Properties

Label 1008.2.cx.a.223.1
Level $1008$
Weight $2$
Character 1008.223
Analytic conductor $8.049$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(223,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-3,0,-1,0,-6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 223.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.223
Dual form 1008.2.cx.a.895.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +(-1.50000 + 0.866025i) q^{5} +(-0.500000 - 2.59808i) q^{7} -3.00000 q^{9} +(-3.00000 - 1.73205i) q^{11} +(1.50000 + 2.59808i) q^{15} +3.46410i q^{17} +5.00000 q^{19} +(-4.50000 + 0.866025i) q^{21} +(-4.50000 + 2.59808i) q^{23} +(-1.00000 + 1.73205i) q^{25} +5.19615i q^{27} +(1.00000 + 1.73205i) q^{31} +(-3.00000 + 5.19615i) q^{33} +(3.00000 + 3.46410i) q^{35} -8.00000 q^{37} +(3.00000 + 1.73205i) q^{43} +(4.50000 - 2.59808i) q^{45} +(-3.00000 + 5.19615i) q^{47} +(-6.50000 + 2.59808i) q^{49} +6.00000 q^{51} -6.00000 q^{53} +6.00000 q^{55} -8.66025i q^{57} +(-6.00000 - 10.3923i) q^{59} +(-1.50000 - 0.866025i) q^{61} +(1.50000 + 7.79423i) q^{63} +(6.00000 - 3.46410i) q^{67} +(4.50000 + 7.79423i) q^{69} +12.1244i q^{71} -6.92820i q^{73} +(3.00000 + 1.73205i) q^{75} +(-3.00000 + 8.66025i) q^{77} +(-13.5000 - 7.79423i) q^{79} +9.00000 q^{81} +(-3.00000 - 5.19615i) q^{85} +13.8564i q^{89} +(3.00000 - 1.73205i) q^{93} +(-7.50000 + 4.33013i) q^{95} +(9.00000 + 5.19615i) q^{97} +(9.00000 + 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} - q^{7} - 6 q^{9} - 6 q^{11} + 3 q^{15} + 10 q^{19} - 9 q^{21} - 9 q^{23} - 2 q^{25} + 2 q^{31} - 6 q^{33} + 6 q^{35} - 16 q^{37} + 6 q^{43} + 9 q^{45} - 6 q^{47} - 13 q^{49} + 12 q^{51}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 1.00000i
\(4\) 0 0
\(5\) −1.50000 + 0.866025i −0.670820 + 0.387298i −0.796387 0.604787i \(-0.793258\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 0 0
\(7\) −0.500000 2.59808i −0.188982 0.981981i
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) −3.00000 1.73205i −0.904534 0.522233i −0.0258656 0.999665i \(-0.508234\pi\)
−0.878668 + 0.477432i \(0.841568\pi\)
\(12\) 0 0
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 0 0
\(15\) 1.50000 + 2.59808i 0.387298 + 0.670820i
\(16\) 0 0
\(17\) 3.46410i 0.840168i 0.907485 + 0.420084i \(0.137999\pi\)
−0.907485 + 0.420084i \(0.862001\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0 0
\(21\) −4.50000 + 0.866025i −0.981981 + 0.188982i
\(22\) 0 0
\(23\) −4.50000 + 2.59808i −0.938315 + 0.541736i −0.889432 0.457068i \(-0.848900\pi\)
−0.0488832 + 0.998805i \(0.515566\pi\)
\(24\) 0 0
\(25\) −1.00000 + 1.73205i −0.200000 + 0.346410i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) 0 0
\(33\) −3.00000 + 5.19615i −0.522233 + 0.904534i
\(34\) 0 0
\(35\) 3.00000 + 3.46410i 0.507093 + 0.585540i
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) 0 0
\(43\) 3.00000 + 1.73205i 0.457496 + 0.264135i 0.710991 0.703201i \(-0.248247\pi\)
−0.253495 + 0.967337i \(0.581580\pi\)
\(44\) 0 0
\(45\) 4.50000 2.59808i 0.670820 0.387298i
\(46\) 0 0
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 8.66025i 1.14708i
\(58\) 0 0
\(59\) −6.00000 10.3923i −0.781133 1.35296i −0.931282 0.364299i \(-0.881308\pi\)
0.150148 0.988663i \(-0.452025\pi\)
\(60\) 0 0
\(61\) −1.50000 0.866025i −0.192055 0.110883i 0.400889 0.916127i \(-0.368701\pi\)
−0.592944 + 0.805243i \(0.702035\pi\)
\(62\) 0 0
\(63\) 1.50000 + 7.79423i 0.188982 + 0.981981i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.00000 3.46410i 0.733017 0.423207i −0.0865081 0.996251i \(-0.527571\pi\)
0.819525 + 0.573044i \(0.194238\pi\)
\(68\) 0 0
\(69\) 4.50000 + 7.79423i 0.541736 + 0.938315i
\(70\) 0 0
\(71\) 12.1244i 1.43890i 0.694546 + 0.719448i \(0.255605\pi\)
−0.694546 + 0.719448i \(0.744395\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i −0.914121 0.405442i \(-0.867117\pi\)
0.914121 0.405442i \(-0.132883\pi\)
\(74\) 0 0
\(75\) 3.00000 + 1.73205i 0.346410 + 0.200000i
\(76\) 0 0
\(77\) −3.00000 + 8.66025i −0.341882 + 0.986928i
\(78\) 0 0
\(79\) −13.5000 7.79423i −1.51887 0.876919i −0.999753 0.0222151i \(-0.992928\pi\)
−0.519115 0.854704i \(-0.673739\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) −3.00000 5.19615i −0.325396 0.563602i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.8564i 1.46878i 0.678730 + 0.734388i \(0.262531\pi\)
−0.678730 + 0.734388i \(0.737469\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.00000 1.73205i 0.311086 0.179605i
\(94\) 0 0
\(95\) −7.50000 + 4.33013i −0.769484 + 0.444262i
\(96\) 0 0
\(97\) 9.00000 + 5.19615i 0.913812 + 0.527589i 0.881656 0.471894i \(-0.156429\pi\)
0.0321560 + 0.999483i \(0.489763\pi\)
\(98\) 0 0
\(99\) 9.00000 + 5.19615i 0.904534 + 0.522233i
\(100\) 0 0
\(101\) −1.50000 0.866025i −0.149256 0.0861727i 0.423512 0.905890i \(-0.360797\pi\)
−0.572768 + 0.819718i \(0.694130\pi\)
\(102\) 0 0
\(103\) 7.00000 + 12.1244i 0.689730 + 1.19465i 0.971925 + 0.235291i \(0.0756043\pi\)
−0.282194 + 0.959357i \(0.591062\pi\)
\(104\) 0 0
\(105\) 6.00000 5.19615i 0.585540 0.507093i
\(106\) 0 0
\(107\) 6.92820i 0.669775i −0.942258 0.334887i \(-0.891302\pi\)
0.942258 0.334887i \(-0.108698\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 13.8564i 1.31519i
\(112\) 0 0
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) 0 0
\(115\) 4.50000 7.79423i 0.419627 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.00000 1.73205i 0.825029 0.158777i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 8.66025i 0.768473i −0.923235 0.384237i \(-0.874465\pi\)
0.923235 0.384237i \(-0.125535\pi\)
\(128\) 0 0
\(129\) 3.00000 5.19615i 0.264135 0.457496i
\(130\) 0 0
\(131\) −7.50000 12.9904i −0.655278 1.13497i −0.981824 0.189794i \(-0.939218\pi\)
0.326546 0.945181i \(-0.394115\pi\)
\(132\) 0 0
\(133\) −2.50000 12.9904i −0.216777 1.12641i
\(134\) 0 0
\(135\) −4.50000 7.79423i −0.387298 0.670820i
\(136\) 0 0
\(137\) 3.00000 5.19615i 0.256307 0.443937i −0.708942 0.705266i \(-0.750827\pi\)
0.965250 + 0.261329i \(0.0841608\pi\)
\(138\) 0 0
\(139\) −6.50000 11.2583i −0.551323 0.954919i −0.998179 0.0603135i \(-0.980790\pi\)
0.446857 0.894606i \(-0.352543\pi\)
\(140\) 0 0
\(141\) 9.00000 + 5.19615i 0.757937 + 0.437595i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.50000 + 11.2583i 0.371154 + 0.928571i
\(148\) 0 0
\(149\) 12.0000 + 20.7846i 0.983078 + 1.70274i 0.650183 + 0.759778i \(0.274692\pi\)
0.332896 + 0.942964i \(0.391974\pi\)
\(150\) 0 0
\(151\) −7.50000 4.33013i −0.610341 0.352381i 0.162758 0.986666i \(-0.447961\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) 0 0
\(153\) 10.3923i 0.840168i
\(154\) 0 0
\(155\) −3.00000 1.73205i −0.240966 0.139122i
\(156\) 0 0
\(157\) 7.50000 4.33013i 0.598565 0.345582i −0.169912 0.985459i \(-0.554348\pi\)
0.768477 + 0.639878i \(0.221015\pi\)
\(158\) 0 0
\(159\) 10.3923i 0.824163i
\(160\) 0 0
\(161\) 9.00000 + 10.3923i 0.709299 + 0.819028i
\(162\) 0 0
\(163\) 24.2487i 1.89931i −0.313304 0.949653i \(-0.601436\pi\)
0.313304 0.949653i \(-0.398564\pi\)
\(164\) 0 0
\(165\) 10.3923i 0.809040i
\(166\) 0 0
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 0 0
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) −15.0000 −1.14708
\(172\) 0 0
\(173\) −18.0000 10.3923i −1.36851 0.790112i −0.377776 0.925897i \(-0.623311\pi\)
−0.990738 + 0.135785i \(0.956644\pi\)
\(174\) 0 0
\(175\) 5.00000 + 1.73205i 0.377964 + 0.130931i
\(176\) 0 0
\(177\) −18.0000 + 10.3923i −1.35296 + 0.781133i
\(178\) 0 0
\(179\) 17.3205i 1.29460i 0.762237 + 0.647298i \(0.224101\pi\)
−0.762237 + 0.647298i \(0.775899\pi\)
\(180\) 0 0
\(181\) 12.1244i 0.901196i −0.892727 0.450598i \(-0.851211\pi\)
0.892727 0.450598i \(-0.148789\pi\)
\(182\) 0 0
\(183\) −1.50000 + 2.59808i −0.110883 + 0.192055i
\(184\) 0 0
\(185\) 12.0000 6.92820i 0.882258 0.509372i
\(186\) 0 0
\(187\) 6.00000 10.3923i 0.438763 0.759961i
\(188\) 0 0
\(189\) 13.5000 2.59808i 0.981981 0.188982i
\(190\) 0 0
\(191\) −19.5000 11.2583i −1.41097 0.814624i −0.415491 0.909597i \(-0.636390\pi\)
−0.995480 + 0.0949733i \(0.969723\pi\)
\(192\) 0 0
\(193\) 11.5000 + 19.9186i 0.827788 + 1.43377i 0.899770 + 0.436365i \(0.143734\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) −6.00000 10.3923i −0.423207 0.733017i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 13.5000 7.79423i 0.938315 0.541736i
\(208\) 0 0
\(209\) −15.0000 8.66025i −1.03757 0.599042i
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 21.0000 1.43890
\(214\) 0 0
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) 4.00000 3.46410i 0.271538 0.235159i
\(218\) 0 0
\(219\) −12.0000 −0.810885
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 5.00000 8.66025i 0.334825 0.579934i −0.648626 0.761107i \(-0.724656\pi\)
0.983451 + 0.181173i \(0.0579895\pi\)
\(224\) 0 0
\(225\) 3.00000 5.19615i 0.200000 0.346410i
\(226\) 0 0
\(227\) 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i \(-0.801590\pi\)
0.911502 + 0.411296i \(0.134924\pi\)
\(228\) 0 0
\(229\) 7.50000 4.33013i 0.495614 0.286143i −0.231287 0.972886i \(-0.574293\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 15.0000 + 5.19615i 0.986928 + 0.341882i
\(232\) 0 0
\(233\) −15.0000 −0.982683 −0.491341 0.870967i \(-0.663493\pi\)
−0.491341 + 0.870967i \(0.663493\pi\)
\(234\) 0 0
\(235\) 10.3923i 0.677919i
\(236\) 0 0
\(237\) −13.5000 + 23.3827i −0.876919 + 1.51887i
\(238\) 0 0
\(239\) −1.50000 + 0.866025i −0.0970269 + 0.0560185i −0.547728 0.836656i \(-0.684507\pi\)
0.450701 + 0.892675i \(0.351174\pi\)
\(240\) 0 0
\(241\) −24.0000 13.8564i −1.54598 0.892570i −0.998443 0.0557856i \(-0.982234\pi\)
−0.547533 0.836784i \(-0.684433\pi\)
\(242\) 0 0
\(243\) 15.5885i 1.00000i
\(244\) 0 0
\(245\) 7.50000 9.52628i 0.479157 0.608612i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) −9.00000 + 5.19615i −0.563602 + 0.325396i
\(256\) 0 0
\(257\) 18.0000 10.3923i 1.12281 0.648254i 0.180693 0.983540i \(-0.442166\pi\)
0.942117 + 0.335285i \(0.108833\pi\)
\(258\) 0 0
\(259\) 4.00000 + 20.7846i 0.248548 + 1.29149i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.5000 9.52628i −1.01743 0.587416i −0.104074 0.994570i \(-0.533188\pi\)
−0.913360 + 0.407154i \(0.866521\pi\)
\(264\) 0 0
\(265\) 9.00000 5.19615i 0.552866 0.319197i
\(266\) 0 0
\(267\) 24.0000 1.46878
\(268\) 0 0
\(269\) 25.9808i 1.58408i 0.610472 + 0.792038i \(0.290980\pi\)
−0.610472 + 0.792038i \(0.709020\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 3.46410i 0.361814 0.208893i
\(276\) 0 0
\(277\) −5.00000 + 8.66025i −0.300421 + 0.520344i −0.976231 0.216731i \(-0.930460\pi\)
0.675810 + 0.737075i \(0.263794\pi\)
\(278\) 0 0
\(279\) −3.00000 5.19615i −0.179605 0.311086i
\(280\) 0 0
\(281\) 13.5000 23.3827i 0.805342 1.39489i −0.110717 0.993852i \(-0.535315\pi\)
0.916060 0.401042i \(-0.131352\pi\)
\(282\) 0 0
\(283\) 6.50000 + 11.2583i 0.386385 + 0.669238i 0.991960 0.126550i \(-0.0403903\pi\)
−0.605575 + 0.795788i \(0.707057\pi\)
\(284\) 0 0
\(285\) 7.50000 + 12.9904i 0.444262 + 0.769484i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.00000 0.294118
\(290\) 0 0
\(291\) 9.00000 15.5885i 0.527589 0.913812i
\(292\) 0 0
\(293\) 13.5000 7.79423i 0.788678 0.455344i −0.0508187 0.998708i \(-0.516183\pi\)
0.839497 + 0.543364i \(0.182850\pi\)
\(294\) 0 0
\(295\) 18.0000 + 10.3923i 1.04800 + 0.605063i
\(296\) 0 0
\(297\) 9.00000 15.5885i 0.522233 0.904534i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3.00000 8.66025i 0.172917 0.499169i
\(302\) 0 0
\(303\) −1.50000 + 2.59808i −0.0861727 + 0.149256i
\(304\) 0 0
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) 23.0000 1.31268 0.656340 0.754466i \(-0.272104\pi\)
0.656340 + 0.754466i \(0.272104\pi\)
\(308\) 0 0
\(309\) 21.0000 12.1244i 1.19465 0.689730i
\(310\) 0 0
\(311\) 9.00000 + 15.5885i 0.510343 + 0.883940i 0.999928 + 0.0119847i \(0.00381495\pi\)
−0.489585 + 0.871956i \(0.662852\pi\)
\(312\) 0 0
\(313\) 3.00000 + 1.73205i 0.169570 + 0.0979013i 0.582383 0.812914i \(-0.302120\pi\)
−0.412813 + 0.910816i \(0.635454\pi\)
\(314\) 0 0
\(315\) −9.00000 10.3923i −0.507093 0.585540i
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 17.3205i 0.963739i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 27.7128i 1.53252i
\(328\) 0 0
\(329\) 15.0000 + 5.19615i 0.826977 + 0.286473i
\(330\) 0 0
\(331\) −18.0000 10.3923i −0.989369 0.571213i −0.0842837 0.996442i \(-0.526860\pi\)
−0.905086 + 0.425229i \(0.860194\pi\)
\(332\) 0 0
\(333\) 24.0000 1.31519
\(334\) 0 0
\(335\) −6.00000 + 10.3923i −0.327815 + 0.567792i
\(336\) 0 0
\(337\) −7.00000 12.1244i −0.381314 0.660456i 0.609936 0.792451i \(-0.291195\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) 0 0
\(339\) 4.50000 2.59808i 0.244406 0.141108i
\(340\) 0 0
\(341\) 6.92820i 0.375183i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 0 0
\(345\) −13.5000 7.79423i −0.726816 0.419627i
\(346\) 0 0
\(347\) 15.0000 8.66025i 0.805242 0.464907i −0.0400587 0.999197i \(-0.512754\pi\)
0.845301 + 0.534291i \(0.179421\pi\)
\(348\) 0 0
\(349\) 24.0000 + 13.8564i 1.28469 + 0.741716i 0.977702 0.209997i \(-0.0673454\pi\)
0.306988 + 0.951713i \(0.400679\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.00000 + 1.73205i 0.159674 + 0.0921878i 0.577708 0.816244i \(-0.303947\pi\)
−0.418034 + 0.908431i \(0.637281\pi\)
\(354\) 0 0
\(355\) −10.5000 18.1865i −0.557282 0.965241i
\(356\) 0 0
\(357\) −3.00000 15.5885i −0.158777 0.825029i
\(358\) 0 0
\(359\) 19.0526i 1.00556i −0.864416 0.502778i \(-0.832311\pi\)
0.864416 0.502778i \(-0.167689\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 1.50000 0.866025i 0.0787296 0.0454545i
\(364\) 0 0
\(365\) 6.00000 + 10.3923i 0.314054 + 0.543958i
\(366\) 0 0
\(367\) −13.0000 + 22.5167i −0.678594 + 1.17536i 0.296810 + 0.954937i \(0.404077\pi\)
−0.975404 + 0.220423i \(0.929256\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.00000 + 15.5885i 0.155752 + 0.809312i
\(372\) 0 0
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) 0 0
\(375\) −21.0000 −1.08444
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 27.7128i 1.42351i 0.702427 + 0.711756i \(0.252100\pi\)
−0.702427 + 0.711756i \(0.747900\pi\)
\(380\) 0 0
\(381\) −15.0000 −0.768473
\(382\) 0 0
\(383\) 3.00000 + 5.19615i 0.153293 + 0.265511i 0.932436 0.361335i \(-0.117679\pi\)
−0.779143 + 0.626846i \(0.784346\pi\)
\(384\) 0 0
\(385\) −3.00000 15.5885i −0.152894 0.794461i
\(386\) 0 0
\(387\) −9.00000 5.19615i −0.457496 0.264135i
\(388\) 0 0
\(389\) −6.00000 + 10.3923i −0.304212 + 0.526911i −0.977086 0.212847i \(-0.931726\pi\)
0.672874 + 0.739758i \(0.265060\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) 0 0
\(393\) −22.5000 + 12.9904i −1.13497 + 0.655278i
\(394\) 0 0
\(395\) 27.0000 1.35852
\(396\) 0 0
\(397\) 6.92820i 0.347717i 0.984771 + 0.173858i \(0.0556235\pi\)
−0.984771 + 0.173858i \(0.944377\pi\)
\(398\) 0 0
\(399\) −22.5000 + 4.33013i −1.12641 + 0.216777i
\(400\) 0 0
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −13.5000 + 7.79423i −0.670820 + 0.387298i
\(406\) 0 0
\(407\) 24.0000 + 13.8564i 1.18964 + 0.686837i
\(408\) 0 0
\(409\) −30.0000 + 17.3205i −1.48340 + 0.856444i −0.999822 0.0188549i \(-0.993998\pi\)
−0.483582 + 0.875299i \(0.660665\pi\)
\(410\) 0 0
\(411\) −9.00000 5.19615i −0.443937 0.256307i
\(412\) 0 0
\(413\) −24.0000 + 20.7846i −1.18096 + 1.02274i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −19.5000 + 11.2583i −0.954919 + 0.551323i
\(418\) 0 0
\(419\) −4.50000 7.79423i −0.219839 0.380773i 0.734919 0.678155i \(-0.237220\pi\)
−0.954759 + 0.297382i \(0.903887\pi\)
\(420\) 0 0
\(421\) 4.00000 6.92820i 0.194948 0.337660i −0.751935 0.659237i \(-0.770879\pi\)
0.946883 + 0.321577i \(0.104213\pi\)
\(422\) 0 0
\(423\) 9.00000 15.5885i 0.437595 0.757937i
\(424\) 0 0
\(425\) −6.00000 3.46410i −0.291043 0.168034i
\(426\) 0 0
\(427\) −1.50000 + 4.33013i −0.0725901 + 0.209550i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.46410i 0.166860i 0.996514 + 0.0834300i \(0.0265875\pi\)
−0.996514 + 0.0834300i \(0.973413\pi\)
\(432\) 0 0
\(433\) 34.6410i 1.66474i 0.554220 + 0.832370i \(0.313017\pi\)
−0.554220 + 0.832370i \(0.686983\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −22.5000 + 12.9904i −1.07632 + 0.621414i
\(438\) 0 0
\(439\) 8.00000 13.8564i 0.381819 0.661330i −0.609503 0.792784i \(-0.708631\pi\)
0.991322 + 0.131453i \(0.0419644\pi\)
\(440\) 0 0
\(441\) 19.5000 7.79423i 0.928571 0.371154i
\(442\) 0 0
\(443\) −6.00000 3.46410i −0.285069 0.164584i 0.350647 0.936508i \(-0.385962\pi\)
−0.635716 + 0.771923i \(0.719295\pi\)
\(444\) 0 0
\(445\) −12.0000 20.7846i −0.568855 0.985285i
\(446\) 0 0
\(447\) 36.0000 20.7846i 1.70274 0.983078i
\(448\) 0 0
\(449\) −21.0000 −0.991051 −0.495526 0.868593i \(-0.665025\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −7.50000 + 12.9904i −0.352381 + 0.610341i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.5000 + 19.9186i −0.537947 + 0.931752i 0.461067 + 0.887365i \(0.347467\pi\)
−0.999014 + 0.0443868i \(0.985867\pi\)
\(458\) 0 0
\(459\) −18.0000 −0.840168
\(460\) 0 0
\(461\) −34.5000 19.9186i −1.60683 0.927701i −0.990075 0.140542i \(-0.955115\pi\)
−0.616751 0.787159i \(-0.711551\pi\)
\(462\) 0 0
\(463\) −4.50000 + 2.59808i −0.209133 + 0.120743i −0.600908 0.799318i \(-0.705194\pi\)
0.391776 + 0.920061i \(0.371861\pi\)
\(464\) 0 0
\(465\) −3.00000 + 5.19615i −0.139122 + 0.240966i
\(466\) 0 0
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) −12.0000 13.8564i −0.554109 0.639829i
\(470\) 0 0
\(471\) −7.50000 12.9904i −0.345582 0.598565i
\(472\) 0 0
\(473\) −6.00000 10.3923i −0.275880 0.477839i
\(474\) 0 0
\(475\) −5.00000 + 8.66025i −0.229416 + 0.397360i
\(476\) 0 0
\(477\) 18.0000 0.824163
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 18.0000 15.5885i 0.819028 0.709299i
\(484\) 0 0
\(485\) −18.0000 −0.817338
\(486\) 0 0
\(487\) 15.5885i 0.706380i 0.935552 + 0.353190i \(0.114903\pi\)
−0.935552 + 0.353190i \(0.885097\pi\)
\(488\) 0 0
\(489\) −42.0000 −1.89931
\(490\) 0 0
\(491\) 18.0000 10.3923i 0.812329 0.468998i −0.0354353 0.999372i \(-0.511282\pi\)
0.847764 + 0.530374i \(0.177948\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −18.0000 −0.809040
\(496\) 0 0
\(497\) 31.5000 6.06218i 1.41297 0.271926i
\(498\) 0 0
\(499\) −18.0000 + 10.3923i −0.805791 + 0.465223i −0.845492 0.533988i \(-0.820693\pi\)
0.0397013 + 0.999212i \(0.487359\pi\)
\(500\) 0 0
\(501\) −18.0000 + 10.3923i −0.804181 + 0.464294i
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) 0 0
\(507\) 19.5000 + 11.2583i 0.866025 + 0.500000i
\(508\) 0 0
\(509\) 12.0000 6.92820i 0.531891 0.307087i −0.209895 0.977724i \(-0.567312\pi\)
0.741786 + 0.670637i \(0.233979\pi\)
\(510\) 0 0
\(511\) −18.0000 + 3.46410i −0.796273 + 0.153243i
\(512\) 0 0
\(513\) 25.9808i 1.14708i
\(514\) 0 0
\(515\) −21.0000 12.1244i −0.925371 0.534263i
\(516\) 0 0
\(517\) 18.0000 10.3923i 0.791639 0.457053i
\(518\) 0 0
\(519\) −18.0000 + 31.1769i −0.790112 + 1.36851i
\(520\) 0 0
\(521\) 38.1051i 1.66942i 0.550693 + 0.834708i \(0.314363\pi\)
−0.550693 + 0.834708i \(0.685637\pi\)
\(522\) 0 0
\(523\) −35.0000 −1.53044 −0.765222 0.643767i \(-0.777371\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) 0 0
\(525\) 3.00000 8.66025i 0.130931 0.377964i
\(526\) 0 0
\(527\) −6.00000 + 3.46410i −0.261364 + 0.150899i
\(528\) 0 0
\(529\) 2.00000 3.46410i 0.0869565 0.150613i
\(530\) 0 0
\(531\) 18.0000 + 31.1769i 0.781133 + 1.35296i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 6.00000 + 10.3923i 0.259403 + 0.449299i
\(536\) 0 0
\(537\) 30.0000 1.29460
\(538\) 0 0
\(539\) 24.0000 + 3.46410i 1.03375 + 0.149209i
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) −21.0000 −0.901196
\(544\) 0 0
\(545\) 24.0000 13.8564i 1.02805 0.593543i
\(546\) 0 0
\(547\) 15.0000 + 8.66025i 0.641354 + 0.370286i 0.785136 0.619324i \(-0.212593\pi\)
−0.143782 + 0.989609i \(0.545926\pi\)
\(548\) 0 0
\(549\) 4.50000 + 2.59808i 0.192055 + 0.110883i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −13.5000 + 38.9711i −0.574078 + 1.65722i
\(554\) 0 0
\(555\) −12.0000 20.7846i −0.509372 0.882258i
\(556\) 0 0
\(557\) −30.0000 −1.27114 −0.635570 0.772043i \(-0.719235\pi\)
−0.635570 + 0.772043i \(0.719235\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −18.0000 10.3923i −0.759961 0.438763i
\(562\) 0 0
\(563\) −4.50000 7.79423i −0.189652 0.328488i 0.755482 0.655169i \(-0.227403\pi\)
−0.945134 + 0.326682i \(0.894069\pi\)
\(564\) 0 0
\(565\) −4.50000 2.59808i −0.189316 0.109302i
\(566\) 0 0
\(567\) −4.50000 23.3827i −0.188982 0.981981i
\(568\) 0 0
\(569\) 21.0000 36.3731i 0.880366 1.52484i 0.0294311 0.999567i \(-0.490630\pi\)
0.850935 0.525271i \(-0.176036\pi\)
\(570\) 0 0
\(571\) −6.00000 + 3.46410i −0.251092 + 0.144968i −0.620264 0.784393i \(-0.712975\pi\)
0.369172 + 0.929361i \(0.379641\pi\)
\(572\) 0 0
\(573\) −19.5000 + 33.7750i −0.814624 + 1.41097i
\(574\) 0 0
\(575\) 10.3923i 0.433389i
\(576\) 0 0
\(577\) 27.7128i 1.15370i 0.816850 + 0.576850i \(0.195718\pi\)
−0.816850 + 0.576850i \(0.804282\pi\)
\(578\) 0 0
\(579\) 34.5000 19.9186i 1.43377 0.827788i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 18.0000 + 10.3923i 0.745484 + 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.5000 + 38.9711i −0.928674 + 1.60851i −0.143132 + 0.989704i \(0.545717\pi\)
−0.785543 + 0.618808i \(0.787616\pi\)
\(588\) 0 0
\(589\) 5.00000 + 8.66025i 0.206021 + 0.356840i
\(590\) 0 0
\(591\) 10.3923i 0.427482i
\(592\) 0 0
\(593\) 24.2487i 0.995775i −0.867242 0.497888i \(-0.834109\pi\)
0.867242 0.497888i \(-0.165891\pi\)
\(594\) 0 0
\(595\) −12.0000 + 10.3923i −0.491952 + 0.426043i
\(596\) 0 0
\(597\) 6.92820i 0.283552i
\(598\) 0 0
\(599\) 39.0000 22.5167i 1.59350 0.920006i 0.600796 0.799402i \(-0.294850\pi\)
0.992701 0.120603i \(-0.0384829\pi\)
\(600\) 0 0
\(601\) 33.0000 + 19.0526i 1.34610 + 0.777170i 0.987694 0.156397i \(-0.0499878\pi\)
0.358404 + 0.933567i \(0.383321\pi\)
\(602\) 0 0
\(603\) −18.0000 + 10.3923i −0.733017 + 0.423207i
\(604\) 0 0
\(605\) −1.50000 0.866025i −0.0609837 0.0352089i
\(606\) 0 0
\(607\) 2.00000 + 3.46410i 0.0811775 + 0.140604i 0.903756 0.428048i \(-0.140799\pi\)
−0.822578 + 0.568652i \(0.807465\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.0000 25.9808i −0.603877 1.04595i −0.992228 0.124434i \(-0.960288\pi\)
0.388351 0.921512i \(-0.373045\pi\)
\(618\) 0 0
\(619\) −9.50000 + 16.4545i −0.381837 + 0.661361i −0.991325 0.131434i \(-0.958042\pi\)
0.609488 + 0.792796i \(0.291375\pi\)
\(620\) 0 0
\(621\) −13.5000 23.3827i −0.541736 0.938315i
\(622\) 0 0
\(623\) 36.0000 6.92820i 1.44231 0.277573i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0 0
\(627\) −15.0000 + 25.9808i −0.599042 + 1.03757i
\(628\) 0 0
\(629\) 27.7128i 1.10498i
\(630\) 0 0
\(631\) 1.73205i 0.0689519i −0.999406 0.0344759i \(-0.989024\pi\)
0.999406 0.0344759i \(-0.0109762\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.50000 + 12.9904i 0.297628 + 0.515508i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 36.3731i 1.43890i
\(640\) 0 0
\(641\) 7.50000 12.9904i 0.296232 0.513089i −0.679039 0.734103i \(-0.737603\pi\)
0.975271 + 0.221013i \(0.0709364\pi\)
\(642\) 0 0
\(643\) 2.00000 + 3.46410i 0.0788723 + 0.136611i 0.902764 0.430137i \(-0.141535\pi\)
−0.823891 + 0.566748i \(0.808201\pi\)
\(644\) 0 0
\(645\) 10.3923i 0.409197i
\(646\) 0 0
\(647\) 42.0000 1.65119 0.825595 0.564263i \(-0.190840\pi\)
0.825595 + 0.564263i \(0.190840\pi\)
\(648\) 0 0
\(649\) 41.5692i 1.63173i
\(650\) 0 0
\(651\) −6.00000 6.92820i −0.235159 0.271538i
\(652\) 0 0
\(653\) −9.00000 15.5885i −0.352197 0.610023i 0.634437 0.772975i \(-0.281232\pi\)
−0.986634 + 0.162951i \(0.947899\pi\)
\(654\) 0 0
\(655\) 22.5000 + 12.9904i 0.879148 + 0.507576i
\(656\) 0 0
\(657\) 20.7846i 0.810885i
\(658\) 0 0
\(659\) −18.0000 10.3923i −0.701180 0.404827i 0.106606 0.994301i \(-0.466001\pi\)
−0.807787 + 0.589475i \(0.799335\pi\)
\(660\) 0 0
\(661\) −28.5000 + 16.4545i −1.10852 + 0.640005i −0.938446 0.345426i \(-0.887734\pi\)
−0.170075 + 0.985431i \(0.554401\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.0000 + 17.3205i 0.581675 + 0.671660i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −15.0000 8.66025i −0.579934 0.334825i
\(670\) 0 0
\(671\) 3.00000 + 5.19615i 0.115814 + 0.200595i
\(672\) 0 0
\(673\) 14.5000 25.1147i 0.558934 0.968102i −0.438652 0.898657i \(-0.644544\pi\)
0.997586 0.0694449i \(-0.0221228\pi\)
\(674\) 0 0
\(675\) −9.00000 5.19615i −0.346410 0.200000i
\(676\) 0 0
\(677\) 12.0000 + 6.92820i 0.461197 + 0.266272i 0.712548 0.701624i \(-0.247541\pi\)
−0.251350 + 0.967896i \(0.580875\pi\)
\(678\) 0 0
\(679\) 9.00000 25.9808i 0.345388 0.997050i
\(680\) 0 0
\(681\) −4.50000 2.59808i −0.172440 0.0995585i
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 10.3923i 0.397070i
\(686\) 0 0
\(687\) −7.50000 12.9904i −0.286143 0.495614i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2.50000 4.33013i 0.0951045 0.164726i −0.814548 0.580097i \(-0.803015\pi\)
0.909652 + 0.415371i \(0.136348\pi\)
\(692\) 0 0
\(693\) 9.00000 25.9808i 0.341882 0.986928i
\(694\) 0 0
\(695\) 19.5000 + 11.2583i 0.739677 + 0.427053i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 25.9808i 0.982683i
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) −40.0000 −1.50863
\(704\) 0 0
\(705\) −18.0000 −0.677919
\(706\) 0 0
\(707\) −1.50000 + 4.33013i −0.0564133 + 0.162851i
\(708\) 0 0
\(709\) −10.0000 + 17.3205i −0.375558 + 0.650485i −0.990410 0.138157i \(-0.955882\pi\)
0.614852 + 0.788642i \(0.289216\pi\)
\(710\) 0 0
\(711\) 40.5000 + 23.3827i 1.51887 + 0.876919i
\(712\) 0 0
\(713\) −9.00000 5.19615i −0.337053 0.194597i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.50000 + 2.59808i 0.0560185 + 0.0970269i
\(718\) 0 0
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 28.0000 24.2487i 1.04277 0.903069i
\(722\) 0 0
\(723\) −24.0000 + 41.5692i −0.892570 + 1.54598i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10.0000 17.3205i 0.370879 0.642382i −0.618822 0.785532i \(-0.712390\pi\)
0.989701 + 0.143149i \(0.0457230\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −6.00000 + 10.3923i −0.221918 + 0.384373i
\(732\) 0 0
\(733\) 43.5000 25.1147i 1.60671 0.927634i 0.616609 0.787269i \(-0.288506\pi\)
0.990100 0.140365i \(-0.0448275\pi\)
\(734\) 0 0
\(735\) −16.5000 12.9904i −0.608612 0.479157i
\(736\) 0 0
\(737\) −24.0000 −0.884051
\(738\) 0 0
\(739\) 27.7128i 1.01943i 0.860343 + 0.509716i \(0.170250\pi\)
−0.860343 + 0.509716i \(0.829750\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.0000 12.1244i 0.770415 0.444799i −0.0626075 0.998038i \(-0.519942\pi\)
0.833023 + 0.553239i \(0.186608\pi\)
\(744\) 0 0
\(745\) −36.0000 20.7846i −1.31894 0.761489i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.0000 + 3.46410i −0.657706 + 0.126576i
\(750\) 0 0
\(751\) −7.50000 + 4.33013i −0.273679 + 0.158009i −0.630558 0.776142i \(-0.717174\pi\)
0.356879 + 0.934150i \(0.383841\pi\)
\(752\) 0 0
\(753\) 36.3731i 1.32551i
\(754\) 0 0
\(755\) 15.0000 0.545906
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 31.1769i 1.13165i
\(760\) 0 0
\(761\) −3.00000 + 1.73205i −0.108750 + 0.0627868i −0.553388 0.832923i \(-0.686665\pi\)
0.444639 + 0.895710i \(0.353332\pi\)
\(762\) 0 0
\(763\) 8.00000 + 41.5692i 0.289619 + 1.50491i
\(764\) 0 0
\(765\) 9.00000 + 15.5885i 0.325396 + 0.563602i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 18.0000 10.3923i 0.649097 0.374756i −0.139013 0.990290i \(-0.544393\pi\)
0.788110 + 0.615534i \(0.211060\pi\)
\(770\) 0 0
\(771\) −18.0000 31.1769i −0.648254 1.12281i
\(772\) 0 0
\(773\) 15.5885i 0.560678i 0.959901 + 0.280339i \(0.0904469\pi\)
−0.959901 + 0.280339i \(0.909553\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) 36.0000 6.92820i 1.29149 0.248548i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 21.0000 36.3731i 0.751439 1.30153i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.50000 + 12.9904i −0.267686 + 0.463647i
\(786\) 0 0
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 0 0
\(789\) −16.5000 + 28.5788i −0.587416 + 1.01743i
\(790\) 0 0
\(791\) 6.00000 5.19615i 0.213335 0.184754i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −9.00000 15.5885i −0.319197 0.552866i
\(796\) 0 0
\(797\) 22.5000 12.9904i 0.796991 0.460143i −0.0454270 0.998968i \(-0.514465\pi\)
0.842418 + 0.538825i \(0.181132\pi\)
\(798\) 0 0
\(799\) −18.0000 10.3923i −0.636794 0.367653i
\(800\) 0 0
\(801\) 41.5692i 1.46878i
\(802\) 0 0
\(803\) −12.0000 + 20.7846i −0.423471 + 0.733473i
\(804\) 0 0
\(805\) −22.5000 7.79423i −0.793021 0.274710i
\(806\) 0 0
\(807\) 45.0000 1.58408
\(808\) 0 0
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 13.8564i 0.485965i
\(814\) 0 0
\(815\) 21.0000 + 36.3731i 0.735598 + 1.27409i
\(816\) 0 0
\(817\) 15.0000 + 8.66025i 0.524784 + 0.302984i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.00000 15.5885i 0.314102 0.544041i −0.665144 0.746715i \(-0.731630\pi\)
0.979246 + 0.202674i \(0.0649632\pi\)
\(822\) 0 0
\(823\) −9.00000 + 5.19615i −0.313720 + 0.181126i −0.648590 0.761138i \(-0.724641\pi\)
0.334870 + 0.942264i \(0.391308\pi\)
\(824\) 0 0
\(825\) −6.00000 10.3923i −0.208893 0.361814i
\(826\) 0 0
\(827\) 3.46410i 0.120459i −0.998185 0.0602293i \(-0.980817\pi\)
0.998185 0.0602293i \(-0.0191832\pi\)
\(828\) 0 0
\(829\) 41.5692i 1.44376i −0.692019 0.721879i \(-0.743279\pi\)
0.692019 0.721879i \(-0.256721\pi\)
\(830\) 0 0
\(831\) 15.0000 + 8.66025i 0.520344 + 0.300421i
\(832\) 0 0
\(833\) −9.00000 22.5167i −0.311832 0.780156i
\(834\) 0 0
\(835\) 18.0000 + 10.3923i 0.622916 + 0.359641i
\(836\) 0 0
\(837\) −9.00000 + 5.19615i −0.311086 + 0.179605i
\(838\) 0 0
\(839\) −9.00000 + 15.5885i −0.310715 + 0.538173i −0.978517 0.206165i \(-0.933902\pi\)
0.667803 + 0.744338i \(0.267235\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) −40.5000 23.3827i −1.39489 0.805342i
\(844\) 0 0
\(845\) 22.5167i 0.774597i
\(846\) 0 0
\(847\) 2.00000 1.73205i 0.0687208 0.0595140i
\(848\) 0 0
\(849\) 19.5000 11.2583i 0.669238 0.386385i
\(850\) 0 0
\(851\) 36.0000 20.7846i 1.23406 0.712487i
\(852\) 0 0
\(853\) 46.5000 + 26.8468i 1.59213 + 0.919216i 0.992941 + 0.118609i \(0.0378434\pi\)
0.599189 + 0.800608i \(0.295490\pi\)
\(854\) 0 0
\(855\) 22.5000 12.9904i 0.769484 0.444262i
\(856\) 0 0
\(857\) 36.0000 + 20.7846i 1.22974 + 0.709989i 0.966975 0.254872i \(-0.0820333\pi\)
0.262762 + 0.964861i \(0.415367\pi\)
\(858\) 0 0
\(859\) 20.0000 + 34.6410i 0.682391 + 1.18194i 0.974249 + 0.225475i \(0.0723932\pi\)
−0.291858 + 0.956462i \(0.594273\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 46.7654i 1.59191i −0.605355 0.795956i \(-0.706969\pi\)
0.605355 0.795956i \(-0.293031\pi\)
\(864\) 0 0
\(865\) 36.0000 1.22404
\(866\) 0 0
\(867\) 8.66025i 0.294118i
\(868\) 0 0
\(869\) 27.0000 + 46.7654i 0.915912 + 1.58641i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −27.0000 15.5885i −0.913812 0.527589i
\(874\) 0 0
\(875\) −31.5000 + 6.06218i −1.06489 + 0.204939i
\(876\) 0 0
\(877\) 2.00000 + 3.46410i 0.0675352 + 0.116974i 0.897816 0.440371i \(-0.145153\pi\)
−0.830281 + 0.557346i \(0.811820\pi\)
\(878\) 0 0
\(879\) −13.5000 23.3827i −0.455344 0.788678i
\(880\) 0 0
\(881\) 55.4256i 1.86734i −0.358139 0.933668i \(-0.616589\pi\)
0.358139 0.933668i \(-0.383411\pi\)
\(882\) 0 0
\(883\) 10.3923i 0.349729i 0.984593 + 0.174864i \(0.0559487\pi\)
−0.984593 + 0.174864i \(0.944051\pi\)
\(884\) 0 0
\(885\) 18.0000 31.1769i 0.605063 1.04800i
\(886\) 0 0
\(887\) −12.0000 20.7846i −0.402921 0.697879i 0.591156 0.806557i \(-0.298672\pi\)
−0.994077 + 0.108678i \(0.965338\pi\)
\(888\) 0 0
\(889\) −22.5000 + 4.33013i −0.754626 + 0.145228i
\(890\) 0 0
\(891\) −27.0000 15.5885i −0.904534 0.522233i
\(892\) 0 0
\(893\) −15.0000 + 25.9808i −0.501956 + 0.869413i
\(894\) 0 0
\(895\) −15.0000 25.9808i −0.501395 0.868441i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 20.7846i 0.692436i
\(902\) 0 0
\(903\) −15.0000 5.19615i −0.499169 0.172917i
\(904\) 0 0
\(905\) 10.5000 + 18.1865i 0.349032 + 0.604541i
\(906\) 0 0
\(907\) −27.0000 15.5885i −0.896520 0.517606i −0.0204507 0.999791i \(-0.506510\pi\)
−0.876070 + 0.482185i \(0.839843\pi\)
\(908\) 0 0
\(909\) 4.50000 + 2.59808i 0.149256 + 0.0861727i
\(910\) 0 0
\(911\) −4.50000 2.59808i −0.149092 0.0860781i 0.423598 0.905850i \(-0.360767\pi\)
−0.572690 + 0.819772i \(0.694100\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 5.19615i 0.171780i
\(916\) 0 0
\(917\) −30.0000 + 25.9808i −0.990687 + 0.857960i
\(918\) 0 0
\(919\) 46.7654i 1.54265i 0.636443 + 0.771324i \(0.280405\pi\)
−0.636443 + 0.771324i \(0.719595\pi\)
\(920\) 0 0
\(921\) 39.8372i 1.31268i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.00000 13.8564i 0.263038 0.455596i
\(926\) 0 0
\(927\) −21.0000 36.3731i −0.689730 1.19465i
\(928\) 0 0
\(929\) 12.0000 + 6.92820i 0.393707 + 0.227307i 0.683765 0.729702i \(-0.260341\pi\)
−0.290058 + 0.957009i \(0.593675\pi\)
\(930\) 0 0
\(931\) −32.5000 + 12.9904i −1.06514 + 0.425743i
\(932\) 0 0
\(933\) 27.0000 15.5885i 0.883940 0.510343i
\(934\) 0 0
\(935\) 20.7846i 0.679729i
\(936\) 0 0
\(937\) 6.92820i 0.226335i −0.993576 0.113167i \(-0.963900\pi\)
0.993576 0.113167i \(-0.0360996\pi\)
\(938\) 0 0
\(939\) 3.00000 5.19615i 0.0979013 0.169570i
\(940\) 0 0
\(941\) 19.5000 11.2583i 0.635682 0.367011i −0.147267 0.989097i \(-0.547048\pi\)
0.782949 + 0.622086i \(0.213714\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −18.0000 + 15.5885i −0.585540 + 0.507093i
\(946\) 0 0
\(947\) 24.0000 + 13.8564i 0.779895 + 0.450273i 0.836393 0.548130i \(-0.184660\pi\)
−0.0564979 + 0.998403i \(0.517993\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 27.0000 + 15.5885i 0.875535 + 0.505490i
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 39.0000 1.26201
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15.0000 5.19615i −0.484375 0.167793i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 0 0
\(963\) 20.7846i 0.669775i
\(964\) 0 0
\(965\) −34.5000 19.9186i −1.11059 0.641202i
\(966\) 0 0
\(967\) 1.50000 0.866025i 0.0482367 0.0278495i −0.475688 0.879614i \(-0.657801\pi\)
0.523924 + 0.851765i \(0.324467\pi\)
\(968\) 0 0
\(969\) 30.0000 0.963739
\(970\) 0 0
\(971\) −33.0000 −1.05902 −0.529510 0.848304i \(-0.677624\pi\)
−0.529510 + 0.848304i \(0.677624\pi\)
\(972\) 0 0
\(973\) −26.0000 + 22.5167i −0.833522 + 0.721851i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.0000 + 36.3731i 0.671850 + 1.16368i 0.977379 + 0.211495i \(0.0678332\pi\)
−0.305530 + 0.952183i \(0.598833\pi\)
\(978\) 0 0
\(979\) 24.0000 41.5692i 0.767043 1.32856i
\(980\) 0 0
\(981\) 48.0000 1.53252
\(982\) 0 0
\(983\) 21.0000 36.3731i 0.669796 1.16012i −0.308165 0.951333i \(-0.599715\pi\)
0.977961 0.208788i \(-0.0669518\pi\)
\(984\) 0 0
\(985\) −9.00000 + 5.19615i −0.286764 + 0.165563i
\(986\) 0 0
\(987\) 9.00000 25.9808i 0.286473 0.826977i
\(988\) 0 0
\(989\) −18.0000 −0.572367
\(990\) 0 0
\(991\) 45.0333i 1.43053i −0.698853 0.715265i \(-0.746306\pi\)
0.698853 0.715265i \(-0.253694\pi\)
\(992\) 0 0
\(993\) −18.0000 + 31.1769i −0.571213 + 0.989369i
\(994\) 0 0
\(995\) 6.00000 3.46410i 0.190213 0.109819i
\(996\) 0 0
\(997\) −31.5000 18.1865i −0.997615 0.575973i −0.0900732 0.995935i \(-0.528710\pi\)
−0.907542 + 0.419962i \(0.862043\pi\)
\(998\) 0 0
\(999\) 41.5692i 1.31519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cx.a.223.1 2
3.2 odd 2 3024.2.cx.f.559.1 2
4.3 odd 2 1008.2.cx.d.223.1 yes 2
7.6 odd 2 1008.2.cx.e.223.1 yes 2
9.4 even 3 1008.2.cx.h.895.1 yes 2
9.5 odd 6 3024.2.cx.d.2575.1 2
12.11 even 2 3024.2.cx.g.559.1 2
21.20 even 2 3024.2.cx.a.559.1 2
28.27 even 2 1008.2.cx.h.223.1 yes 2
36.23 even 6 3024.2.cx.a.2575.1 2
36.31 odd 6 1008.2.cx.e.895.1 yes 2
63.13 odd 6 1008.2.cx.d.895.1 yes 2
63.41 even 6 3024.2.cx.g.2575.1 2
84.83 odd 2 3024.2.cx.d.559.1 2
252.139 even 6 inner 1008.2.cx.a.895.1 yes 2
252.167 odd 6 3024.2.cx.f.2575.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cx.a.223.1 2 1.1 even 1 trivial
1008.2.cx.a.895.1 yes 2 252.139 even 6 inner
1008.2.cx.d.223.1 yes 2 4.3 odd 2
1008.2.cx.d.895.1 yes 2 63.13 odd 6
1008.2.cx.e.223.1 yes 2 7.6 odd 2
1008.2.cx.e.895.1 yes 2 36.31 odd 6
1008.2.cx.h.223.1 yes 2 28.27 even 2
1008.2.cx.h.895.1 yes 2 9.4 even 3
3024.2.cx.a.559.1 2 21.20 even 2
3024.2.cx.a.2575.1 2 36.23 even 6
3024.2.cx.d.559.1 2 84.83 odd 2
3024.2.cx.d.2575.1 2 9.5 odd 6
3024.2.cx.f.559.1 2 3.2 odd 2
3024.2.cx.f.2575.1 2 252.167 odd 6
3024.2.cx.g.559.1 2 12.11 even 2
3024.2.cx.g.2575.1 2 63.41 even 6