.771615i \(0.719449\pi\)
\(258\) 0 0
\(259\) 8.17112 5.41133i 0.507728 0.336244i
\(260\) 0 0
\(261\) −22.4439 + 18.6967i −1.38924 + 1.15730i
\(262\) 0 0
\(263\) −4.44999 + 2.56921i −0.274398 + 0.158424i −0.630885 0.775877i \(-0.717308\pi\)
0.356486 + 0.934301i \(0.383975\pi\)
\(264\) 0 0
\(265\) −1.71980 0.992926i −0.105646 0.0609949i
\(266\) 0 0
\(267\) 15.7287 + 13.2458i 0.962580 + 0.810628i
\(268\) 0 0
\(269\) 25.3041i 1.54282i 0.636339 + 0.771410i \(0.280448\pi\)
−0.636339 + 0.771410i \(0.719552\pi\)
\(270\) 0 0
\(271\) 1.08622 0.0659832 0.0329916 0.999456i \(-0.489497\pi\)
0.0329916 + 0.999456i \(0.489497\pi\)
\(272\) 0 0
\(273\) 12.9639 17.4639i 0.784614 1.05696i
\(274\) 0 0
\(275\) 2.14613 + 1.23907i 0.129417 + 0.0747188i
\(276\) 0 0
\(277\) 8.84602 + 15.3218i 0.531506 + 0.920595i 0.999324 + 0.0367702i \(0.0117069\pi\)
−0.467818 + 0.883825i \(0.654960\pi\)
\(278\) 0 0
\(279\) 10.3585 + 3.81204i 0.620146 + 0.228221i
\(280\) 0 0
\(281\) 4.17929 + 7.23874i 0.249315 + 0.431827i 0.963336 0.268298i \(-0.0864611\pi\)
−0.714021 + 0.700125i \(0.753128\pi\)
\(282\) 0 0
\(283\) 3.68489 6.38242i 0.219044 0.379396i −0.735472 0.677555i \(-0.763039\pi\)
0.954516 + 0.298160i \(0.0963728\pi\)
\(284\) 0 0
\(285\) −2.17326 + 0.786619i −0.128733 + 0.0465953i
\(286\) 0 0
\(287\) 21.3944 1.31400i 1.26287 0.0775630i
\(288\) 0 0
\(289\) −3.53384 −0.207873
\(290\) 0 0
\(291\) 3.85690 21.6479i 0.226095 1.26902i
\(292\) 0 0
\(293\) −27.5794 15.9230i −1.61120 0.930229i −0.989092 0.147300i \(-0.952942\pi\)
−0.622112 0.782928i \(-0.713725\pi\)
\(294\) 0 0
\(295\) −3.37447 + 1.94825i −0.196469 + 0.113432i
\(296\) 0 0
\(297\) −2.62388 0.0140288i −0.152253 0.000814032i
\(298\) 0 0
\(299\) −7.58566 13.1387i −0.438690 0.759833i
\(300\) 0 0
\(301\) −5.44469 + 10.9273i −0.313827 + 0.629840i
\(302\) 0 0
\(303\) 2.58823 14.5271i 0.148690 0.834563i
\(304\) 0 0
\(305\) −0.759916 −0.0435126
\(306\) 0 0
\(307\) 15.6701 0.894342 0.447171 0.894448i \(-0.352431\pi\)
0.447171 + 0.894448i \(0.352431\pi\)
\(308\) 0 0
\(309\) −6.48580 17.9189i −0.368964 1.01937i
\(310\) 0 0
\(311\) 11.4295 19.7965i 0.648110 1.12256i −0.335464 0.942053i \(-0.608893\pi\)
0.983574 0.180506i \(-0.0577735\pi\)
\(312\) 0 0
\(313\) −16.9021 + 9.75842i −0.955362 + 0.551579i −0.894743 0.446582i \(-0.852641\pi\)
−0.0606196 + 0.998161i \(0.519308\pi\)
\(314\) 0 0
\(315\) −0.555839 2.34947i −0.0313180 0.132377i
\(316\) 0 0
\(317\) −5.39581 9.34581i −0.303059 0.524913i 0.673768 0.738943i \(-0.264675\pi\)
−0.976827 + 0.214029i \(0.931341\pi\)
\(318\) 0 0
\(319\) 4.25821 + 2.45848i 0.238414 + 0.137648i
\(320\) 0 0
\(321\) 16.9987 + 14.3153i 0.948776 + 0.799003i
\(322\) 0 0
\(323\) 19.8790i 1.10610i
\(324\) 0 0
\(325\) 23.2918i 1.29200i
\(326\) 0 0
\(327\) −3.54304 + 4.20718i −0.195931 + 0.232658i
\(328\) 0 0
\(329\) 15.2990 + 7.62293i 0.843459 + 0.420265i
\(330\) 0 0
\(331\) 6.82866 3.94253i 0.375337 0.216701i −0.300450 0.953797i \(-0.597137\pi\)
0.675788 + 0.737096i \(0.263804\pi\)
\(332\) 0 0
\(333\) 1.89068 + 10.9507i 0.103609 + 0.600095i
\(334\) 0 0
\(335\) 1.05992 + 1.83584i 0.0579097 + 0.100303i
\(336\) 0 0
\(337\) 8.80232 15.2461i 0.479493 0.830506i −0.520230 0.854026i \(-0.674154\pi\)
0.999723 + 0.0235197i \(0.00748726\pi\)
\(338\) 0 0
\(339\) −3.13512 8.66166i −0.170276 0.470437i
\(340\) 0 0
\(341\) 1.85790i 0.100611i
\(342\) 0 0
\(343\) 3.38894 + 18.2076i 0.182986 + 0.983116i
\(344\) 0 0
\(345\) −1.65798 0.295394i −0.0892625 0.0159035i
\(346\) 0 0
\(347\) −10.3211 5.95887i −0.554064 0.319889i 0.196696 0.980465i \(-0.436979\pi\)
−0.750759 + 0.660576i \(0.770312\pi\)
\(348\) 0 0
\(349\) −6.44783 + 3.72265i −0.345144 + 0.199269i −0.662545 0.749023i \(-0.730523\pi\)
0.317400 + 0.948292i \(0.397190\pi\)
\(350\) 0 0
\(351\) 12.2166 + 21.4235i 0.652073 + 1.14350i
\(352\) 0 0
\(353\) 22.6054 13.0512i 1.20316 0.694647i 0.241906 0.970300i \(-0.422227\pi\)
0.961257 + 0.275653i \(0.0888940\pi\)
\(354\) 0 0
\(355\) 1.54117 2.66938i 0.0817966 0.141676i
\(356\) 0 0
\(357\) 20.6285 + 2.38225i 1.09178 + 0.126082i
\(358\) 0 0
\(359\) 29.3206i 1.54748i −0.633502 0.773741i \(-0.718383\pi\)
0.633502 0.773741i \(-0.281617\pi\)
\(360\) 0 0
\(361\) 0.245065 0.0128981
\(362\) 0 0
\(363\) −6.33412 17.4998i −0.332455 0.918503i
\(364\) 0 0
\(365\) 1.08513 1.87949i 0.0567981 0.0983772i
\(366\) 0 0
\(367\) −0.989656 1.71414i −0.0516596 0.0894771i 0.839039 0.544071i \(-0.183118\pi\)
−0.890699 + 0.454594i \(0.849784\pi\)
\(368\) 0 0
\(369\) −8.39405 + 22.8092i −0.436977 + 1.18740i
\(370\) 0 0
\(371\) −14.4014 + 9.53734i −0.747683 + 0.495154i
\(372\) 0 0
\(373\) 2.72184 4.71436i 0.140931 0.244100i −0.786916 0.617060i \(-0.788324\pi\)
0.927848 + 0.372959i \(0.121657\pi\)
\(374\) 0 0
\(375\) −3.99256 3.36230i −0.206175 0.173629i
\(376\) 0 0
\(377\) 46.2140i 2.38014i
\(378\) 0 0
\(379\) 5.40049i 0.277404i 0.990334 + 0.138702i \(0.0442931\pi\)
−0.990334 + 0.138702i \(0.955707\pi\)
\(380\) 0 0
\(381\) −12.8556 10.8262i −0.658613 0.554645i
\(382\) 0 0
\(383\) −14.2110 + 24.6142i −0.726149 + 1.25773i 0.232350 + 0.972632i \(0.425359\pi\)
−0.958499 + 0.285095i \(0.907975\pi\)
\(384\) 0 0
\(385\) −0.338825 + 0.224387i −0.0172681 + 0.0114358i
\(386\) 0 0
\(387\) −8.86044 10.6362i −0.450401 0.540670i
\(388\) 0 0
\(389\) −13.3498 23.1225i −0.676862 1.17236i −0.975921 0.218124i \(-0.930006\pi\)
0.299060 0.954234i \(-0.403327\pi\)
\(390\) 0 0
\(391\) 7.24242 12.5442i 0.366265 0.634390i
\(392\) 0 0
\(393\) 4.06268 + 11.2243i 0.204935 + 0.566192i
\(394\) 0 0
\(395\) 2.09387 0.105354
\(396\) 0 0
\(397\) 3.70933i 0.186166i 0.995658 + 0.0930829i \(0.0296722\pi\)
−0.995658 + 0.0930829i \(0.970328\pi\)
\(398\) 0 0
\(399\) −2.30628 + 19.9707i −0.115459 + 0.999784i
\(400\) 0 0
\(401\) −9.74810 + 16.8842i −0.486797 + 0.843157i −0.999885 0.0151789i \(-0.995168\pi\)
0.513088 + 0.858336i \(0.328502\pi\)
\(402\) 0 0
\(403\) −15.1227 + 8.73112i −0.753317 + 0.434928i
\(404\) 0 0
\(405\) 2.69254 + 0.494583i 0.133793 + 0.0245760i
\(406\) 0 0
\(407\) 1.61994 0.935270i 0.0802972 0.0463596i
\(408\) 0 0
\(409\) −29.8309 17.2229i −1.47504 0.851616i −0.475438 0.879749i \(-0.657711\pi\)
−0.999604 + 0.0281328i \(0.991044\pi\)
\(410\) 0 0
\(411\) 12.6458 + 2.25305i 0.623773 + 0.111135i
\(412\) 0 0
\(413\) 2.07767 + 33.8284i 0.102235 + 1.66459i
\(414\) 0 0
\(415\) 2.23207i 0.109568i
\(416\) 0 0
\(417\) −10.0903 27.8773i −0.494123 1.36516i
\(418\) 0 0
\(419\) −19.7174 + 34.1516i −0.963259 + 1.66841i −0.249036 + 0.968494i \(0.580114\pi\)
−0.714222 + 0.699919i \(0.753219\pi\)
\(420\) 0 0
\(421\) −16.8161 29.1263i −0.819567 1.41953i −0.906002 0.423274i \(-0.860881\pi\)
0.0864352 0.996257i \(-0.472452\pi\)
\(422\) 0 0
\(423\) −14.8914 + 12.4052i −0.724046 + 0.603162i
\(424\) 0 0
\(425\) 19.2586 11.1189i 0.934178 0.539348i
\(426\) 0 0
\(427\) −2.94778 + 5.91610i −0.142653 + 0.286300i
\(428\) 0 0
\(429\) 2.67400 3.17524i 0.129102 0.153302i
\(430\) 0 0
\(431\) 27.3561i 1.31770i 0.752276 + 0.658848i \(0.228956\pi\)
−0.752276 + 0.658848i \(0.771044\pi\)
\(432\) 0 0
\(433\) 22.7292i 1.09229i 0.837689 + 0.546147i \(0.183906\pi\)
−0.837689 + 0.546147i \(0.816094\pi\)
\(434\) 0 0
\(435\) −3.92390 3.30447i −0.188136 0.158437i
\(436\) 0 0
\(437\) 12.1442 + 7.01146i 0.580936 + 0.335404i
\(438\) 0 0
\(439\) 1.84811 + 3.20101i 0.0882053 + 0.152776i 0.906753 0.421663i \(-0.138554\pi\)
−0.818547 + 0.574439i \(0.805220\pi\)
\(440\) 0 0
\(441\) −20.4472 4.78647i −0.973678 0.227927i
\(442\) 0 0
\(443\) −21.1702 + 12.2226i −1.00582 + 0.580713i −0.909966 0.414682i \(-0.863893\pi\)
−0.0958579 + 0.995395i \(0.530559\pi\)
\(444\) 0 0
\(445\) −1.80561 + 3.12740i −0.0855940 + 0.148253i
\(446\) 0 0
\(447\) −9.71560 26.8421i −0.459532 1.26959i
\(448\) 0 0
\(449\) 27.6399 1.30441 0.652204 0.758043i \(-0.273844\pi\)
0.652204 + 0.758043i \(0.273844\pi\)
\(450\) 0 0
\(451\) 4.09107 0.192641
\(452\) 0 0
\(453\) −1.85195 + 10.3946i −0.0870122 + 0.488379i
\(454\) 0 0
\(455\) 3.41873 + 1.70343i 0.160273 + 0.0798580i
\(456\) 0 0
\(457\) −5.54654 9.60690i −0.259456 0.449392i 0.706640 0.707573i \(-0.250210\pi\)
−0.966096 + 0.258182i \(0.916877\pi\)
\(458\) 0 0
\(459\) −11.8818 + 20.3282i −0.554597 + 0.948839i
\(460\) 0 0
\(461\) −3.24445 + 1.87318i −0.151109 + 0.0872428i −0.573648 0.819102i \(-0.694472\pi\)
0.422539 + 0.906345i \(0.361139\pi\)
\(462\) 0 0
\(463\) 3.52542 + 2.03540i 0.163840 + 0.0945931i 0.579678 0.814846i \(-0.303178\pi\)
−0.415838 + 0.909439i \(0.636512\pi\)
\(464\) 0 0
\(465\) −0.339999 + 1.90834i −0.0157671 + 0.0884970i
\(466\) 0 0
\(467\) 15.3831 0.711843 0.355922 0.934516i \(-0.384167\pi\)
0.355922 + 0.934516i \(0.384167\pi\)
\(468\) 0 0
\(469\) 18.4039 1.13033i 0.849814 0.0521938i
\(470\) 0 0
\(471\) −18.6224 + 6.74042i −0.858073 + 0.310582i
\(472\) 0 0
\(473\) −1.16508 + 2.01798i −0.0535705 + 0.0927868i
\(474\) 0 0
\(475\) 10.7644 + 18.6444i 0.493902 + 0.855464i
\(476\) 0 0
\(477\) −3.33228 19.3003i −0.152575 0.883701i
\(478\) 0 0
\(479\) −2.93712 5.08724i −0.134200 0.232442i 0.791091 0.611698i \(-0.209513\pi\)
−0.925292 + 0.379256i \(0.876180\pi\)
\(480\) 0 0
\(481\) −15.2256 8.79050i −0.694227 0.400812i
\(482\) 0 0
\(483\) −8.73114 + 11.7618i −0.397281 + 0.535182i
\(484\) 0 0
\(485\) 3.86159 0.175346
\(486\) 0 0
\(487\) 31.9979i 1.44996i −0.688769 0.724981i \(-0.741849\pi\)
0.688769 0.724981i \(-0.258151\pi\)
\(488\) 0 0
\(489\) 28.3363 + 23.8631i 1.28141 + 1.07913i
\(490\) 0 0
\(491\) 25.3831 + 14.6549i 1.14552 + 0.661367i 0.947792 0.318890i \(-0.103310\pi\)
0.197729 + 0.980257i \(0.436643\pi\)
\(492\) 0 0
\(493\) 38.2115 22.0614i 1.72096 0.993597i
\(494\) 0 0
\(495\) −0.0783994 0.454084i −0.00352379 0.0204095i
\(496\) 0 0
\(497\) −14.8033 22.3531i −0.664021 1.00267i
\(498\) 0 0
\(499\) −27.0620 15.6242i −1.21146 0.699437i −0.248383 0.968662i \(-0.579899\pi\)
−0.963077 + 0.269225i \(0.913233\pi\)
\(500\) 0 0
\(501\) 3.60523 + 9.96048i 0.161070 + 0.445002i
\(502\) 0 0
\(503\) −27.9078 −1.24435 −0.622175 0.782878i \(-0.713751\pi\)
−0.622175 + 0.782878i \(0.713751\pi\)
\(504\) 0 0
\(505\) 2.59138 0.115315
\(506\) 0 0
\(507\) −16.2442 2.89415i −0.721429 0.128534i
\(508\) 0 0
\(509\) 15.8612 + 9.15745i 0.703034 + 0.405897i 0.808477 0.588528i \(-0.200293\pi\)
−0.105442 + 0.994425i \(0.533626\pi\)
\(510\) 0 0
\(511\) −10.4230 15.7387i −0.461084 0.696238i
\(512\) 0 0
\(513\) −19.6799 11.5029i −0.868890 0.507867i
\(514\) 0 0
\(515\) 2.89827 1.67332i 0.127713 0.0737353i
\(516\) 0 0
\(517\) 2.82531 + 1.63119i 0.124257 + 0.0717397i
\(518\) 0 0
\(519\) 5.17925 29.0699i 0.227344 1.27603i
\(520\) 0 0
\(521\) 5.07663i 0.222411i −0.993797 0.111206i \(-0.964529\pi\)
0.993797 0.111206i \(-0.0354712\pi\)
\(522\) 0 0
\(523\) 33.2565 1.45421 0.727104 0.686528i \(-0.240866\pi\)
0.727104 + 0.686528i \(0.240866\pi\)
\(524\) 0 0
\(525\) −20.6373 + 8.93590i −0.900687 + 0.389995i
\(526\) 0 0
\(527\) −14.4385 8.33605i −0.628949 0.363124i
\(528\) 0 0
\(529\) −6.39110 11.0697i −0.277874 0.481292i
\(530\) 0 0
\(531\) −36.0654 13.2725i −1.56510 0.575977i
\(532\) 0 0
\(533\) −19.2258 33.3000i −0.832760 1.44238i
\(534\) 0 0
\(535\) −1.95140 + 3.37993i −0.0843665 + 0.146127i
\(536\) 0 0
\(537\) 17.6735 + 14.8835i 0.762666 + 0.642273i
\(538\) 0 0
\(539\) 0.432570 + 3.50824i 0.0186321 + 0.151111i
\(540\) 0 0
\(541\) −15.9402 −0.685321 −0.342661 0.939459i \(-0.611328\pi\)
−0.342661 + 0.939459i \(0.611328\pi\)
\(542\) 0 0
\(543\) −24.8316 20.9117i −1.06563 0.897407i
\(544\) 0 0
\(545\) −0.836533 0.482973i −0.0358331 0.0206883i
\(546\) 0 0
\(547\) −7.68696 + 4.43807i −0.328670 + 0.189758i −0.655251 0.755412i \(-0.727437\pi\)
0.326580 + 0.945169i \(0.394104\pi\)
\(548\) 0 0
\(549\) −4.79709 5.75851i −0.204735 0.245767i
\(550\) 0 0
\(551\) 21.3579 + 36.9929i 0.909877 + 1.57595i
\(552\) 0 0
\(553\) 8.12230 16.3012i 0.345395 0.693197i
\(554\) 0 0
\(555\) −1.83506 + 0.664207i −0.0778941 + 0.0281940i
\(556\) 0 0
\(557\) 34.7304 1.47157 0.735786 0.677214i \(-0.236813\pi\)
0.735786 + 0.677214i \(0.236813\pi\)
\(558\) 0 0
\(559\) 21.9009 0.926311
\(560\) 0 0
\(561\) 3.90192 + 0.695186i 0.164739 + 0.0293508i
\(562\) 0 0
\(563\) −16.0862 + 27.8622i −0.677953 + 1.17425i 0.297643 + 0.954677i \(0.403800\pi\)
−0.975596 + 0.219572i \(0.929534\pi\)
\(564\) 0 0
\(565\) 1.40097 0.808852i 0.0589393 0.0340286i
\(566\) 0 0
\(567\) 14.2950 19.0434i 0.600335 0.799749i
\(568\) 0 0
\(569\) 0.136604 + 0.236606i 0.00572675 + 0.00991903i 0.868875 0.495032i \(-0.164844\pi\)
−0.863148 + 0.504951i \(0.831510\pi\)
\(570\) 0 0
\(571\) 12.4639 + 7.19606i 0.521599 + 0.301146i 0.737589 0.675250i \(-0.235964\pi\)
−0.215989 + 0.976396i \(0.569298\pi\)
\(572\) 0 0
\(573\) 3.67685 20.6373i 0.153603 0.862136i
\(574\) 0 0
\(575\) 15.6869i 0.654189i
\(576\) 0 0
\(577\) 42.6896i 1.77719i −0.458693 0.888595i \(-0.651682\pi\)
0.458693 0.888595i \(-0.348318\pi\)
\(578\) 0 0
\(579\) −4.43808 12.2615i −0.184440 0.509570i
\(580\) 0 0
\(581\) 17.3772 + 8.65842i 0.720926 + 0.359212i
\(582\) 0 0
\(583\) −2.85509 + 1.64839i −0.118246 + 0.0682693i
\(584\) 0 0
\(585\) −3.32766 + 2.77209i −0.137582 + 0.114612i
\(586\) 0 0
\(587\) 12.7821 + 22.1393i 0.527575 + 0.913786i 0.999483 + 0.0321388i \(0.0102319\pi\)
−0.471909 + 0.881647i \(0.656435\pi\)
\(588\) 0 0
\(589\) 8.07021 13.9780i 0.332527 0.575954i
\(590\) 0 0
\(591\) −22.5403 + 26.7655i −0.927186 + 1.10099i
\(592\) 0 0
\(593\) 17.4510i 0.716626i 0.933602 + 0.358313i \(0.116648\pi\)
−0.933602 + 0.358313i \(0.883352\pi\)
\(594\) 0 0
\(595\) 0.223556 + 3.63992i 0.00916491 + 0.149222i
\(596\) 0 0
\(597\) 25.4813 30.2577i 1.04288 1.23837i
\(598\) 0 0
\(599\) −20.2258 11.6774i −0.826403 0.477124i 0.0262162 0.999656i \(-0.491654\pi\)
−0.852620 + 0.522532i \(0.824987\pi\)
\(600\) 0 0
\(601\) −41.6504 + 24.0469i −1.69896 + 0.980892i −0.752202 + 0.658933i \(0.771008\pi\)
−0.946753 + 0.321959i \(0.895659\pi\)
\(602\) 0 0
\(603\) −7.22073 + 19.6209i −0.294051 + 0.799025i
\(604\) 0 0
\(605\) 2.83049 1.63419i 0.115076 0.0664391i
\(606\) 0 0
\(607\) 12.7020 22.0005i 0.515559 0.892975i −0.484278 0.874914i \(-0.660918\pi\)
0.999837 0.0180603i \(-0.00574910\pi\)
\(608\) 0 0
\(609\) −40.9472 + 17.7300i −1.65926 + 0.718456i
\(610\) 0 0
\(611\) 30.6628i 1.24048i
\(612\) 0 0
\(613\) −27.0827 −1.09386 −0.546929 0.837179i \(-0.684203\pi\)
−0.546929 + 0.837179i \(0.684203\pi\)
\(614\) 0 0
\(615\) −4.20212 0.748672i −0.169446 0.0301894i
\(616\) 0 0
\(617\) −7.71009 + 13.3543i −0.310397 + 0.537623i −0.978448 0.206492i \(-0.933795\pi\)
0.668052 + 0.744115i \(0.267129\pi\)
\(618\) 0 0
\(619\) −20.7162 35.8815i −0.832654 1.44220i −0.895927 0.444202i \(-0.853487\pi\)
0.0632732 0.997996i \(-0.479846\pi\)
\(620\) 0 0
\(621\) −8.22780 14.4286i −0.330170 0.578999i
\(622\) 0 0
\(623\) 17.3434 + 26.1885i 0.694848 + 1.04922i
\(624\) 0 0
\(625\) −11.8104 + 20.4561i −0.472414 + 0.818246i
\(626\) 0 0
\(627\) −0.673016 + 3.77748i −0.0268777 + 0.150858i
\(628\) 0 0
\(629\) 16.7855i 0.669281i
\(630\) 0 0
\(631\) 1.25386i 0.0499155i −0.999689 0.0249577i \(-0.992055\pi\)
0.999689 0.0249577i \(-0.00794512\pi\)
\(632\) 0 0
\(633\) −22.5860 + 8.17508i −0.897713 + 0.324930i
\(634\) 0 0
\(635\) 1.47579 2.55614i 0.0585648 0.101437i
\(636\) 0 0
\(637\) 26.5231 20.0078i 1.05088 0.792737i
\(638\) 0 0
\(639\) 29.9569 5.17219i 1.18508 0.204608i
\(640\) 0 0
\(641\) −13.7743 23.8578i −0.544052 0.942326i −0.998666 0.0516376i \(-0.983556\pi\)
0.454613 0.890689i \(-0.349777\pi\)
\(642\) 0 0
\(643\) 18.6020 32.2196i 0.733591 1.27062i −0.221748 0.975104i \(-0.571176\pi\)
0.955339 0.295512i \(-0.0954904\pi\)
\(644\) 0 0
\(645\) 1.56600 1.85955i 0.0616612 0.0732196i
\(646\) 0 0
\(647\) 13.0336 0.512403 0.256201 0.966623i \(-0.417529\pi\)
0.256201 + 0.966623i \(0.417529\pi\)
\(648\) 0 0
\(649\) 6.46871i 0.253919i
\(650\) 0 0
\(651\) 13.5379 + 10.0496i 0.530593 + 0.393874i
\(652\) 0 0
\(653\) 3.89056 6.73864i 0.152249 0.263704i −0.779805 0.626023i \(-0.784682\pi\)
0.932054 + 0.362319i \(0.118015\pi\)
\(654\) 0 0
\(655\) −1.81547 + 1.04816i −0.0709362 + 0.0409550i
\(656\) 0 0
\(657\) 21.0925 3.64171i 0.822897 0.142077i
\(658\) 0 0
\(659\) −36.1876 + 20.8929i −1.40967 + 0.813873i −0.995356 0.0962621i \(-0.969311\pi\)
−0.414313 + 0.910135i \(0.635978\pi\)
\(660\) 0 0
\(661\) 19.3416 + 11.1669i 0.752303 + 0.434342i 0.826525 0.562899i \(-0.190314\pi\)
−0.0742225 + 0.997242i \(0.523648\pi\)
\(662\) 0 0
\(663\) −12.6783 35.0273i −0.492383 1.36035i
\(664\) 0 0
\(665\) −3.52384 + 0.216427i −0.136649 + 0.00839268i
\(666\) 0 0
\(667\) 31.1249i 1.20516i
\(668\) 0 0
\(669\) −2.51284 0.447701i −0.0971520 0.0173091i
\(670\) 0 0
\(671\) −0.630781 + 1.09254i −0.0243510 + 0.0421772i
\(672\) 0 0
\(673\) 12.9074 + 22.3563i 0.497544 + 0.861771i 0.999996 0.00283382i \(-0.000902033\pi\)
−0.502452 + 0.864605i \(0.667569\pi\)
\(674\) 0 0
\(675\) 0.136336 25.4996i 0.00524757 0.981481i
\(676\) 0 0
\(677\) −9.62411 + 5.55648i −0.369885 + 0.213553i −0.673408 0.739271i \(-0.735170\pi\)
0.303523 + 0.952824i \(0.401837\pi\)
\(678\) 0 0
\(679\) 14.9794 30.0633i 0.574858 1.15372i
\(680\) 0 0
\(681\) −13.5652 2.41684i −0.519819 0.0926136i
\(682\) 0 0
\(683\) 7.40166i 0.283217i 0.989923 + 0.141608i \(0.0452273\pi\)
−0.989923 + 0.141608i \(0.954773\pi\)
\(684\) 0 0
\(685\) 2.25578i 0.0861891i
\(686\) 0 0
\(687\) −19.5948 + 7.09239i −0.747587 + 0.270591i
\(688\) 0 0
\(689\) 26.8347 + 15.4930i 1.02232 + 0.590237i
\(690\) 0 0
\(691\) 1.63144 + 2.82574i 0.0620630 + 0.107496i 0.895387 0.445288i \(-0.146899\pi\)
−0.833324 + 0.552784i \(0.813565\pi\)
\(692\) 0 0
\(693\) −3.83925 1.15108i −0.145841 0.0437257i
\(694\) 0 0
\(695\) 4.50899 2.60326i 0.171036 0.0987474i
\(696\) 0 0
\(697\) 18.3558 31.7932i 0.695277 1.20425i
\(698\) 0 0
\(699\) 0.841168 0.998845i 0.0318159 0.0377798i
\(700\) 0 0
\(701\) −24.7327 −0.934142 −0.467071 0.884220i \(-0.654691\pi\)
−0.467071 + 0.884220i \(0.654691\pi\)
\(702\) 0 0
\(703\) 16.2502 0.612888
\(704\) 0 0
\(705\) −2.60349 2.19251i −0.0980531 0.0825745i
\(706\) 0 0
\(707\) 10.0522 20.1744i 0.378051 0.758737i
\(708\) 0 0
\(709\) 10.1878 + 17.6458i 0.382612 + 0.662703i 0.991435 0.130603i \(-0.0416913\pi\)
−0.608823 + 0.793306i \(0.708358\pi\)
\(710\) 0 0
\(711\) 13.2179 + 15.8670i 0.495709 + 0.595057i
\(712\) 0 0
\(713\) 10.1851 5.88036i 0.381434 0.220221i
\(714\) 0 0
\(715\) 0.631347 + 0.364508i 0.0236110 + 0.0136318i
\(716\) 0 0
\(717\) −32.5127 + 11.7681i −1.21421 + 0.439486i
\(718\) 0 0
\(719\) −22.9742 −0.856793 −0.428396 0.903591i \(-0.640921\pi\)
−0.428396 + 0.903591i \(0.640921\pi\)
\(720\) 0 0
\(721\) −1.78448 29.0546i −0.0664573 1.08205i
\(722\) 0 0
\(723\) −2.93547 + 16.4761i −0.109171 + 0.612754i
\(724\) 0 0
\(725\) −23.8922 + 41.3826i −0.887336 + 1.53691i
\(726\) 0 0
\(727\) 25.3044 + 43.8285i 0.938489 + 1.62551i 0.768291 + 0.640100i \(0.221107\pi\)
0.170197 + 0.985410i \(0.445560\pi\)
\(728\) 0 0
\(729\) 13.2492 + 23.5257i 0.490711 + 0.871322i
\(730\) 0 0
\(731\) 10.4550 + 18.1086i 0.386691 + 0.669769i
\(732\) 0 0
\(733\) −0.788561 0.455276i −0.0291262 0.0168160i 0.485366 0.874311i \(-0.338686\pi\)
−0.514492 + 0.857495i \(0.672020\pi\)
\(734\) 0 0
\(735\) 0.197701 3.68263i 0.00729233 0.135836i
\(736\) 0 0
\(737\) 3.51922 0.129632
\(738\) 0 0
\(739\) 11.5676i 0.425521i 0.977104 + 0.212761i \(0.0682455\pi\)
−0.977104 + 0.212761i \(0.931755\pi\)
\(740\) 0 0
\(741\) 33.9103 12.2739i 1.24573 0.450895i
\(742\) 0 0
\(743\) −36.1075 20.8467i −1.32466 0.764790i −0.340188 0.940357i \(-0.610491\pi\)
−0.984467 + 0.175567i \(0.943824\pi\)
\(744\) 0 0
\(745\) 4.34155 2.50660i 0.159062 0.0918346i
\(746\) 0 0
\(747\) −16.9143 + 14.0903i −0.618860 + 0.515538i
\(748\) 0 0
\(749\) 18.7438 + 28.3031i 0.684883 + 1.03417i
\(750\) 0 0
\(751\) 17.1295 + 9.88969i 0.625063 + 0.360880i 0.778837 0.627226i \(-0.215810\pi\)
−0.153775 + 0.988106i \(0.549143\pi\)
\(752\) 0 0
\(753\) 12.0018 14.2516i 0.437372 0.519357i
\(754\) 0 0
\(755\) −1.85420 −0.0674812
\(756\) 0 0
\(757\) 25.5667 0.929236 0.464618 0.885511i \(-0.346192\pi\)
0.464618 + 0.885511i \(0.346192\pi\)
\(758\) 0 0
\(759\) −1.80093 + 2.13851i −0.0653694 + 0.0776229i
\(760\) 0 0
\(761\) −35.2307 20.3405i −1.27711 0.737342i −0.300797 0.953688i \(-0.597253\pi\)
−0.976317 + 0.216347i \(0.930586\pi\)
\(762\) 0 0
\(763\) −7.00503 + 4.63909i −0.253599 + 0.167946i
\(764\) 0 0
\(765\) −3.88061 1.42811i −0.140304 0.0516335i
\(766\) 0 0
\(767\) 52.6532 30.3994i 1.90120 1.09766i
\(768\) 0 0
\(769\) −38.0816 21.9864i −1.37326 0.792851i −0.381921 0.924195i \(-0.624737\pi\)
−0.991337 + 0.131344i \(0.958071\pi\)
\(770\) 0 0
\(771\) 8.61929 3.11978i 0.310416 0.112356i
\(772\) 0 0
\(773\) 16.8373i 0.605596i 0.953055 + 0.302798i \(0.0979208\pi\)
−0.953055 + 0.302798i \(0.902079\pi\)
\(774\) 0 0
\(775\) 18.0557 0.648579
\(776\) 0 0
\(777\) −1.94738 + 16.8629i −0.0698620 + 0.604952i
\(778\) 0 0
\(779\) 30.7793 + 17.7705i 1.10278 + 0.636693i
\(780\) 0 0
\(781\) −2.55854 4.43152i −0.0915518 0.158572i
\(782\) 0 0
\(783\) 0.270508 50.5946i 0.00966717 1.80810i
\(784\) 0 0
\(785\) −1.73901 3.01205i −0.0620679 0.107505i
\(786\) 0 0
\(787\) 10.5794 18.3240i 0.377115 0.653182i −0.613526 0.789674i \(-0.710250\pi\)
0.990641 + 0.136492i \(0.0435829\pi\)
\(788\) 0 0
\(789\) 1.56108 8.76201i 0.0555761 0.311936i
\(790\) 0 0
\(791\) −0.862583 14.0445i −0.0306699 0.499364i
\(792\) 0 0
\(793\) 11.8573 0.421064
\(794\) 0 0
\(795\) 3.23425 1.17065i 0.114707 0.0415186i
\(796\) 0 0
\(797\) −7.19124 4.15186i −0.254727 0.147066i 0.367200 0.930142i \(-0.380316\pi\)
−0.621927 + 0.783076i \(0.713650\pi\)
\(798\) 0 0
\(799\) 25.3532 14.6377i 0.896931 0.517844i
\(800\) 0 0
\(801\) −35.0971 + 6.05966i −1.24010 + 0.214108i
\(802\) 0 0
\(803\) −1.80146 3.12021i −0.0635720 0.110110i
\(804\) 0 0
\(805\) −2.30250 1.14725i −0.0811523 0.0404353i
\(806\) 0 0
\(807\) −33.5239 28.2319i −1.18010 0.993810i
\(808\) 0 0
\(809\) 40.9535 1.43985 0.719925 0.694052i \(-0.244176\pi\)
0.719925 + 0.694052i \(0.244176\pi\)
\(810\) 0 0
\(811\) 4.74782 0.166718 0.0833592 0.996520i \(-0.473435\pi\)
0.0833592 + 0.996520i \(0.473435\pi\)
\(812\) 0 0
\(813\) −1.21190 + 1.43907i −0.0425032 + 0.0504704i
\(814\) 0 0
\(815\) −3.25292 + 5.63422i −0.113945 + 0.197358i
\(816\) 0 0
\(817\) −17.5311 + 10.1216i −0.613334 + 0.354109i
\(818\) 0 0
\(819\) 8.67298 + 36.6597i 0.303059 + 1.28099i
\(820\) 0 0
\(821\) 2.73543 + 4.73790i 0.0954671 + 0.165354i 0.909803 0.415039i \(-0.136232\pi\)
−0.814336 + 0.580393i \(0.802899\pi\)
\(822\) 0 0
\(823\) −14.7561 8.51945i −0.514366 0.296969i 0.220260 0.975441i \(-0.429309\pi\)
−0.734627 + 0.678472i \(0.762643\pi\)
\(824\) 0 0
\(825\) −4.03602 + 1.46085i −0.140516 + 0.0508603i
\(826\) 0 0
\(827\) 26.6988i 0.928408i 0.885728 + 0.464204i \(0.153659\pi\)
−0.885728 + 0.464204i \(0.846341\pi\)
\(828\) 0 0
\(829\) 44.8881i 1.55903i −0.626385 0.779514i \(-0.715466\pi\)
0.626385 0.779514i \(-0.284534\pi\)
\(830\) 0 0
\(831\) −30.1684 5.37496i −1.04653 0.186455i
\(832\) 0 0
\(833\) 29.2047 + 12.3791i 1.01188 + 0.428912i
\(834\) 0 0
\(835\) −1.61105 + 0.930139i −0.0557526 + 0.0321888i
\(836\) 0 0
\(837\) −16.6073 + 9.47023i −0.574034 + 0.327339i
\(838\) 0 0
\(839\) 7.36959 + 12.7645i 0.254427 + 0.440680i 0.964740 0.263206i \(-0.0847799\pi\)
−0.710313 + 0.703886i \(0.751447\pi\)
\(840\) 0 0
\(841\) −32.9053 + 56.9937i −1.13467 + 1.96530i
\(842\) 0 0
\(843\) −14.2530 2.53939i −0.490901 0.0874614i
\(844\) 0 0
\(845\) 2.89766i 0.0996826i
\(846\) 0 0
\(847\) −1.74274 28.3751i −0.0598813 0.974981i
\(848\) 0 0
\(849\) 4.34445 + 12.0028i 0.149101 + 0.411935i
\(850\) 0 0
\(851\) 10.2544 + 5.92035i 0.351515 + 0.202947i
\(852\) 0 0
\(853\) −16.9795 + 9.80312i −0.581367 + 0.335652i −0.761676 0.647958i \(-0.775623\pi\)
0.180309 + 0.983610i \(0.442290\pi\)
\(854\) 0 0
\(855\) 1.38257 3.75686i 0.0472829 0.128482i
\(856\) 0 0
\(857\) 2.10408 1.21479i 0.0718739 0.0414964i −0.463632 0.886028i \(-0.653454\pi\)
0.535506 + 0.844531i \(0.320121\pi\)
\(858\) 0 0
\(859\) 1.95139 3.37990i 0.0665804 0.115321i −0.830814 0.556551i \(-0.812124\pi\)
0.897394 + 0.441230i \(0.145458\pi\)
\(860\) 0 0
\(861\) −22.1290 + 29.8102i −0.754154 + 1.01593i
\(862\) 0 0
\(863\) 16.0577i 0.546610i 0.961927 + 0.273305i \(0.0881169\pi\)
−0.961927 + 0.273305i \(0.911883\pi\)
\(864\) 0 0
\(865\) 5.18554 0.176314
\(866\) 0 0
\(867\) 3.94272 4.68178i 0.133902 0.159001i
\(868\) 0 0
\(869\) 1.73805 3.01039i 0.0589593 0.102120i
\(870\) 0 0
\(871\) −16.5384 28.6453i −0.560382 0.970610i
\(872\) 0 0
\(873\) 24.3769 + 29.2624i 0.825032 + 0.990383i
\(874\) 0 0
\(875\) −4.40244 6.64769i −0.148830 0.224733i
\(876\) 0 0
\(877\) 4.93618 8.54972i 0.166683 0.288703i −0.770569 0.637357i \(-0.780028\pi\)
0.937252 + 0.348654i \(0.113361\pi\)
\(878\) 0 0
\(879\) 51.8658 18.7730i 1.74939 0.633197i
\(880\) 0 0
\(881\) 53.8542i 1.81439i −0.420706 0.907197i \(-0.638217\pi\)
0.420706 0.907197i \(-0.361783\pi\)
\(882\) 0 0
\(883\) 5.54895i 0.186737i −0.995632 0.0933685i \(-0.970237\pi\)
0.995632 0.0933685i \(-0.0297635\pi\)
\(884\) 0 0
\(885\) 1.18378 6.64431i 0.0397925 0.223346i
\(886\) 0 0
\(887\) −15.6555 + 27.1160i −0.525659 + 0.910467i 0.473895 + 0.880582i \(0.342848\pi\)
−0.999553 + 0.0298859i \(0.990486\pi\)
\(888\) 0 0
\(889\) −14.1754 21.4048i −0.475426 0.717894i
\(890\) 0 0
\(891\) 2.94606 3.46057i 0.0986966 0.115934i
\(892\) 0 0
\(893\) 14.1709 + 24.5447i 0.474210 + 0.821356i
\(894\) 0 0
\(895\) −2.02886 + 3.51409i −0.0678174 + 0.117463i
\(896\) 0 0
\(897\) 25.8701 + 4.60915i 0.863778 + 0.153895i
\(898\) 0 0
\(899\) 35.8248 1.19482
\(900\) 0 0
\(901\) 29.5840i 0.985586i
\(902\) 0 0
\(903\) −8.40230 19.4050i −0.279611 0.645758i
\(904\) 0 0
\(905\) 2.85060 4.93738i 0.0947570 0.164124i
\(906\) 0 0
\(907\) 18.0671 10.4310i 0.599907 0.346357i −0.169098 0.985599i \(-0.554085\pi\)
0.769005 + 0.639243i \(0.220752\pi\)
\(908\) 0 0
\(909\) 16.3585 + 19.6370i 0.542576 + 0.651318i
\(910\) 0 0
\(911\) 39.2773 22.6768i 1.30132 0.751315i 0.320686 0.947185i \(-0.396086\pi\)
0.980630 + 0.195870i \(0.0627532\pi\)
\(912\) 0 0
\(913\) 3.20909 + 1.85277i 0.106205 + 0.0613178i
\(914\) 0 0
\(915\) 0.847841 1.00677i 0.0280288 0.0332827i
\(916\) 0 0
\(917\) 1.11779 + 18.1997i 0.0369126 + 0.601007i
\(918\) 0 0
\(919\) 41.0838i 1.35523i −0.735418 0.677614i \(-0.763014\pi\)
0.735418 0.677614i \(-0.236986\pi\)
\(920\) 0 0
\(921\) −17.4832 + 20.7605i −0.576092 + 0.684080i
\(922\) 0 0
\(923\) −24.0474 + 41.6514i −0.791531 + 1.37097i
\(924\) 0 0
\(925\) 9.08923 + 15.7430i 0.298852 + 0.517627i
\(926\) 0 0
\(927\) 30.9759 + 11.3995i 1.01738 + 0.374409i
\(928\) 0 0
\(929\) 47.4341 27.3861i 1.55626 0.898508i 0.558651 0.829403i \(-0.311319\pi\)
0.997609 0.0691051i \(-0.0220144\pi\)
\(930\) 0 0
\(931\) −11.9844 + 28.2734i −0.392772 + 0.926622i
\(932\) 0 0
\(933\) 13.4753 + 37.2294i 0.441162 + 1.21884i
\(934\) 0 0
\(935\) 0.696030i 0.0227626i
\(936\) 0 0
\(937\) 49.8542i 1.62867i 0.580398 + 0.814333i \(0.302897\pi\)
−0.580398 + 0.814333i \(0.697103\pi\)
\(938\) 0 0
\(939\) 5.92935 33.2801i 0.193497 1.08605i
\(940\) 0 0
\(941\) 40.4860 + 23.3746i 1.31981 + 0.761990i 0.983697 0.179833i \(-0.0575557\pi\)
0.336109 + 0.941823i \(0.390889\pi\)
\(942\) 0 0
\(943\) 12.9484 + 22.4274i 0.421659 + 0.730335i
\(944\) 0 0
\(945\) 3.73282 + 1.88491i 0.121429 + 0.0613161i
\(946\) 0 0
\(947\) −32.2031 + 18.5925i −1.04646 + 0.604174i −0.921656 0.388008i \(-0.873163\pi\)
−0.124803 + 0.992181i \(0.539830\pi\)
\(948\) 0 0
\(949\) −16.9317 + 29.3265i −0.549626 + 0.951979i
\(950\) 0 0
\(951\) 18.4018 + 3.27857i 0.596721 + 0.106315i
\(952\) 0 0
\(953\) −4.40328 −0.142636 −0.0713180 0.997454i \(-0.522721\pi\)
−0.0713180 + 0.997454i \(0.522721\pi\)
\(954\) 0 0
\(955\) 3.68132 0.119125
\(956\) 0 0
\(957\) −8.00800 + 2.89852i −0.258862 + 0.0936959i
\(958\) 0 0
\(959\) 17.5618 + 8.75039i 0.567099 + 0.282565i
\(960\) 0 0
\(961\) 8.73168 + 15.1237i 0.281667 + 0.487862i
\(962\) 0 0
\(963\) −37.9311 + 6.54895i −1.22231 + 0.211037i
\(964\) 0 0
\(965\) 1.98322 1.14501i 0.0638422 0.0368593i
\(966\) 0 0
\(967\) 5.78787 + 3.34163i 0.186125 + 0.107460i 0.590167 0.807281i \(-0.299062\pi\)
−0.404042 + 0.914740i \(0.632395\pi\)
\(968\) 0 0
\(969\) 26.3365 + 22.1791i 0.846052 + 0.712495i
\(970\) 0 0
\(971\) −9.90431 −0.317844 −0.158922 0.987291i \(-0.550802\pi\)
−0.158922 + 0.987291i \(0.550802\pi\)
\(972\) 0 0
\(973\) −2.77620 45.2017i −0.0890007 1.44910i
\(974\) 0 0
\(975\) 30.8579 + 25.9867i 0.988245 + 0.832242i
\(976\) 0 0
\(977\) −5.26197 + 9.11399i −0.168345 + 0.291582i −0.937838 0.347073i \(-0.887176\pi\)
0.769493 + 0.638655i \(0.220509\pi\)
\(978\) 0 0
\(979\) 2.99755 + 5.19191i 0.0958021 + 0.165934i
\(980\) 0 0
\(981\) −1.62087 9.38794i −0.0517503 0.299734i
\(982\) 0 0
\(983\) −16.3117 28.2526i −0.520261 0.901119i −0.999723 0.0235560i \(-0.992501\pi\)
0.479461 0.877563i \(-0.340832\pi\)
\(984\) 0 0
\(985\) −5.32191 3.07260i −0.169570 0.0979013i
\(986\) 0 0
\(987\) −27.1683 + 11.7638i −0.864776 + 0.374445i
\(988\) 0 0
\(989\) −14.7502 −0.469028
\(990\) 0 0
\(991\) 51.9373i 1.64984i 0.565248 + 0.824921i \(0.308780\pi\)
−0.565248 + 0.824921i \(0.691220\pi\)
\(992\) 0 0
\(993\) −2.39554 + 13.4456i −0.0760200 + 0.426683i
\(994\) 0 0
\(995\) 6.01628 + 3.47350i 0.190729 + 0.110117i
\(996\) 0 0
\(997\) −23.7739 + 13.7259i −0.752927 + 0.434703i −0.826751 0.562568i \(-0.809813\pi\)
0.0738233 + 0.997271i \(0.476480\pi\)
\(998\) 0 0
\(999\) −16.6174 9.71288i −0.525751 0.307302i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cx.i.895.5 yes 24
3.2 odd 2 3024.2.cx.i.2575.7 24
4.3 odd 2 1008.2.cx.j.895.8 yes 24
7.6 odd 2 inner 1008.2.cx.i.895.8 yes 24
9.2 odd 6 3024.2.cx.j.559.6 24
9.7 even 3 1008.2.cx.j.223.5 yes 24
12.11 even 2 3024.2.cx.j.2575.7 24
21.20 even 2 3024.2.cx.i.2575.6 24
28.27 even 2 1008.2.cx.j.895.5 yes 24
36.7 odd 6 inner 1008.2.cx.i.223.8 yes 24
36.11 even 6 3024.2.cx.i.559.6 24
63.20 even 6 3024.2.cx.j.559.7 24
63.34 odd 6 1008.2.cx.j.223.8 yes 24
84.83 odd 2 3024.2.cx.j.2575.6 24
252.83 odd 6 3024.2.cx.i.559.7 24
252.223 even 6 inner 1008.2.cx.i.223.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cx.i.223.5 24 252.223 even 6 inner
1008.2.cx.i.223.8 yes 24 36.7 odd 6 inner
1008.2.cx.i.895.5 yes 24 1.1 even 1 trivial
1008.2.cx.i.895.8 yes 24 7.6 odd 2 inner
1008.2.cx.j.223.5 yes 24 9.7 even 3
1008.2.cx.j.223.8 yes 24 63.34 odd 6
1008.2.cx.j.895.5 yes 24 28.27 even 2
1008.2.cx.j.895.8 yes 24 4.3 odd 2
3024.2.cx.i.559.6 24 36.11 even 6
3024.2.cx.i.559.7 24 252.83 odd 6
3024.2.cx.i.2575.6 24 21.20 even 2
3024.2.cx.i.2575.7 24 3.2 odd 2
3024.2.cx.j.559.6 24 9.2 odd 6
3024.2.cx.j.559.7 24 63.20 even 6
3024.2.cx.j.2575.6 24 84.83 odd 2
3024.2.cx.j.2575.7 24 12.11 even 2