Properties

Label 3024.2.cx.d.559.1
Level $3024$
Weight $2$
Character 3024.559
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(559,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-3,0,5,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3024.559
Dual form 3024.2.cx.d.2575.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 0.866025i) q^{5} +(2.50000 - 0.866025i) q^{7} +(-3.00000 - 1.73205i) q^{11} +3.46410i q^{17} +5.00000 q^{19} +(-4.50000 + 2.59808i) q^{23} +(-1.00000 + 1.73205i) q^{25} +(1.00000 + 1.73205i) q^{31} +(-3.00000 + 3.46410i) q^{35} -8.00000 q^{37} +(-3.00000 - 1.73205i) q^{43} +(3.00000 - 5.19615i) q^{47} +(5.50000 - 4.33013i) q^{49} +6.00000 q^{53} +6.00000 q^{55} +(6.00000 + 10.3923i) q^{59} +(1.50000 + 0.866025i) q^{61} +(-6.00000 + 3.46410i) q^{67} +12.1244i q^{71} +6.92820i q^{73} +(-9.00000 - 1.73205i) q^{77} +(13.5000 + 7.79423i) q^{79} +(-3.00000 - 5.19615i) q^{85} +13.8564i q^{89} +(-7.50000 + 4.33013i) q^{95} +(-9.00000 - 5.19615i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} + 5 q^{7} - 6 q^{11} + 10 q^{19} - 9 q^{23} - 2 q^{25} + 2 q^{31} - 6 q^{35} - 16 q^{37} - 6 q^{43} + 6 q^{47} + 11 q^{49} + 12 q^{53} + 12 q^{55} + 12 q^{59} + 3 q^{61} - 12 q^{67} - 18 q^{77}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 + 0.866025i −0.670820 + 0.387298i −0.796387 0.604787i \(-0.793258\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 0 0
\(7\) 2.50000 0.866025i 0.944911 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.00000 1.73205i −0.904534 0.522233i −0.0258656 0.999665i \(-0.508234\pi\)
−0.878668 + 0.477432i \(0.841568\pi\)
\(12\) 0 0
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.46410i 0.840168i 0.907485 + 0.420084i \(0.137999\pi\)
−0.907485 + 0.420084i \(0.862001\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.50000 + 2.59808i −0.938315 + 0.541736i −0.889432 0.457068i \(-0.848900\pi\)
−0.0488832 + 0.998805i \(0.515566\pi\)
\(24\) 0 0
\(25\) −1.00000 + 1.73205i −0.200000 + 0.346410i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.00000 + 3.46410i −0.507093 + 0.585540i
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) 0 0
\(43\) −3.00000 1.73205i −0.457496 0.264135i 0.253495 0.967337i \(-0.418420\pi\)
−0.710991 + 0.703201i \(0.751753\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000 + 10.3923i 0.781133 + 1.35296i 0.931282 + 0.364299i \(0.118692\pi\)
−0.150148 + 0.988663i \(0.547975\pi\)
\(60\) 0 0
\(61\) 1.50000 + 0.866025i 0.192055 + 0.110883i 0.592944 0.805243i \(-0.297965\pi\)
−0.400889 + 0.916127i \(0.631299\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.00000 + 3.46410i −0.733017 + 0.423207i −0.819525 0.573044i \(-0.805762\pi\)
0.0865081 + 0.996251i \(0.472429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.1244i 1.43890i 0.694546 + 0.719448i \(0.255605\pi\)
−0.694546 + 0.719448i \(0.744395\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i 0.914121 + 0.405442i \(0.132883\pi\)
−0.914121 + 0.405442i \(0.867117\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.00000 1.73205i −1.02565 0.197386i
\(78\) 0 0
\(79\) 13.5000 + 7.79423i 1.51887 + 0.876919i 0.999753 + 0.0222151i \(0.00707187\pi\)
0.519115 + 0.854704i \(0.326261\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) −3.00000 5.19615i −0.325396 0.563602i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.8564i 1.46878i 0.678730 + 0.734388i \(0.262531\pi\)
−0.678730 + 0.734388i \(0.737469\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.50000 + 4.33013i −0.769484 + 0.444262i
\(96\) 0 0
\(97\) −9.00000 5.19615i −0.913812 0.527589i −0.0321560 0.999483i \(-0.510237\pi\)
−0.881656 + 0.471894i \(0.843571\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.50000 0.866025i −0.149256 0.0861727i 0.423512 0.905890i \(-0.360797\pi\)
−0.572768 + 0.819718i \(0.694130\pi\)
\(102\) 0 0
\(103\) 7.00000 + 12.1244i 0.689730 + 1.19465i 0.971925 + 0.235291i \(0.0756043\pi\)
−0.282194 + 0.959357i \(0.591062\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.92820i 0.669775i −0.942258 0.334887i \(-0.891302\pi\)
0.942258 0.334887i \(-0.108698\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.50000 2.59808i −0.141108 0.244406i 0.786806 0.617200i \(-0.211733\pi\)
−0.927914 + 0.372794i \(0.878400\pi\)
\(114\) 0 0
\(115\) 4.50000 7.79423i 0.419627 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.00000 + 8.66025i 0.275010 + 0.793884i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 8.66025i 0.768473i 0.923235 + 0.384237i \(0.125535\pi\)
−0.923235 + 0.384237i \(0.874465\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.50000 + 12.9904i 0.655278 + 1.13497i 0.981824 + 0.189794i \(0.0607819\pi\)
−0.326546 + 0.945181i \(0.605885\pi\)
\(132\) 0 0
\(133\) 12.5000 4.33013i 1.08389 0.375470i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.00000 + 5.19615i −0.256307 + 0.443937i −0.965250 0.261329i \(-0.915839\pi\)
0.708942 + 0.705266i \(0.249173\pi\)
\(138\) 0 0
\(139\) −6.50000 11.2583i −0.551323 0.954919i −0.998179 0.0603135i \(-0.980790\pi\)
0.446857 0.894606i \(-0.352543\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.0000 20.7846i −0.983078 1.70274i −0.650183 0.759778i \(-0.725308\pi\)
−0.332896 0.942964i \(-0.608026\pi\)
\(150\) 0 0
\(151\) 7.50000 + 4.33013i 0.610341 + 0.352381i 0.773099 0.634285i \(-0.218706\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.00000 1.73205i −0.240966 0.139122i
\(156\) 0 0
\(157\) −7.50000 + 4.33013i −0.598565 + 0.345582i −0.768477 0.639878i \(-0.778985\pi\)
0.169912 + 0.985459i \(0.445652\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.00000 + 10.3923i −0.709299 + 0.819028i
\(162\) 0 0
\(163\) 24.2487i 1.89931i 0.313304 + 0.949653i \(0.398564\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 + 10.3923i 0.464294 + 0.804181i 0.999169 0.0407502i \(-0.0129748\pi\)
−0.534875 + 0.844931i \(0.679641\pi\)
\(168\) 0 0
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.0000 10.3923i −1.36851 0.790112i −0.377776 0.925897i \(-0.623311\pi\)
−0.990738 + 0.135785i \(0.956644\pi\)
\(174\) 0 0
\(175\) −1.00000 + 5.19615i −0.0755929 + 0.392792i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.3205i 1.29460i 0.762237 + 0.647298i \(0.224101\pi\)
−0.762237 + 0.647298i \(0.775899\pi\)
\(180\) 0 0
\(181\) 12.1244i 0.901196i 0.892727 + 0.450598i \(0.148789\pi\)
−0.892727 + 0.450598i \(0.851211\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0000 6.92820i 0.882258 0.509372i
\(186\) 0 0
\(187\) 6.00000 10.3923i 0.438763 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.5000 11.2583i −1.41097 0.814624i −0.415491 0.909597i \(-0.636390\pi\)
−0.995480 + 0.0949733i \(0.969723\pi\)
\(192\) 0 0
\(193\) 11.5000 + 19.9186i 0.827788 + 1.43377i 0.899770 + 0.436365i \(0.143734\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −15.0000 8.66025i −1.03757 0.599042i
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.00000 0.409197
\(216\) 0 0
\(217\) 4.00000 + 3.46410i 0.271538 + 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 5.00000 8.66025i 0.334825 0.579934i −0.648626 0.761107i \(-0.724656\pi\)
0.983451 + 0.181173i \(0.0579895\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.50000 + 2.59808i −0.0995585 + 0.172440i −0.911502 0.411296i \(-0.865076\pi\)
0.811943 + 0.583736i \(0.198410\pi\)
\(228\) 0 0
\(229\) −7.50000 + 4.33013i −0.495614 + 0.286143i −0.726900 0.686743i \(-0.759040\pi\)
0.231287 + 0.972886i \(0.425707\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.0000 0.982683 0.491341 0.870967i \(-0.336507\pi\)
0.491341 + 0.870967i \(0.336507\pi\)
\(234\) 0 0
\(235\) 10.3923i 0.677919i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.50000 + 0.866025i −0.0970269 + 0.0560185i −0.547728 0.836656i \(-0.684507\pi\)
0.450701 + 0.892675i \(0.351174\pi\)
\(240\) 0 0
\(241\) 24.0000 + 13.8564i 1.54598 + 0.892570i 0.998443 + 0.0557856i \(0.0177663\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.50000 + 11.2583i −0.287494 + 0.719268i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.0000 1.32551 0.662754 0.748837i \(-0.269387\pi\)
0.662754 + 0.748837i \(0.269387\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 10.3923i 1.12281 0.648254i 0.180693 0.983540i \(-0.442166\pi\)
0.942117 + 0.335285i \(0.108833\pi\)
\(258\) 0 0
\(259\) −20.0000 + 6.92820i −1.24274 + 0.430498i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.5000 9.52628i −1.01743 0.587416i −0.104074 0.994570i \(-0.533188\pi\)
−0.913360 + 0.407154i \(0.866521\pi\)
\(264\) 0 0
\(265\) −9.00000 + 5.19615i −0.552866 + 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.9808i 1.58408i 0.610472 + 0.792038i \(0.290980\pi\)
−0.610472 + 0.792038i \(0.709020\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 3.46410i 0.361814 0.208893i
\(276\) 0 0
\(277\) −5.00000 + 8.66025i −0.300421 + 0.520344i −0.976231 0.216731i \(-0.930460\pi\)
0.675810 + 0.737075i \(0.263794\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −13.5000 + 23.3827i −0.805342 + 1.39489i 0.110717 + 0.993852i \(0.464685\pi\)
−0.916060 + 0.401042i \(0.868648\pi\)
\(282\) 0 0
\(283\) 6.50000 + 11.2583i 0.386385 + 0.669238i 0.991960 0.126550i \(-0.0403903\pi\)
−0.605575 + 0.795788i \(0.707057\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.00000 0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.5000 7.79423i 0.788678 0.455344i −0.0508187 0.998708i \(-0.516183\pi\)
0.839497 + 0.543364i \(0.182850\pi\)
\(294\) 0 0
\(295\) −18.0000 10.3923i −1.04800 0.605063i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −9.00000 1.73205i −0.518751 0.0998337i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) 23.0000 1.31268 0.656340 0.754466i \(-0.272104\pi\)
0.656340 + 0.754466i \(0.272104\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.00000 15.5885i −0.510343 0.883940i −0.999928 0.0119847i \(-0.996185\pi\)
0.489585 0.871956i \(-0.337148\pi\)
\(312\) 0 0
\(313\) −3.00000 1.73205i −0.169570 0.0979013i 0.412813 0.910816i \(-0.364546\pi\)
−0.582383 + 0.812914i \(0.697880\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000 15.5885i 0.505490 0.875535i −0.494489 0.869184i \(-0.664645\pi\)
0.999980 0.00635137i \(-0.00202172\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 17.3205i 0.963739i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.00000 15.5885i 0.165395 0.859419i
\(330\) 0 0
\(331\) 18.0000 + 10.3923i 0.989369 + 0.571213i 0.905086 0.425229i \(-0.139806\pi\)
0.0842837 + 0.996442i \(0.473140\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.00000 10.3923i 0.327815 0.567792i
\(336\) 0 0
\(337\) −7.00000 12.1244i −0.381314 0.660456i 0.609936 0.792451i \(-0.291195\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.92820i 0.375183i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.0000 8.66025i 0.805242 0.464907i −0.0400587 0.999197i \(-0.512754\pi\)
0.845301 + 0.534291i \(0.179421\pi\)
\(348\) 0 0
\(349\) −24.0000 13.8564i −1.28469 0.741716i −0.306988 0.951713i \(-0.599321\pi\)
−0.977702 + 0.209997i \(0.932655\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.00000 + 1.73205i 0.159674 + 0.0921878i 0.577708 0.816244i \(-0.303947\pi\)
−0.418034 + 0.908431i \(0.637281\pi\)
\(354\) 0 0
\(355\) −10.5000 18.1865i −0.557282 0.965241i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.0526i 1.00556i −0.864416 0.502778i \(-0.832311\pi\)
0.864416 0.502778i \(-0.167689\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 10.3923i −0.314054 0.543958i
\(366\) 0 0
\(367\) −13.0000 + 22.5167i −0.678594 + 1.17536i 0.296810 + 0.954937i \(0.404077\pi\)
−0.975404 + 0.220423i \(0.929256\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.0000 5.19615i 0.778761 0.269771i
\(372\) 0 0
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 27.7128i 1.42351i −0.702427 0.711756i \(-0.747900\pi\)
0.702427 0.711756i \(-0.252100\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.00000 5.19615i −0.153293 0.265511i 0.779143 0.626846i \(-0.215654\pi\)
−0.932436 + 0.361335i \(0.882321\pi\)
\(384\) 0 0
\(385\) 15.0000 5.19615i 0.764471 0.264820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.00000 10.3923i 0.304212 0.526911i −0.672874 0.739758i \(-0.734940\pi\)
0.977086 + 0.212847i \(0.0682735\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −27.0000 −1.35852
\(396\) 0 0
\(397\) 6.92820i 0.347717i −0.984771 0.173858i \(-0.944377\pi\)
0.984771 0.173858i \(-0.0556235\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 + 13.8564i 1.18964 + 0.686837i
\(408\) 0 0
\(409\) 30.0000 17.3205i 1.48340 0.856444i 0.483582 0.875299i \(-0.339335\pi\)
0.999822 + 0.0188549i \(0.00600205\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 24.0000 + 20.7846i 1.18096 + 1.02274i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.50000 + 7.79423i 0.219839 + 0.380773i 0.954759 0.297382i \(-0.0961133\pi\)
−0.734919 + 0.678155i \(0.762780\pi\)
\(420\) 0 0
\(421\) 4.00000 6.92820i 0.194948 0.337660i −0.751935 0.659237i \(-0.770879\pi\)
0.946883 + 0.321577i \(0.104213\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 3.46410i −0.291043 0.168034i
\(426\) 0 0
\(427\) 4.50000 + 0.866025i 0.217770 + 0.0419099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.46410i 0.166860i 0.996514 + 0.0834300i \(0.0265875\pi\)
−0.996514 + 0.0834300i \(0.973413\pi\)
\(432\) 0 0
\(433\) 34.6410i 1.66474i −0.554220 0.832370i \(-0.686983\pi\)
0.554220 0.832370i \(-0.313017\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −22.5000 + 12.9904i −1.07632 + 0.621414i
\(438\) 0 0
\(439\) 8.00000 13.8564i 0.381819 0.661330i −0.609503 0.792784i \(-0.708631\pi\)
0.991322 + 0.131453i \(0.0419644\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.00000 3.46410i −0.285069 0.164584i 0.350647 0.936508i \(-0.385962\pi\)
−0.635716 + 0.771923i \(0.719295\pi\)
\(444\) 0 0
\(445\) −12.0000 20.7846i −0.568855 0.985285i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.0000 0.991051 0.495526 0.868593i \(-0.334975\pi\)
0.495526 + 0.868593i \(0.334975\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.5000 + 19.9186i −0.537947 + 0.931752i 0.461067 + 0.887365i \(0.347467\pi\)
−0.999014 + 0.0443868i \(0.985867\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −34.5000 19.9186i −1.60683 0.927701i −0.990075 0.140542i \(-0.955115\pi\)
−0.616751 0.787159i \(-0.711551\pi\)
\(462\) 0 0
\(463\) 4.50000 2.59808i 0.209133 0.120743i −0.391776 0.920061i \(-0.628139\pi\)
0.600908 + 0.799318i \(0.294806\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 0 0
\(469\) −12.0000 + 13.8564i −0.554109 + 0.639829i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.00000 + 10.3923i 0.275880 + 0.477839i
\(474\) 0 0
\(475\) −5.00000 + 8.66025i −0.229416 + 0.397360i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.0000 0.817338
\(486\) 0 0
\(487\) 15.5885i 0.706380i −0.935552 0.353190i \(-0.885097\pi\)
0.935552 0.353190i \(-0.114903\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.0000 10.3923i 0.812329 0.468998i −0.0354353 0.999372i \(-0.511282\pi\)
0.847764 + 0.530374i \(0.177948\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.5000 + 30.3109i 0.470989 + 1.35963i
\(498\) 0 0
\(499\) 18.0000 10.3923i 0.805791 0.465223i −0.0397013 0.999212i \(-0.512641\pi\)
0.845492 + 0.533988i \(0.179307\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.0000 6.92820i 0.531891 0.307087i −0.209895 0.977724i \(-0.567312\pi\)
0.741786 + 0.670637i \(0.233979\pi\)
\(510\) 0 0
\(511\) 6.00000 + 17.3205i 0.265424 + 0.766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −21.0000 12.1244i −0.925371 0.534263i
\(516\) 0 0
\(517\) −18.0000 + 10.3923i −0.791639 + 0.457053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 38.1051i 1.66942i 0.550693 + 0.834708i \(0.314363\pi\)
−0.550693 + 0.834708i \(0.685637\pi\)
\(522\) 0 0
\(523\) −35.0000 −1.53044 −0.765222 0.643767i \(-0.777371\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.00000 + 3.46410i −0.261364 + 0.150899i
\(528\) 0 0
\(529\) 2.00000 3.46410i 0.0869565 0.150613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 6.00000 + 10.3923i 0.259403 + 0.449299i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −24.0000 + 3.46410i −1.03375 + 0.149209i
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 24.0000 13.8564i 1.02805 0.593543i
\(546\) 0 0
\(547\) −15.0000 8.66025i −0.641354 0.370286i 0.143782 0.989609i \(-0.454074\pi\)
−0.785136 + 0.619324i \(0.787407\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 40.5000 + 7.79423i 1.72224 + 0.331444i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.50000 + 7.79423i 0.189652 + 0.328488i 0.945134 0.326682i \(-0.105931\pi\)
−0.755482 + 0.655169i \(0.772597\pi\)
\(564\) 0 0
\(565\) 4.50000 + 2.59808i 0.189316 + 0.109302i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.0000 + 36.3731i −0.880366 + 1.52484i −0.0294311 + 0.999567i \(0.509370\pi\)
−0.850935 + 0.525271i \(0.823964\pi\)
\(570\) 0 0
\(571\) 6.00000 3.46410i 0.251092 0.144968i −0.369172 0.929361i \(-0.620359\pi\)
0.620264 + 0.784393i \(0.287025\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 10.3923i 0.433389i
\(576\) 0 0
\(577\) 27.7128i 1.15370i −0.816850 0.576850i \(-0.804282\pi\)
0.816850 0.576850i \(-0.195718\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −18.0000 10.3923i −0.745484 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.5000 38.9711i 0.928674 1.60851i 0.143132 0.989704i \(-0.454283\pi\)
0.785543 0.618808i \(-0.212384\pi\)
\(588\) 0 0
\(589\) 5.00000 + 8.66025i 0.206021 + 0.356840i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.2487i 0.995775i −0.867242 0.497888i \(-0.834109\pi\)
0.867242 0.497888i \(-0.165891\pi\)
\(594\) 0 0
\(595\) −12.0000 10.3923i −0.491952 0.426043i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 39.0000 22.5167i 1.59350 0.920006i 0.600796 0.799402i \(-0.294850\pi\)
0.992701 0.120603i \(-0.0384829\pi\)
\(600\) 0 0
\(601\) −33.0000 19.0526i −1.34610 0.777170i −0.358404 0.933567i \(-0.616679\pi\)
−0.987694 + 0.156397i \(0.950012\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.50000 0.866025i −0.0609837 0.0352089i
\(606\) 0 0
\(607\) 2.00000 + 3.46410i 0.0811775 + 0.140604i 0.903756 0.428048i \(-0.140799\pi\)
−0.822578 + 0.568652i \(0.807465\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.0000 + 25.9808i 0.603877 + 1.04595i 0.992228 + 0.124434i \(0.0397116\pi\)
−0.388351 + 0.921512i \(0.626955\pi\)
\(618\) 0 0
\(619\) −9.50000 + 16.4545i −0.381837 + 0.661361i −0.991325 0.131434i \(-0.958042\pi\)
0.609488 + 0.792796i \(0.291375\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000 + 34.6410i 0.480770 + 1.38786i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 27.7128i 1.10498i
\(630\) 0 0
\(631\) 1.73205i 0.0689519i 0.999406 + 0.0344759i \(0.0109762\pi\)
−0.999406 + 0.0344759i \(0.989024\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.50000 12.9904i −0.297628 0.515508i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.50000 + 12.9904i −0.296232 + 0.513089i −0.975271 0.221013i \(-0.929064\pi\)
0.679039 + 0.734103i \(0.262397\pi\)
\(642\) 0 0
\(643\) 2.00000 + 3.46410i 0.0788723 + 0.136611i 0.902764 0.430137i \(-0.141535\pi\)
−0.823891 + 0.566748i \(0.808201\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −42.0000 −1.65119 −0.825595 0.564263i \(-0.809160\pi\)
−0.825595 + 0.564263i \(0.809160\pi\)
\(648\) 0 0
\(649\) 41.5692i 1.63173i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000 + 15.5885i 0.352197 + 0.610023i 0.986634 0.162951i \(-0.0521013\pi\)
−0.634437 + 0.772975i \(0.718768\pi\)
\(654\) 0 0
\(655\) −22.5000 12.9904i −0.879148 0.507576i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.0000 10.3923i −0.701180 0.404827i 0.106606 0.994301i \(-0.466001\pi\)
−0.807787 + 0.589475i \(0.799335\pi\)
\(660\) 0 0
\(661\) 28.5000 16.4545i 1.10852 0.640005i 0.170075 0.985431i \(-0.445599\pi\)
0.938446 + 0.345426i \(0.112266\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15.0000 + 17.3205i −0.581675 + 0.671660i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.00000 5.19615i −0.115814 0.200595i
\(672\) 0 0
\(673\) 14.5000 25.1147i 0.558934 0.968102i −0.438652 0.898657i \(-0.644544\pi\)
0.997586 0.0694449i \(-0.0221228\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.0000 + 6.92820i 0.461197 + 0.266272i 0.712548 0.701624i \(-0.247541\pi\)
−0.251350 + 0.967896i \(0.580875\pi\)
\(678\) 0 0
\(679\) −27.0000 5.19615i −1.03616 0.199410i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 10.3923i 0.397070i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2.50000 4.33013i 0.0951045 0.164726i −0.814548 0.580097i \(-0.803015\pi\)
0.909652 + 0.415371i \(0.136348\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.5000 + 11.2583i 0.739677 + 0.427053i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) −40.0000 −1.50863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.50000 0.866025i −0.169240 0.0325702i
\(708\) 0 0
\(709\) −10.0000 + 17.3205i −0.375558 + 0.650485i −0.990410 0.138157i \(-0.955882\pi\)
0.614852 + 0.788642i \(0.289216\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.00000 5.19615i −0.337053 0.194597i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 28.0000 + 24.2487i 1.04277 + 0.903069i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10.0000 17.3205i 0.370879 0.642382i −0.618822 0.785532i \(-0.712390\pi\)
0.989701 + 0.143149i \(0.0457230\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.00000 10.3923i 0.221918 0.384373i
\(732\) 0 0
\(733\) −43.5000 + 25.1147i −1.60671 + 0.927634i −0.616609 + 0.787269i \(0.711494\pi\)
−0.990100 + 0.140365i \(0.955173\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000 0.884051
\(738\) 0 0
\(739\) 27.7128i 1.01943i −0.860343 0.509716i \(-0.829750\pi\)
0.860343 0.509716i \(-0.170250\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.0000 12.1244i 0.770415 0.444799i −0.0626075 0.998038i \(-0.519942\pi\)
0.833023 + 0.553239i \(0.186608\pi\)
\(744\) 0 0
\(745\) 36.0000 + 20.7846i 1.31894 + 0.761489i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.00000 17.3205i −0.219235 0.632878i
\(750\) 0 0
\(751\) 7.50000 4.33013i 0.273679 0.158009i −0.356879 0.934150i \(-0.616159\pi\)
0.630558 + 0.776142i \(0.282826\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.0000 −0.545906
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.00000 + 1.73205i −0.108750 + 0.0627868i −0.553388 0.832923i \(-0.686665\pi\)
0.444639 + 0.895710i \(0.353332\pi\)
\(762\) 0 0
\(763\) −40.0000 + 13.8564i −1.44810 + 0.501636i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −18.0000 + 10.3923i −0.649097 + 0.374756i −0.788110 0.615534i \(-0.788940\pi\)
0.139013 + 0.990290i \(0.455607\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 15.5885i 0.560678i 0.959901 + 0.280339i \(0.0904469\pi\)
−0.959901 + 0.280339i \(0.909553\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 21.0000 36.3731i 0.751439 1.30153i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.50000 12.9904i 0.267686 0.463647i
\(786\) 0 0
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 5.19615i −0.213335 0.184754i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.5000 12.9904i 0.796991 0.460143i −0.0454270 0.998968i \(-0.514465\pi\)
0.842418 + 0.538825i \(0.181132\pi\)
\(798\) 0 0
\(799\) 18.0000 + 10.3923i 0.636794 + 0.367653i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.0000 20.7846i 0.423471 0.733473i
\(804\) 0 0
\(805\) 4.50000 23.3827i 0.158604 0.824131i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −21.0000 36.3731i −0.735598 1.27409i
\(816\) 0 0
\(817\) −15.0000 8.66025i −0.524784 0.302984i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.00000 + 15.5885i −0.314102 + 0.544041i −0.979246 0.202674i \(-0.935037\pi\)
0.665144 + 0.746715i \(0.268370\pi\)
\(822\) 0 0
\(823\) 9.00000 5.19615i 0.313720 0.181126i −0.334870 0.942264i \(-0.608692\pi\)
0.648590 + 0.761138i \(0.275359\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.46410i 0.120459i −0.998185 0.0602293i \(-0.980817\pi\)
0.998185 0.0602293i \(-0.0191832\pi\)
\(828\) 0 0
\(829\) 41.5692i 1.44376i 0.692019 + 0.721879i \(0.256721\pi\)
−0.692019 + 0.721879i \(0.743279\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 15.0000 + 19.0526i 0.519719 + 0.660132i
\(834\) 0 0
\(835\) −18.0000 10.3923i −0.622916 0.359641i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.00000 15.5885i 0.310715 0.538173i −0.667803 0.744338i \(-0.732765\pi\)
0.978517 + 0.206165i \(0.0660984\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 22.5167i 0.774597i
\(846\) 0 0
\(847\) 2.00000 + 1.73205i 0.0687208 + 0.0595140i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 36.0000 20.7846i 1.23406 0.712487i
\(852\) 0 0
\(853\) −46.5000 26.8468i −1.59213 0.919216i −0.992941 0.118609i \(-0.962157\pi\)
−0.599189 0.800608i \(-0.704510\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36.0000 + 20.7846i 1.22974 + 0.709989i 0.966975 0.254872i \(-0.0820333\pi\)
0.262762 + 0.964861i \(0.415367\pi\)
\(858\) 0 0
\(859\) 20.0000 + 34.6410i 0.682391 + 1.18194i 0.974249 + 0.225475i \(0.0723932\pi\)
−0.291858 + 0.956462i \(0.594273\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 46.7654i 1.59191i −0.605355 0.795956i \(-0.706969\pi\)
0.605355 0.795956i \(-0.293031\pi\)
\(864\) 0 0
\(865\) 36.0000 1.22404
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −27.0000 46.7654i −0.915912 1.58641i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.5000 30.3109i −0.354965 1.02470i
\(876\) 0 0
\(877\) 2.00000 + 3.46410i 0.0675352 + 0.116974i 0.897816 0.440371i \(-0.145153\pi\)
−0.830281 + 0.557346i \(0.811820\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 55.4256i 1.86734i −0.358139 0.933668i \(-0.616589\pi\)
0.358139 0.933668i \(-0.383411\pi\)
\(882\) 0 0
\(883\) 10.3923i 0.349729i −0.984593 0.174864i \(-0.944051\pi\)
0.984593 0.174864i \(-0.0559487\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 + 20.7846i 0.402921 + 0.697879i 0.994077 0.108678i \(-0.0346618\pi\)
−0.591156 + 0.806557i \(0.701328\pi\)
\(888\) 0 0
\(889\) 7.50000 + 21.6506i 0.251542 + 0.726139i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.0000 25.9808i 0.501956 0.869413i
\(894\) 0 0
\(895\) −15.0000 25.9808i −0.501395 0.868441i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 20.7846i 0.692436i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.5000 18.1865i −0.349032 0.604541i
\(906\) 0 0
\(907\) 27.0000 + 15.5885i 0.896520 + 0.517606i 0.876070 0.482185i \(-0.160157\pi\)
0.0204507 + 0.999791i \(0.493490\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.50000 2.59808i −0.149092 0.0860781i 0.423598 0.905850i \(-0.360767\pi\)
−0.572690 + 0.819772i \(0.694100\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.0000 + 25.9808i 0.990687 + 0.857960i
\(918\) 0 0
\(919\) 46.7654i 1.54265i −0.636443 0.771324i \(-0.719595\pi\)
0.636443 0.771324i \(-0.280405\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.00000 13.8564i 0.263038 0.455596i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.0000 + 6.92820i 0.393707 + 0.227307i 0.683765 0.729702i \(-0.260341\pi\)
−0.290058 + 0.957009i \(0.593675\pi\)
\(930\) 0 0
\(931\) 27.5000 21.6506i 0.901276 0.709571i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.7846i 0.679729i
\(936\) 0 0
\(937\) 6.92820i 0.226335i 0.993576 + 0.113167i \(0.0360996\pi\)
−0.993576 + 0.113167i \(0.963900\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.5000 11.2583i 0.635682 0.367011i −0.147267 0.989097i \(-0.547048\pi\)
0.782949 + 0.622086i \(0.213714\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0000 + 13.8564i 0.779895 + 0.450273i 0.836393 0.548130i \(-0.184660\pi\)
−0.0564979 + 0.998403i \(0.517993\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 39.0000 1.26201
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.00000 + 15.5885i −0.0968751 + 0.503378i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −34.5000 19.9186i −1.11059 0.641202i
\(966\) 0 0
\(967\) −1.50000 + 0.866025i −0.0482367 + 0.0278495i −0.523924 0.851765i \(-0.675533\pi\)
0.475688 + 0.879614i \(0.342199\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 33.0000 1.05902 0.529510 0.848304i \(-0.322376\pi\)
0.529510 + 0.848304i \(0.322376\pi\)
\(972\) 0 0
\(973\) −26.0000 22.5167i −0.833522 0.721851i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.0000 36.3731i −0.671850 1.16368i −0.977379 0.211495i \(-0.932167\pi\)
0.305530 0.952183i \(-0.401167\pi\)
\(978\) 0 0
\(979\) 24.0000 41.5692i 0.767043 1.32856i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.0000 + 36.3731i −0.669796 + 1.16012i 0.308165 + 0.951333i \(0.400285\pi\)
−0.977961 + 0.208788i \(0.933048\pi\)
\(984\) 0 0
\(985\) 9.00000 5.19615i 0.286764 0.165563i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.0000 0.572367
\(990\) 0 0
\(991\) 45.0333i 1.43053i 0.698853 + 0.715265i \(0.253694\pi\)
−0.698853 + 0.715265i \(0.746306\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.00000 3.46410i 0.190213 0.109819i
\(996\) 0 0
\(997\) 31.5000 + 18.1865i 0.997615 + 0.575973i 0.907542 0.419962i \(-0.137957\pi\)
0.0900732 + 0.995935i \(0.471290\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cx.d.559.1 2
3.2 odd 2 1008.2.cx.h.223.1 yes 2
4.3 odd 2 3024.2.cx.a.559.1 2
7.6 odd 2 3024.2.cx.g.559.1 2
9.4 even 3 3024.2.cx.f.2575.1 2
9.5 odd 6 1008.2.cx.a.895.1 yes 2
12.11 even 2 1008.2.cx.e.223.1 yes 2
21.20 even 2 1008.2.cx.d.223.1 yes 2
28.27 even 2 3024.2.cx.f.559.1 2
36.23 even 6 1008.2.cx.d.895.1 yes 2
36.31 odd 6 3024.2.cx.g.2575.1 2
63.13 odd 6 3024.2.cx.a.2575.1 2
63.41 even 6 1008.2.cx.e.895.1 yes 2
84.83 odd 2 1008.2.cx.a.223.1 2
252.139 even 6 inner 3024.2.cx.d.2575.1 2
252.167 odd 6 1008.2.cx.h.895.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cx.a.223.1 2 84.83 odd 2
1008.2.cx.a.895.1 yes 2 9.5 odd 6
1008.2.cx.d.223.1 yes 2 21.20 even 2
1008.2.cx.d.895.1 yes 2 36.23 even 6
1008.2.cx.e.223.1 yes 2 12.11 even 2
1008.2.cx.e.895.1 yes 2 63.41 even 6
1008.2.cx.h.223.1 yes 2 3.2 odd 2
1008.2.cx.h.895.1 yes 2 252.167 odd 6
3024.2.cx.a.559.1 2 4.3 odd 2
3024.2.cx.a.2575.1 2 63.13 odd 6
3024.2.cx.d.559.1 2 1.1 even 1 trivial
3024.2.cx.d.2575.1 2 252.139 even 6 inner
3024.2.cx.f.559.1 2 28.27 even 2
3024.2.cx.f.2575.1 2 9.4 even 3
3024.2.cx.g.559.1 2 7.6 odd 2
3024.2.cx.g.2575.1 2 36.31 odd 6