Properties

Label 1008.2.cc.b.209.6
Level $1008$
Weight $2$
Character 1008.209
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(209,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 9x^{12} + 54x^{10} - 288x^{8} + 486x^{6} + 729x^{4} - 4374x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 209.6
Root \(1.40917 + 1.00709i\) of defining polynomial
Character \(\chi\) \(=\) 1008.209
Dual form 1008.2.cc.b.545.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40917 - 1.00709i) q^{3} +(-1.17468 - 2.03460i) q^{5} +(2.63145 + 0.274725i) q^{7} +(0.971521 - 2.83834i) q^{9} +(4.91614 + 2.83834i) q^{11} +(-1.48943 + 0.859925i) q^{13} +(-3.70436 - 1.68409i) q^{15} +1.76883 q^{17} -1.13932i q^{19} +(3.98483 - 2.26298i) q^{21} +(3.18272 - 1.83755i) q^{23} +(-0.259741 + 0.449885i) q^{25} +(-1.48943 - 4.97811i) q^{27} +(3.59886 + 2.07781i) q^{29} +(-7.24879 + 4.18509i) q^{31} +(9.78615 - 0.951321i) q^{33} +(-2.53215 - 5.67667i) q^{35} -9.19773 q^{37} +(-1.23284 + 2.71178i) q^{39} +(-3.99709 - 6.92317i) q^{41} +(-1.76053 + 3.04933i) q^{43} +(-6.91611 + 1.35747i) q^{45} +(5.90494 - 10.2277i) q^{47} +(6.84905 + 1.44585i) q^{49} +(2.49258 - 1.78138i) q^{51} -13.3365i q^{55} +(-1.14740 - 1.60550i) q^{57} +(1.11483 + 1.93094i) q^{59} +(-7.79396 - 4.49985i) q^{61} +(3.33627 - 7.20203i) q^{63} +(3.49921 + 2.02027i) q^{65} +(5.43562 + 9.41477i) q^{67} +(2.63442 - 5.79472i) q^{69} -4.52106i q^{71} -5.34234i q^{73} +(0.0870571 + 0.895548i) q^{75} +(12.1568 + 8.81952i) q^{77} +(-6.51422 + 11.2830i) q^{79} +(-7.11229 - 5.51501i) q^{81} +(-6.27298 + 10.8651i) q^{83} +(-2.07781 - 3.59886i) q^{85} +(7.16396 - 0.696415i) q^{87} +1.16106 q^{89} +(-4.15561 + 1.85366i) q^{91} +(-6.00000 + 13.1977i) q^{93} +(-2.31806 + 1.33834i) q^{95} +(3.97536 + 2.29517i) q^{97} +(12.8323 - 11.1962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{7} + 12 q^{9} + 12 q^{11} + 18 q^{21} + 48 q^{23} - 8 q^{25} - 12 q^{29} - 8 q^{37} + 36 q^{39} - 4 q^{43} - 8 q^{49} - 12 q^{51} + 48 q^{57} - 24 q^{63} + 84 q^{65} + 28 q^{67} + 78 q^{77}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.40917 1.00709i 0.813585 0.581446i
\(4\) 0 0
\(5\) −1.17468 2.03460i −0.525332 0.909902i −0.999565 0.0295026i \(-0.990608\pi\)
0.474232 0.880400i \(-0.342726\pi\)
\(6\) 0 0
\(7\) 2.63145 + 0.274725i 0.994594 + 0.103836i
\(8\) 0 0
\(9\) 0.971521 2.83834i 0.323840 0.946112i
\(10\) 0 0
\(11\) 4.91614 + 2.83834i 1.48227 + 0.855790i 0.999798 0.0201197i \(-0.00640473\pi\)
0.482475 + 0.875910i \(0.339738\pi\)
\(12\) 0 0
\(13\) −1.48943 + 0.859925i −0.413094 + 0.238500i −0.692118 0.721784i \(-0.743322\pi\)
0.279024 + 0.960284i \(0.409989\pi\)
\(14\) 0 0
\(15\) −3.70436 1.68409i −0.956462 0.434830i
\(16\) 0 0
\(17\) 1.76883 0.429004 0.214502 0.976724i \(-0.431187\pi\)
0.214502 + 0.976724i \(0.431187\pi\)
\(18\) 0 0
\(19\) 1.13932i 0.261378i −0.991423 0.130689i \(-0.958281\pi\)
0.991423 0.130689i \(-0.0417189\pi\)
\(20\) 0 0
\(21\) 3.98483 2.26298i 0.869562 0.493823i
\(22\) 0 0
\(23\) 3.18272 1.83755i 0.663644 0.383155i −0.130020 0.991511i \(-0.541504\pi\)
0.793664 + 0.608356i \(0.208171\pi\)
\(24\) 0 0
\(25\) −0.259741 + 0.449885i −0.0519482 + 0.0899769i
\(26\) 0 0
\(27\) −1.48943 4.97811i −0.286642 0.958038i
\(28\) 0 0
\(29\) 3.59886 + 2.07781i 0.668292 + 0.385839i 0.795429 0.606046i \(-0.207245\pi\)
−0.127137 + 0.991885i \(0.540579\pi\)
\(30\) 0 0
\(31\) −7.24879 + 4.18509i −1.30192 + 0.751665i −0.980734 0.195350i \(-0.937416\pi\)
−0.321188 + 0.947015i \(0.604082\pi\)
\(32\) 0 0
\(33\) 9.78615 0.951321i 1.70355 0.165604i
\(34\) 0 0
\(35\) −2.53215 5.67667i −0.428012 0.959532i
\(36\) 0 0
\(37\) −9.19773 −1.51210 −0.756049 0.654515i \(-0.772873\pi\)
−0.756049 + 0.654515i \(0.772873\pi\)
\(38\) 0 0
\(39\) −1.23284 + 2.71178i −0.197412 + 0.434232i
\(40\) 0 0
\(41\) −3.99709 6.92317i −0.624241 1.08122i −0.988687 0.149993i \(-0.952075\pi\)
0.364446 0.931225i \(-0.381258\pi\)
\(42\) 0 0
\(43\) −1.76053 + 3.04933i −0.268478 + 0.465018i −0.968469 0.249134i \(-0.919854\pi\)
0.699991 + 0.714152i \(0.253187\pi\)
\(44\) 0 0
\(45\) −6.91611 + 1.35747i −1.03099 + 0.202360i
\(46\) 0 0
\(47\) 5.90494 10.2277i 0.861324 1.49186i −0.00932669 0.999957i \(-0.502969\pi\)
0.870651 0.491901i \(-0.163698\pi\)
\(48\) 0 0
\(49\) 6.84905 + 1.44585i 0.978436 + 0.206550i
\(50\) 0 0
\(51\) 2.49258 1.78138i 0.349031 0.249443i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 13.3365i 1.79830i
\(56\) 0 0
\(57\) −1.14740 1.60550i −0.151977 0.212653i
\(58\) 0 0
\(59\) 1.11483 + 1.93094i 0.145139 + 0.251387i 0.929425 0.369012i \(-0.120304\pi\)
−0.784286 + 0.620399i \(0.786971\pi\)
\(60\) 0 0
\(61\) −7.79396 4.49985i −0.997915 0.576146i −0.0902842 0.995916i \(-0.528778\pi\)
−0.907631 + 0.419770i \(0.862111\pi\)
\(62\) 0 0
\(63\) 3.33627 7.20203i 0.420331 0.907371i
\(64\) 0 0
\(65\) 3.49921 + 2.02027i 0.434024 + 0.250584i
\(66\) 0 0
\(67\) 5.43562 + 9.41477i 0.664067 + 1.15020i 0.979537 + 0.201262i \(0.0645044\pi\)
−0.315470 + 0.948935i \(0.602162\pi\)
\(68\) 0 0
\(69\) 2.63442 5.79472i 0.317147 0.697602i
\(70\) 0 0
\(71\) 4.52106i 0.536551i −0.963342 0.268276i \(-0.913546\pi\)
0.963342 0.268276i \(-0.0864538\pi\)
\(72\) 0 0
\(73\) 5.34234i 0.625274i −0.949873 0.312637i \(-0.898788\pi\)
0.949873 0.312637i \(-0.101212\pi\)
\(74\) 0 0
\(75\) 0.0870571 + 0.895548i 0.0100525 + 0.103409i
\(76\) 0 0
\(77\) 12.1568 + 8.81952i 1.38540 + 1.00508i
\(78\) 0 0
\(79\) −6.51422 + 11.2830i −0.732907 + 1.26943i 0.222729 + 0.974880i \(0.428503\pi\)
−0.955636 + 0.294551i \(0.904830\pi\)
\(80\) 0 0
\(81\) −7.11229 5.51501i −0.790255 0.612778i
\(82\) 0 0
\(83\) −6.27298 + 10.8651i −0.688549 + 1.19260i 0.283758 + 0.958896i \(0.408419\pi\)
−0.972307 + 0.233707i \(0.924915\pi\)
\(84\) 0 0
\(85\) −2.07781 3.59886i −0.225370 0.390352i
\(86\) 0 0
\(87\) 7.16396 0.696415i 0.768057 0.0746636i
\(88\) 0 0
\(89\) 1.16106 0.123072 0.0615360 0.998105i \(-0.480400\pi\)
0.0615360 + 0.998105i \(0.480400\pi\)
\(90\) 0 0
\(91\) −4.15561 + 1.85366i −0.435626 + 0.194317i
\(92\) 0 0
\(93\) −6.00000 + 13.1977i −0.622171 + 1.36854i
\(94\) 0 0
\(95\) −2.31806 + 1.33834i −0.237828 + 0.137310i
\(96\) 0 0
\(97\) 3.97536 + 2.29517i 0.403636 + 0.233039i 0.688052 0.725662i \(-0.258466\pi\)
−0.284416 + 0.958701i \(0.591800\pi\)
\(98\) 0 0
\(99\) 12.8323 11.1962i 1.28969 1.12526i
\(100\) 0 0
\(101\) −3.31155 + 5.73577i −0.329511 + 0.570730i −0.982415 0.186711i \(-0.940217\pi\)
0.652904 + 0.757441i \(0.273551\pi\)
\(102\) 0 0
\(103\) −5.07471 + 2.92989i −0.500026 + 0.288690i −0.728724 0.684807i \(-0.759886\pi\)
0.228698 + 0.973497i \(0.426553\pi\)
\(104\) 0 0
\(105\) −9.28518 5.44928i −0.906140 0.531795i
\(106\) 0 0
\(107\) 4.71563i 0.455878i 0.973675 + 0.227939i \(0.0731986\pi\)
−0.973675 + 0.227939i \(0.926801\pi\)
\(108\) 0 0
\(109\) 4.23669 0.405802 0.202901 0.979199i \(-0.434963\pi\)
0.202901 + 0.979199i \(0.434963\pi\)
\(110\) 0 0
\(111\) −12.9612 + 9.26298i −1.23022 + 0.879203i
\(112\) 0 0
\(113\) 5.91693 3.41614i 0.556618 0.321363i −0.195169 0.980770i \(-0.562526\pi\)
0.751787 + 0.659406i \(0.229192\pi\)
\(114\) 0 0
\(115\) −7.47736 4.31705i −0.697267 0.402567i
\(116\) 0 0
\(117\) 0.993738 + 5.06295i 0.0918712 + 0.468069i
\(118\) 0 0
\(119\) 4.65458 + 0.485942i 0.426685 + 0.0445462i
\(120\) 0 0
\(121\) 10.6123 + 18.3810i 0.964754 + 1.67100i
\(122\) 0 0
\(123\) −12.6049 5.73047i −1.13654 0.516699i
\(124\) 0 0
\(125\) −10.5263 −0.941504
\(126\) 0 0
\(127\) 6.67667 0.592459 0.296229 0.955117i \(-0.404271\pi\)
0.296229 + 0.955117i \(0.404271\pi\)
\(128\) 0 0
\(129\) 0.590074 + 6.07004i 0.0519532 + 0.534437i
\(130\) 0 0
\(131\) 3.73653 + 6.47185i 0.326462 + 0.565448i 0.981807 0.189881i \(-0.0608102\pi\)
−0.655345 + 0.755329i \(0.727477\pi\)
\(132\) 0 0
\(133\) 0.313000 2.99806i 0.0271406 0.259965i
\(134\) 0 0
\(135\) −8.37888 + 8.87809i −0.721139 + 0.764104i
\(136\) 0 0
\(137\) 6.91772 + 3.99395i 0.591021 + 0.341226i 0.765501 0.643435i \(-0.222491\pi\)
−0.174480 + 0.984661i \(0.555825\pi\)
\(138\) 0 0
\(139\) 17.9792 10.3803i 1.52498 0.880446i 0.525415 0.850846i \(-0.323910\pi\)
0.999562 0.0295993i \(-0.00942312\pi\)
\(140\) 0 0
\(141\) −1.97915 20.3593i −0.166675 1.71457i
\(142\) 0 0
\(143\) −9.76302 −0.816425
\(144\) 0 0
\(145\) 9.76302i 0.810774i
\(146\) 0 0
\(147\) 11.1076 4.86019i 0.916139 0.400862i
\(148\) 0 0
\(149\) −1.03726 + 0.598865i −0.0849760 + 0.0490609i −0.541886 0.840452i \(-0.682290\pi\)
0.456910 + 0.889513i \(0.348956\pi\)
\(150\) 0 0
\(151\) 7.61229 13.1849i 0.619480 1.07297i −0.370101 0.928991i \(-0.620677\pi\)
0.989581 0.143979i \(-0.0459897\pi\)
\(152\) 0 0
\(153\) 1.71845 5.02053i 0.138929 0.405886i
\(154\) 0 0
\(155\) 17.0300 + 9.83228i 1.36788 + 0.789748i
\(156\) 0 0
\(157\) −8.68358 + 5.01347i −0.693025 + 0.400118i −0.804744 0.593621i \(-0.797698\pi\)
0.111719 + 0.993740i \(0.464364\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.88000 3.96104i 0.699842 0.312173i
\(162\) 0 0
\(163\) −12.0032 −0.940160 −0.470080 0.882624i \(-0.655775\pi\)
−0.470080 + 0.882624i \(0.655775\pi\)
\(164\) 0 0
\(165\) −13.4311 18.7934i −1.04561 1.46307i
\(166\) 0 0
\(167\) 8.57472 + 14.8518i 0.663532 + 1.14927i 0.979681 + 0.200561i \(0.0642765\pi\)
−0.316150 + 0.948709i \(0.602390\pi\)
\(168\) 0 0
\(169\) −5.02106 + 8.69673i −0.386235 + 0.668979i
\(170\) 0 0
\(171\) −3.23377 1.10687i −0.247293 0.0846447i
\(172\) 0 0
\(173\) −0.993738 + 1.72121i −0.0755525 + 0.130861i −0.901326 0.433140i \(-0.857405\pi\)
0.825774 + 0.564001i \(0.190739\pi\)
\(174\) 0 0
\(175\) −0.807090 + 1.11249i −0.0610103 + 0.0840964i
\(176\) 0 0
\(177\) 3.51563 + 1.59829i 0.264251 + 0.120135i
\(178\) 0 0
\(179\) 8.31122i 0.621210i 0.950539 + 0.310605i \(0.100532\pi\)
−0.950539 + 0.310605i \(0.899468\pi\)
\(180\) 0 0
\(181\) 15.4541i 1.14870i 0.818611 + 0.574348i \(0.194744\pi\)
−0.818611 + 0.574348i \(0.805256\pi\)
\(182\) 0 0
\(183\) −15.5148 + 1.50821i −1.14689 + 0.111490i
\(184\) 0 0
\(185\) 10.8044 + 18.7137i 0.794354 + 1.37586i
\(186\) 0 0
\(187\) 8.69581 + 5.02053i 0.635901 + 0.367137i
\(188\) 0 0
\(189\) −2.55175 13.5088i −0.185613 0.982623i
\(190\) 0 0
\(191\) −10.6851 6.16904i −0.773146 0.446376i 0.0608498 0.998147i \(-0.480619\pi\)
−0.833996 + 0.551771i \(0.813952\pi\)
\(192\) 0 0
\(193\) −2.19694 3.80521i −0.158139 0.273905i 0.776058 0.630661i \(-0.217216\pi\)
−0.934198 + 0.356756i \(0.883883\pi\)
\(194\) 0 0
\(195\) 6.96559 0.677132i 0.498816 0.0484904i
\(196\) 0 0
\(197\) 10.8865i 0.775632i −0.921737 0.387816i \(-0.873230\pi\)
0.921737 0.387816i \(-0.126770\pi\)
\(198\) 0 0
\(199\) 27.5665i 1.95414i 0.212926 + 0.977068i \(0.431701\pi\)
−0.212926 + 0.977068i \(0.568299\pi\)
\(200\) 0 0
\(201\) 17.1413 + 7.79283i 1.20905 + 0.549664i
\(202\) 0 0
\(203\) 8.89940 + 6.45634i 0.624616 + 0.453146i
\(204\) 0 0
\(205\) −9.39060 + 16.2650i −0.655868 + 1.13600i
\(206\) 0 0
\(207\) −2.12349 10.8189i −0.147593 0.751962i
\(208\) 0 0
\(209\) 3.23377 5.60106i 0.223685 0.387433i
\(210\) 0 0
\(211\) −5.15561 8.92978i −0.354927 0.614751i 0.632179 0.774823i \(-0.282161\pi\)
−0.987105 + 0.160071i \(0.948828\pi\)
\(212\) 0 0
\(213\) −4.55313 6.37094i −0.311976 0.436530i
\(214\) 0 0
\(215\) 8.27223 0.564161
\(216\) 0 0
\(217\) −20.2246 + 9.02143i −1.37293 + 0.612415i
\(218\) 0 0
\(219\) −5.38024 7.52827i −0.363563 0.508713i
\(220\) 0 0
\(221\) −2.63455 + 1.52106i −0.177219 + 0.102318i
\(222\) 0 0
\(223\) −6.24329 3.60456i −0.418081 0.241379i 0.276175 0.961107i \(-0.410933\pi\)
−0.694256 + 0.719728i \(0.744267\pi\)
\(224\) 0 0
\(225\) 1.02458 + 1.17430i 0.0683053 + 0.0782870i
\(226\) 0 0
\(227\) 6.37800 11.0470i 0.423323 0.733217i −0.572939 0.819598i \(-0.694197\pi\)
0.996262 + 0.0863812i \(0.0275303\pi\)
\(228\) 0 0
\(229\) −3.89208 + 2.24709i −0.257196 + 0.148492i −0.623055 0.782178i \(-0.714109\pi\)
0.365859 + 0.930670i \(0.380775\pi\)
\(230\) 0 0
\(231\) 26.0131 + 0.185150i 1.71154 + 0.0121820i
\(232\) 0 0
\(233\) 2.15403i 0.141115i −0.997508 0.0705577i \(-0.977522\pi\)
0.997508 0.0705577i \(-0.0224779\pi\)
\(234\) 0 0
\(235\) −27.7456 −1.80993
\(236\) 0 0
\(237\) 2.18336 + 22.4600i 0.141825 + 1.45894i
\(238\) 0 0
\(239\) 8.78317 5.07096i 0.568136 0.328013i −0.188269 0.982118i \(-0.560288\pi\)
0.756404 + 0.654104i \(0.226954\pi\)
\(240\) 0 0
\(241\) −9.13490 5.27404i −0.588431 0.339731i 0.176046 0.984382i \(-0.443669\pi\)
−0.764477 + 0.644651i \(0.777003\pi\)
\(242\) 0 0
\(243\) −15.5766 0.608830i −0.999237 0.0390564i
\(244\) 0 0
\(245\) −5.10370 15.6335i −0.326064 0.998789i
\(246\) 0 0
\(247\) 0.979729 + 1.69694i 0.0623387 + 0.107974i
\(248\) 0 0
\(249\) 2.10251 + 21.6283i 0.133241 + 1.37064i
\(250\) 0 0
\(251\) −29.3005 −1.84943 −0.924714 0.380662i \(-0.875696\pi\)
−0.924714 + 0.380662i \(0.875696\pi\)
\(252\) 0 0
\(253\) 20.8623 1.31160
\(254\) 0 0
\(255\) −6.55238 2.97887i −0.410326 0.186544i
\(256\) 0 0
\(257\) 3.81430 + 6.60656i 0.237930 + 0.412106i 0.960120 0.279588i \(-0.0901979\pi\)
−0.722190 + 0.691694i \(0.756865\pi\)
\(258\) 0 0
\(259\) −24.2034 2.52685i −1.50392 0.157011i
\(260\) 0 0
\(261\) 9.39388 8.19615i 0.581467 0.507329i
\(262\) 0 0
\(263\) 10.5531 + 6.09281i 0.650729 + 0.375699i 0.788736 0.614733i \(-0.210736\pi\)
−0.138006 + 0.990431i \(0.544069\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.63613 1.16930i 0.100129 0.0715597i
\(268\) 0 0
\(269\) −2.77433 −0.169154 −0.0845771 0.996417i \(-0.526954\pi\)
−0.0845771 + 0.996417i \(0.526954\pi\)
\(270\) 0 0
\(271\) 3.20793i 0.194868i −0.995242 0.0974338i \(-0.968937\pi\)
0.995242 0.0974338i \(-0.0310634\pi\)
\(272\) 0 0
\(273\) −3.98915 + 6.79722i −0.241434 + 0.411386i
\(274\) 0 0
\(275\) −2.55385 + 1.47446i −0.154003 + 0.0889135i
\(276\) 0 0
\(277\) −5.04054 + 8.73047i −0.302857 + 0.524563i −0.976782 0.214236i \(-0.931274\pi\)
0.673925 + 0.738800i \(0.264607\pi\)
\(278\) 0 0
\(279\) 4.83634 + 24.6404i 0.289544 + 1.47518i
\(280\) 0 0
\(281\) 4.21999 + 2.43641i 0.251743 + 0.145344i 0.620562 0.784157i \(-0.286904\pi\)
−0.368819 + 0.929501i \(0.620238\pi\)
\(282\) 0 0
\(283\) −2.44030 + 1.40891i −0.145061 + 0.0837508i −0.570774 0.821107i \(-0.693357\pi\)
0.425713 + 0.904858i \(0.360023\pi\)
\(284\) 0 0
\(285\) −1.91872 + 4.22045i −0.113655 + 0.249998i
\(286\) 0 0
\(287\) −8.61618 19.3161i −0.508597 1.14019i
\(288\) 0 0
\(289\) −13.8712 −0.815956
\(290\) 0 0
\(291\) 7.91341 0.769270i 0.463892 0.0450954i
\(292\) 0 0
\(293\) 4.05694 + 7.02683i 0.237009 + 0.410512i 0.959855 0.280498i \(-0.0904995\pi\)
−0.722846 + 0.691010i \(0.757166\pi\)
\(294\) 0 0
\(295\) 2.61914 4.53648i 0.152492 0.264124i
\(296\) 0 0
\(297\) 6.80728 28.7006i 0.394999 1.66538i
\(298\) 0 0
\(299\) −3.16030 + 5.47381i −0.182765 + 0.316558i
\(300\) 0 0
\(301\) −5.47047 + 7.54049i −0.315313 + 0.434626i
\(302\) 0 0
\(303\) 1.10993 + 11.4177i 0.0637637 + 0.655931i
\(304\) 0 0
\(305\) 21.1435i 1.21067i
\(306\) 0 0
\(307\) 10.8996i 0.622074i 0.950398 + 0.311037i \(0.100676\pi\)
−0.950398 + 0.311037i \(0.899324\pi\)
\(308\) 0 0
\(309\) −4.20046 + 9.23943i −0.238956 + 0.525613i
\(310\) 0 0
\(311\) 4.11819 + 7.13291i 0.233521 + 0.404470i 0.958842 0.283941i \(-0.0916419\pi\)
−0.725321 + 0.688411i \(0.758309\pi\)
\(312\) 0 0
\(313\) 29.2736 + 16.9011i 1.65464 + 0.955308i 0.975127 + 0.221648i \(0.0711435\pi\)
0.679516 + 0.733661i \(0.262190\pi\)
\(314\) 0 0
\(315\) −18.5723 + 1.67209i −1.04643 + 0.0942115i
\(316\) 0 0
\(317\) 5.82913 + 3.36545i 0.327396 + 0.189022i 0.654685 0.755902i \(-0.272801\pi\)
−0.327288 + 0.944925i \(0.606135\pi\)
\(318\) 0 0
\(319\) 11.7950 + 20.4296i 0.660394 + 1.14384i
\(320\) 0 0
\(321\) 4.74909 + 6.64513i 0.265068 + 0.370895i
\(322\) 0 0
\(323\) 2.01526i 0.112132i
\(324\) 0 0
\(325\) 0.893431i 0.0495586i
\(326\) 0 0
\(327\) 5.97022 4.26675i 0.330154 0.235952i
\(328\) 0 0
\(329\) 18.3484 25.2913i 1.01158 1.39436i
\(330\) 0 0
\(331\) −16.0284 + 27.7621i −0.881002 + 1.52594i −0.0307744 + 0.999526i \(0.509797\pi\)
−0.850228 + 0.526415i \(0.823536\pi\)
\(332\) 0 0
\(333\) −8.93579 + 26.1062i −0.489678 + 1.43061i
\(334\) 0 0
\(335\) 12.7702 22.1187i 0.697712 1.20847i
\(336\) 0 0
\(337\) −12.1123 20.9791i −0.659799 1.14280i −0.980668 0.195681i \(-0.937308\pi\)
0.320869 0.947124i \(-0.396025\pi\)
\(338\) 0 0
\(339\) 4.89758 10.7728i 0.266000 0.585100i
\(340\) 0 0
\(341\) −47.5148 −2.57307
\(342\) 0 0
\(343\) 17.6257 + 5.68629i 0.951700 + 0.307031i
\(344\) 0 0
\(345\) −14.8846 + 1.44694i −0.801357 + 0.0779007i
\(346\) 0 0
\(347\) −19.7453 + 11.3999i −1.05998 + 0.611981i −0.925427 0.378926i \(-0.876294\pi\)
−0.134554 + 0.990906i \(0.542960\pi\)
\(348\) 0 0
\(349\) 2.46389 + 1.42253i 0.131889 + 0.0761461i 0.564493 0.825438i \(-0.309072\pi\)
−0.432604 + 0.901584i \(0.642405\pi\)
\(350\) 0 0
\(351\) 6.49921 + 6.13376i 0.346902 + 0.327396i
\(352\) 0 0
\(353\) 3.57212 6.18709i 0.190125 0.329306i −0.755167 0.655533i \(-0.772444\pi\)
0.945291 + 0.326227i \(0.105777\pi\)
\(354\) 0 0
\(355\) −9.19856 + 5.31079i −0.488209 + 0.281868i
\(356\) 0 0
\(357\) 7.04849 4.00283i 0.373046 0.211852i
\(358\) 0 0
\(359\) 11.6037i 0.612421i 0.951964 + 0.306210i \(0.0990611\pi\)
−0.951964 + 0.306210i \(0.900939\pi\)
\(360\) 0 0
\(361\) 17.7019 0.931682
\(362\) 0 0
\(363\) 33.4660 + 15.2144i 1.75651 + 0.798550i
\(364\) 0 0
\(365\) −10.8695 + 6.27554i −0.568938 + 0.328477i
\(366\) 0 0
\(367\) 6.78525 + 3.91747i 0.354187 + 0.204490i 0.666528 0.745480i \(-0.267780\pi\)
−0.312341 + 0.949970i \(0.601113\pi\)
\(368\) 0 0
\(369\) −23.5335 + 4.61909i −1.22511 + 0.240460i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −12.8339 22.2289i −0.664512 1.15097i −0.979417 0.201845i \(-0.935306\pi\)
0.314905 0.949123i \(-0.398027\pi\)
\(374\) 0 0
\(375\) −14.8334 + 10.6010i −0.765994 + 0.547434i
\(376\) 0 0
\(377\) −7.14702 −0.368091
\(378\) 0 0
\(379\) 15.1045 0.775868 0.387934 0.921687i \(-0.373189\pi\)
0.387934 + 0.921687i \(0.373189\pi\)
\(380\) 0 0
\(381\) 9.40856 6.72404i 0.482015 0.344483i
\(382\) 0 0
\(383\) 0.763322 + 1.32211i 0.0390040 + 0.0675568i 0.884868 0.465841i \(-0.154248\pi\)
−0.845864 + 0.533398i \(0.820915\pi\)
\(384\) 0 0
\(385\) 3.66388 35.0944i 0.186729 1.78858i
\(386\) 0 0
\(387\) 6.94462 + 7.95946i 0.353015 + 0.404602i
\(388\) 0 0
\(389\) 12.8948 + 7.44483i 0.653794 + 0.377468i 0.789908 0.613225i \(-0.210128\pi\)
−0.136115 + 0.990693i \(0.543462\pi\)
\(390\) 0 0
\(391\) 5.62969 3.25030i 0.284706 0.164375i
\(392\) 0 0
\(393\) 11.7832 + 5.35691i 0.594382 + 0.270220i
\(394\) 0 0
\(395\) 30.6085 1.54008
\(396\) 0 0
\(397\) 28.7869i 1.44478i −0.691488 0.722388i \(-0.743045\pi\)
0.691488 0.722388i \(-0.256955\pi\)
\(398\) 0 0
\(399\) −2.57826 4.54000i −0.129075 0.227284i
\(400\) 0 0
\(401\) −33.0592 + 19.0868i −1.65090 + 0.953147i −0.674196 + 0.738552i \(0.735510\pi\)
−0.976703 + 0.214595i \(0.931157\pi\)
\(402\) 0 0
\(403\) 7.19773 12.4668i 0.358544 0.621017i
\(404\) 0 0
\(405\) −2.86619 + 20.9491i −0.142422 + 1.04097i
\(406\) 0 0
\(407\) −45.2173 26.1062i −2.24134 1.29404i
\(408\) 0 0
\(409\) −6.03355 + 3.48347i −0.298340 + 0.172247i −0.641697 0.766958i \(-0.721769\pi\)
0.343357 + 0.939205i \(0.388436\pi\)
\(410\) 0 0
\(411\) 13.7705 1.33865i 0.679250 0.0660305i
\(412\) 0 0
\(413\) 2.40314 + 5.38745i 0.118251 + 0.265099i
\(414\) 0 0
\(415\) 29.4750 1.44687
\(416\) 0 0
\(417\) 14.8818 32.7344i 0.728766 1.60301i
\(418\) 0 0
\(419\) −17.4232 30.1778i −0.851177 1.47428i −0.880146 0.474702i \(-0.842556\pi\)
0.0289690 0.999580i \(-0.490778\pi\)
\(420\) 0 0
\(421\) 2.84597 4.92936i 0.138704 0.240242i −0.788302 0.615288i \(-0.789040\pi\)
0.927006 + 0.375046i \(0.122373\pi\)
\(422\) 0 0
\(423\) −23.2928 26.6966i −1.13253 1.29803i
\(424\) 0 0
\(425\) −0.459437 + 0.795769i −0.0222860 + 0.0386005i
\(426\) 0 0
\(427\) −19.2732 13.9823i −0.932696 0.676652i
\(428\) 0 0
\(429\) −13.7578 + 9.83228i −0.664231 + 0.474707i
\(430\) 0 0
\(431\) 30.2936i 1.45919i −0.683880 0.729595i \(-0.739709\pi\)
0.683880 0.729595i \(-0.260291\pi\)
\(432\) 0 0
\(433\) 23.6094i 1.13459i −0.823513 0.567297i \(-0.807989\pi\)
0.823513 0.567297i \(-0.192011\pi\)
\(434\) 0 0
\(435\) −9.83228 13.7578i −0.471422 0.659634i
\(436\) 0 0
\(437\) −2.09355 3.62614i −0.100148 0.173462i
\(438\) 0 0
\(439\) 21.6681 + 12.5101i 1.03416 + 0.597075i 0.918175 0.396175i \(-0.129663\pi\)
0.115989 + 0.993250i \(0.462996\pi\)
\(440\) 0 0
\(441\) 10.7578 18.0352i 0.512277 0.858820i
\(442\) 0 0
\(443\) 19.9446 + 11.5150i 0.947595 + 0.547094i 0.892333 0.451377i \(-0.149067\pi\)
0.0552622 + 0.998472i \(0.482401\pi\)
\(444\) 0 0
\(445\) −1.36387 2.36229i −0.0646537 0.111983i
\(446\) 0 0
\(447\) −0.858568 + 1.88853i −0.0406089 + 0.0893242i
\(448\) 0 0
\(449\) 15.9028i 0.750501i −0.926923 0.375251i \(-0.877557\pi\)
0.926923 0.375251i \(-0.122443\pi\)
\(450\) 0 0
\(451\) 45.3804i 2.13688i
\(452\) 0 0
\(453\) −2.55140 26.2460i −0.119875 1.23315i
\(454\) 0 0
\(455\) 8.65298 + 6.27756i 0.405658 + 0.294297i
\(456\) 0 0
\(457\) 2.83307 4.90702i 0.132525 0.229541i −0.792124 0.610360i \(-0.791025\pi\)
0.924649 + 0.380819i \(0.124358\pi\)
\(458\) 0 0
\(459\) −2.63455 8.80542i −0.122970 0.411002i
\(460\) 0 0
\(461\) 15.7292 27.2438i 0.732582 1.26887i −0.223194 0.974774i \(-0.571648\pi\)
0.955776 0.294095i \(-0.0950183\pi\)
\(462\) 0 0
\(463\) −4.55148 7.88340i −0.211525 0.366373i 0.740667 0.671873i \(-0.234510\pi\)
−0.952192 + 0.305500i \(0.901176\pi\)
\(464\) 0 0
\(465\) 33.9002 3.29547i 1.57209 0.152824i
\(466\) 0 0
\(467\) −30.3032 −1.40226 −0.701132 0.713032i \(-0.747322\pi\)
−0.701132 + 0.713032i \(0.747322\pi\)
\(468\) 0 0
\(469\) 11.7171 + 26.2678i 0.541045 + 1.21293i
\(470\) 0 0
\(471\) −7.18761 + 15.8100i −0.331188 + 0.728487i
\(472\) 0 0
\(473\) −17.3100 + 9.99395i −0.795916 + 0.459522i
\(474\) 0 0
\(475\) 0.512563 + 0.295928i 0.0235180 + 0.0135781i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.33143 + 4.03816i −0.106526 + 0.184508i −0.914361 0.404901i \(-0.867306\pi\)
0.807835 + 0.589409i \(0.200639\pi\)
\(480\) 0 0
\(481\) 13.6994 7.90935i 0.624639 0.360636i
\(482\) 0 0
\(483\) 8.52429 14.5248i 0.387869 0.660900i
\(484\) 0 0
\(485\) 10.7844i 0.489693i
\(486\) 0 0
\(487\) 19.4821 0.882818 0.441409 0.897306i \(-0.354479\pi\)
0.441409 + 0.897306i \(0.354479\pi\)
\(488\) 0 0
\(489\) −16.9145 + 12.0883i −0.764900 + 0.546652i
\(490\) 0 0
\(491\) 17.7437 10.2443i 0.800762 0.462320i −0.0429758 0.999076i \(-0.513684\pi\)
0.843737 + 0.536756i \(0.180351\pi\)
\(492\) 0 0
\(493\) 6.36577 + 3.67528i 0.286700 + 0.165526i
\(494\) 0 0
\(495\) −37.8535 12.9567i −1.70139 0.582361i
\(496\) 0 0
\(497\) 1.24205 11.8969i 0.0557135 0.533651i
\(498\) 0 0
\(499\) −5.12598 8.87845i −0.229470 0.397454i 0.728181 0.685385i \(-0.240366\pi\)
−0.957651 + 0.287931i \(0.907033\pi\)
\(500\) 0 0
\(501\) 27.0405 + 12.2932i 1.20808 + 0.549221i
\(502\) 0 0
\(503\) −14.5521 −0.648845 −0.324422 0.945912i \(-0.605170\pi\)
−0.324422 + 0.945912i \(0.605170\pi\)
\(504\) 0 0
\(505\) 15.5600 0.692412
\(506\) 0 0
\(507\) 1.68290 + 17.3119i 0.0747403 + 0.768846i
\(508\) 0 0
\(509\) 16.6617 + 28.8589i 0.738517 + 1.27915i 0.953163 + 0.302457i \(0.0978068\pi\)
−0.214646 + 0.976692i \(0.568860\pi\)
\(510\) 0 0
\(511\) 1.46768 14.0581i 0.0649262 0.621894i
\(512\) 0 0
\(513\) −5.67166 + 1.69694i −0.250410 + 0.0749218i
\(514\) 0 0
\(515\) 11.9223 + 6.88335i 0.525360 + 0.303317i
\(516\) 0 0
\(517\) 58.0591 33.5204i 2.55343 1.47423i
\(518\) 0 0
\(519\) 0.333070 + 3.42626i 0.0146202 + 0.150396i
\(520\) 0 0
\(521\) 6.53925 0.286490 0.143245 0.989687i \(-0.454246\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(522\) 0 0
\(523\) 0.786858i 0.0344069i −0.999852 0.0172034i \(-0.994524\pi\)
0.999852 0.0172034i \(-0.00547630\pi\)
\(524\) 0 0
\(525\) −0.0169434 + 2.38051i −0.000739472 + 0.103894i
\(526\) 0 0
\(527\) −12.8219 + 7.40271i −0.558530 + 0.322467i
\(528\) 0 0
\(529\) −4.74685 + 8.22178i −0.206385 + 0.357469i
\(530\) 0 0
\(531\) 6.56374 1.28831i 0.284842 0.0559079i
\(532\) 0 0
\(533\) 11.9068 + 6.87440i 0.515741 + 0.297763i
\(534\) 0 0
\(535\) 9.59445 5.53936i 0.414804 0.239487i
\(536\) 0 0
\(537\) 8.37019 + 11.7119i 0.361200 + 0.505407i
\(538\) 0 0
\(539\) 29.5671 + 26.5479i 1.27354 + 1.14350i
\(540\) 0 0
\(541\) 5.60454 0.240958 0.120479 0.992716i \(-0.461557\pi\)
0.120479 + 0.992716i \(0.461557\pi\)
\(542\) 0 0
\(543\) 15.5638 + 21.7775i 0.667905 + 0.934561i
\(544\) 0 0
\(545\) −4.97675 8.61999i −0.213181 0.369240i
\(546\) 0 0
\(547\) 6.91456 11.9764i 0.295645 0.512073i −0.679489 0.733685i \(-0.737799\pi\)
0.975135 + 0.221612i \(0.0711320\pi\)
\(548\) 0 0
\(549\) −20.3441 + 17.7502i −0.868264 + 0.757559i
\(550\) 0 0
\(551\) 2.36729 4.10026i 0.100850 0.174677i
\(552\) 0 0
\(553\) −20.2415 + 27.9009i −0.860758 + 1.18647i
\(554\) 0 0
\(555\) 34.0717 + 15.4898i 1.44626 + 0.657506i
\(556\) 0 0
\(557\) 27.8233i 1.17891i −0.807800 0.589456i \(-0.799342\pi\)
0.807800 0.589456i \(-0.200658\pi\)
\(558\) 0 0
\(559\) 6.05569i 0.256128i
\(560\) 0 0
\(561\) 17.3100 1.68272i 0.730830 0.0710447i
\(562\) 0 0
\(563\) 12.2650 + 21.2436i 0.516909 + 0.895312i 0.999807 + 0.0196359i \(0.00625069\pi\)
−0.482898 + 0.875676i \(0.660416\pi\)
\(564\) 0 0
\(565\) −13.9010 8.02574i −0.584819 0.337645i
\(566\) 0 0
\(567\) −17.2005 16.4664i −0.722354 0.691523i
\(568\) 0 0
\(569\) −23.4762 13.5540i −0.984172 0.568212i −0.0806449 0.996743i \(-0.525698\pi\)
−0.903527 + 0.428531i \(0.859031\pi\)
\(570\) 0 0
\(571\) −14.9177 25.8382i −0.624287 1.08130i −0.988678 0.150051i \(-0.952056\pi\)
0.364391 0.931246i \(-0.381277\pi\)
\(572\) 0 0
\(573\) −21.2699 + 2.06767i −0.888563 + 0.0863781i
\(574\) 0 0
\(575\) 1.90915i 0.0796169i
\(576\) 0 0
\(577\) 28.1666i 1.17259i 0.810097 + 0.586296i \(0.199415\pi\)
−0.810097 + 0.586296i \(0.800585\pi\)
\(578\) 0 0
\(579\) −6.92807 3.14967i −0.287921 0.130896i
\(580\) 0 0
\(581\) −19.4920 + 26.8677i −0.808663 + 1.11466i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 9.13376 7.96920i 0.377635 0.329486i
\(586\) 0 0
\(587\) 4.95928 8.58973i 0.204692 0.354536i −0.745343 0.666681i \(-0.767714\pi\)
0.950034 + 0.312145i \(0.101048\pi\)
\(588\) 0 0
\(589\) 4.76816 + 8.25870i 0.196469 + 0.340294i
\(590\) 0 0
\(591\) −10.9637 15.3409i −0.450988 0.631042i
\(592\) 0 0
\(593\) 4.69872 0.192953 0.0964766 0.995335i \(-0.469243\pi\)
0.0964766 + 0.995335i \(0.469243\pi\)
\(594\) 0 0
\(595\) −4.47894 10.0411i −0.183619 0.411643i
\(596\) 0 0
\(597\) 27.7621 + 38.8459i 1.13623 + 1.58986i
\(598\) 0 0
\(599\) −12.7309 + 7.35019i −0.520170 + 0.300320i −0.737004 0.675888i \(-0.763760\pi\)
0.216834 + 0.976208i \(0.430427\pi\)
\(600\) 0 0
\(601\) −16.2923 9.40634i −0.664575 0.383693i 0.129443 0.991587i \(-0.458681\pi\)
−0.794018 + 0.607894i \(0.792014\pi\)
\(602\) 0 0
\(603\) 32.0031 6.28147i 1.30327 0.255801i
\(604\) 0 0
\(605\) 24.9321 43.1836i 1.01363 1.75566i
\(606\) 0 0
\(607\) 10.9051 6.29608i 0.442625 0.255550i −0.262085 0.965045i \(-0.584410\pi\)
0.704711 + 0.709495i \(0.251077\pi\)
\(608\) 0 0
\(609\) 19.0429 + 0.135539i 0.771658 + 0.00549233i
\(610\) 0 0
\(611\) 20.3112i 0.821704i
\(612\) 0 0
\(613\) −9.82017 −0.396633 −0.198317 0.980138i \(-0.563547\pi\)
−0.198317 + 0.980138i \(0.563547\pi\)
\(614\) 0 0
\(615\) 3.14744 + 32.3774i 0.126917 + 1.30558i
\(616\) 0 0
\(617\) −3.25158 + 1.87730i −0.130904 + 0.0755772i −0.564022 0.825760i \(-0.690747\pi\)
0.433118 + 0.901337i \(0.357413\pi\)
\(618\) 0 0
\(619\) 9.56902 + 5.52468i 0.384611 + 0.222055i 0.679823 0.733376i \(-0.262057\pi\)
−0.295211 + 0.955432i \(0.595390\pi\)
\(620\) 0 0
\(621\) −13.8880 13.1071i −0.557305 0.525968i
\(622\) 0 0
\(623\) 3.05527 + 0.318972i 0.122407 + 0.0127794i
\(624\) 0 0
\(625\) 13.6638 + 23.6664i 0.546551 + 0.946654i
\(626\) 0 0
\(627\) −1.08386 11.1496i −0.0432852 0.445270i
\(628\) 0 0
\(629\) −16.2692 −0.648696
\(630\) 0 0
\(631\) −19.4921 −0.775969 −0.387984 0.921666i \(-0.626829\pi\)
−0.387984 + 0.921666i \(0.626829\pi\)
\(632\) 0 0
\(633\) −16.2583 7.39139i −0.646208 0.293781i
\(634\) 0 0
\(635\) −7.84294 13.5844i −0.311238 0.539080i
\(636\) 0 0
\(637\) −11.4445 + 3.73617i −0.453449 + 0.148032i
\(638\) 0 0
\(639\) −12.8323 4.39230i −0.507637 0.173757i
\(640\) 0 0
\(641\) −22.6669 13.0868i −0.895290 0.516896i −0.0196208 0.999807i \(-0.506246\pi\)
−0.875669 + 0.482912i \(0.839579\pi\)
\(642\) 0 0
\(643\) 9.50955 5.49034i 0.375020 0.216518i −0.300629 0.953741i \(-0.597197\pi\)
0.675649 + 0.737223i \(0.263863\pi\)
\(644\) 0 0
\(645\) 11.6570 8.33092i 0.458993 0.328029i
\(646\) 0 0
\(647\) 32.0126 1.25855 0.629273 0.777185i \(-0.283353\pi\)
0.629273 + 0.777185i \(0.283353\pi\)
\(648\) 0 0
\(649\) 12.6570i 0.496833i
\(650\) 0 0
\(651\) −19.4144 + 33.0808i −0.760912 + 1.29654i
\(652\) 0 0
\(653\) 19.3686 11.1825i 0.757952 0.437604i −0.0706080 0.997504i \(-0.522494\pi\)
0.828560 + 0.559900i \(0.189161\pi\)
\(654\) 0 0
\(655\) 8.77843 15.2047i 0.343002 0.594097i
\(656\) 0 0
\(657\) −15.1634 5.19020i −0.591579 0.202489i
\(658\) 0 0
\(659\) 19.2546 + 11.1166i 0.750053 + 0.433043i 0.825713 0.564091i \(-0.190773\pi\)
−0.0756603 + 0.997134i \(0.524106\pi\)
\(660\) 0 0
\(661\) 9.13646 5.27494i 0.355367 0.205171i −0.311679 0.950187i \(-0.600892\pi\)
0.667047 + 0.745016i \(0.267558\pi\)
\(662\) 0 0
\(663\) −2.18068 + 4.79667i −0.0846907 + 0.186287i
\(664\) 0 0
\(665\) −6.46754 + 2.88493i −0.250801 + 0.111873i
\(666\) 0 0
\(667\) 15.2723 0.591344
\(668\) 0 0
\(669\) −12.4280 + 1.20814i −0.480494 + 0.0467093i
\(670\) 0 0
\(671\) −25.5442 44.2438i −0.986121 1.70801i
\(672\) 0 0
\(673\) 9.93562 17.2090i 0.382990 0.663358i −0.608498 0.793555i \(-0.708228\pi\)
0.991488 + 0.130197i \(0.0415610\pi\)
\(674\) 0 0
\(675\) 2.62644 + 0.622947i 0.101092 + 0.0239772i
\(676\) 0 0
\(677\) 7.96449 13.7949i 0.306100 0.530181i −0.671405 0.741090i \(-0.734309\pi\)
0.977506 + 0.210909i \(0.0676424\pi\)
\(678\) 0 0
\(679\) 9.83041 + 7.13176i 0.377256 + 0.273692i
\(680\) 0 0
\(681\) −2.13771 21.9904i −0.0819171 0.842673i
\(682\) 0 0
\(683\) 19.0269i 0.728042i −0.931391 0.364021i \(-0.881404\pi\)
0.931391 0.364021i \(-0.118596\pi\)
\(684\) 0 0
\(685\) 18.7664i 0.717028i
\(686\) 0 0
\(687\) −3.22157 + 7.08623i −0.122910 + 0.270356i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.139477 + 0.0805273i 0.00530597 + 0.00306340i 0.502651 0.864490i \(-0.332358\pi\)
−0.497345 + 0.867553i \(0.665692\pi\)
\(692\) 0 0
\(693\) 36.8434 25.9368i 1.39956 0.985256i
\(694\) 0 0
\(695\) −42.2396 24.3870i −1.60224 0.925053i
\(696\) 0 0
\(697\) −7.07017 12.2459i −0.267802 0.463847i
\(698\) 0 0
\(699\) −2.16932 3.03540i −0.0820511 0.114809i
\(700\) 0 0
\(701\) 9.98234i 0.377028i −0.982071 0.188514i \(-0.939633\pi\)
0.982071 0.188514i \(-0.0603670\pi\)
\(702\) 0 0
\(703\) 10.4792i 0.395229i
\(704\) 0 0
\(705\) −39.0983 + 27.9425i −1.47253 + 1.05237i
\(706\) 0 0
\(707\) −10.2899 + 14.1836i −0.386993 + 0.533430i
\(708\) 0 0
\(709\) 12.1962 21.1244i 0.458036 0.793342i −0.540821 0.841138i \(-0.681886\pi\)
0.998857 + 0.0477959i \(0.0152197\pi\)
\(710\) 0 0
\(711\) 25.6961 + 29.4512i 0.963679 + 1.10450i
\(712\) 0 0
\(713\) −15.3806 + 26.6400i −0.576008 + 0.997676i
\(714\) 0 0
\(715\) 11.4684 + 19.8639i 0.428894 + 0.742867i
\(716\) 0 0
\(717\) 7.27004 15.9913i 0.271504 0.597207i
\(718\) 0 0
\(719\) −16.2692 −0.606739 −0.303370 0.952873i \(-0.598112\pi\)
−0.303370 + 0.952873i \(0.598112\pi\)
\(720\) 0 0
\(721\) −14.1588 + 6.31570i −0.527300 + 0.235209i
\(722\) 0 0
\(723\) −18.1841 + 1.76769i −0.676274 + 0.0657412i
\(724\) 0 0
\(725\) −1.86955 + 1.07938i −0.0694332 + 0.0400873i
\(726\) 0 0
\(727\) 20.6626 + 11.9296i 0.766335 + 0.442444i 0.831566 0.555427i \(-0.187445\pi\)
−0.0652306 + 0.997870i \(0.520778\pi\)
\(728\) 0 0
\(729\) −22.5632 + 14.8291i −0.835673 + 0.549227i
\(730\) 0 0
\(731\) −3.11408 + 5.39374i −0.115178 + 0.199495i
\(732\) 0 0
\(733\) −10.6259 + 6.13486i −0.392476 + 0.226596i −0.683233 0.730201i \(-0.739426\pi\)
0.290756 + 0.956797i \(0.406093\pi\)
\(734\) 0 0
\(735\) −22.9364 16.8904i −0.846022 0.623011i
\(736\) 0 0
\(737\) 61.7125i 2.27321i
\(738\) 0 0
\(739\) −41.8891 −1.54092 −0.770459 0.637490i \(-0.779973\pi\)
−0.770459 + 0.637490i \(0.779973\pi\)
\(740\) 0 0
\(741\) 3.08959 + 1.40460i 0.113499 + 0.0515992i
\(742\) 0 0
\(743\) −43.9160 + 25.3549i −1.61112 + 0.930182i −0.622011 + 0.783008i \(0.713684\pi\)
−0.989111 + 0.147173i \(0.952982\pi\)
\(744\) 0 0
\(745\) 2.43690 + 1.40695i 0.0892813 + 0.0515466i
\(746\) 0 0
\(747\) 24.7445 + 28.3605i 0.905355 + 1.03766i
\(748\) 0 0
\(749\) −1.29550 + 12.4090i −0.0473367 + 0.453413i
\(750\) 0 0
\(751\) −16.3683 28.3508i −0.597289 1.03454i −0.993219 0.116255i \(-0.962911\pi\)
0.395930 0.918281i \(-0.370422\pi\)
\(752\) 0 0
\(753\) −41.2893 + 29.5083i −1.50467 + 1.07534i
\(754\) 0 0
\(755\) −35.7680 −1.30173
\(756\) 0 0
\(757\) −17.9255 −0.651512 −0.325756 0.945454i \(-0.605619\pi\)
−0.325756 + 0.945454i \(0.605619\pi\)
\(758\) 0 0
\(759\) 29.3985 21.0103i 1.06710 0.762626i
\(760\) 0 0
\(761\) −21.8509 37.8469i −0.792096 1.37195i −0.924667 0.380777i \(-0.875657\pi\)
0.132571 0.991174i \(-0.457677\pi\)
\(762\) 0 0
\(763\) 11.1486 + 1.16393i 0.403608 + 0.0421370i
\(764\) 0 0
\(765\) −12.2334 + 2.40114i −0.442300 + 0.0868132i
\(766\) 0 0
\(767\) −3.32093 1.91734i −0.119912 0.0692311i
\(768\) 0 0
\(769\) 37.0864 21.4118i 1.33737 0.772131i 0.350953 0.936393i \(-0.385858\pi\)
0.986417 + 0.164262i \(0.0525242\pi\)
\(770\) 0 0
\(771\) 12.0284 + 5.46841i 0.433193 + 0.196940i
\(772\) 0 0
\(773\) 21.6051 0.777080 0.388540 0.921432i \(-0.372980\pi\)
0.388540 + 0.921432i \(0.372980\pi\)
\(774\) 0 0
\(775\) 4.34816i 0.156191i
\(776\) 0 0
\(777\) −36.6514 + 20.8143i −1.31486 + 0.746709i
\(778\) 0 0
\(779\) −7.88771 + 4.55397i −0.282606 + 0.163163i
\(780\) 0 0
\(781\) 12.8323 22.2262i 0.459175 0.795315i
\(782\) 0 0
\(783\) 4.98328 21.0103i 0.178088 0.750847i
\(784\) 0 0
\(785\) 20.4008 + 11.7784i 0.728137 + 0.420390i
\(786\) 0 0
\(787\) −44.4307 + 25.6521i −1.58378 + 0.914398i −0.589484 + 0.807780i \(0.700669\pi\)
−0.994300 + 0.106618i \(0.965998\pi\)
\(788\) 0 0
\(789\) 21.0071 2.04212i 0.747872 0.0727014i
\(790\) 0 0
\(791\) 16.5086 7.36387i 0.586978 0.261829i
\(792\) 0 0
\(793\) 15.4781 0.549644
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.899094 + 1.55728i 0.0318476 + 0.0551616i 0.881510 0.472166i \(-0.156528\pi\)
−0.849662 + 0.527327i \(0.823194\pi\)
\(798\) 0 0
\(799\) 10.4448 18.0910i 0.369512 0.640013i
\(800\) 0 0
\(801\) 1.12799 3.29547i 0.0398557 0.116440i
\(802\) 0 0
\(803\) 15.1634 26.2637i 0.535103 0.926826i
\(804\) 0 0
\(805\) −18.4903 13.4143i −0.651697 0.472793i
\(806\) 0 0
\(807\) −3.90951 + 2.79402i −0.137621 + 0.0983541i
\(808\) 0 0
\(809\) 40.6883i 1.43052i −0.698857 0.715262i \(-0.746308\pi\)
0.698857 0.715262i \(-0.253692\pi\)
\(810\) 0 0
\(811\) 0.378710i 0.0132983i −0.999978 0.00664916i \(-0.997883\pi\)
0.999978 0.00664916i \(-0.00211651\pi\)
\(812\) 0 0
\(813\) −3.23068 4.52051i −0.113305 0.158541i
\(814\) 0 0
\(815\) 14.0999 + 24.4217i 0.493896 + 0.855453i
\(816\) 0 0
\(817\) 3.47416 + 2.00581i 0.121545 + 0.0701743i
\(818\) 0 0
\(819\) 1.22405 + 13.5959i 0.0427719 + 0.475079i
\(820\) 0 0
\(821\) 11.4968 + 6.63771i 0.401243 + 0.231658i 0.687020 0.726638i \(-0.258918\pi\)
−0.285777 + 0.958296i \(0.592252\pi\)
\(822\) 0 0
\(823\) 13.8711 + 24.0255i 0.483517 + 0.837476i 0.999821 0.0189295i \(-0.00602582\pi\)
−0.516304 + 0.856405i \(0.672692\pi\)
\(824\) 0 0
\(825\) −2.11388 + 4.64974i −0.0735959 + 0.161883i
\(826\) 0 0
\(827\) 27.7183i 0.963859i 0.876210 + 0.481929i \(0.160064\pi\)
−0.876210 + 0.481929i \(0.839936\pi\)
\(828\) 0 0
\(829\) 42.7361i 1.48429i 0.670242 + 0.742143i \(0.266190\pi\)
−0.670242 + 0.742143i \(0.733810\pi\)
\(830\) 0 0
\(831\) 1.68943 + 17.3790i 0.0586057 + 0.602872i
\(832\) 0 0
\(833\) 12.1148 + 2.55746i 0.419753 + 0.0886109i
\(834\) 0 0
\(835\) 20.1451 34.8923i 0.697149 1.20750i
\(836\) 0 0
\(837\) 31.6305 + 29.8519i 1.09331 + 1.03183i
\(838\) 0 0
\(839\) −1.92438 + 3.33313i −0.0664370 + 0.115072i −0.897331 0.441359i \(-0.854496\pi\)
0.830894 + 0.556431i \(0.187830\pi\)
\(840\) 0 0
\(841\) −5.86545 10.1593i −0.202257 0.350319i
\(842\) 0 0
\(843\) 8.40038 0.816609i 0.289324 0.0281255i
\(844\) 0 0
\(845\) 23.5925 0.811608
\(846\) 0 0
\(847\) 22.8760 + 51.2842i 0.786028 + 1.76215i
\(848\) 0 0
\(849\) −2.01989 + 4.44300i −0.0693225 + 0.152483i
\(850\) 0 0
\(851\) −29.2738 + 16.9013i −1.00349 + 0.579368i
\(852\) 0 0
\(853\) 26.3470 + 15.2114i 0.902103 + 0.520830i 0.877882 0.478877i \(-0.158956\pi\)
0.0242213 + 0.999707i \(0.492289\pi\)
\(854\) 0 0
\(855\) 1.54660 + 7.87967i 0.0528924 + 0.269479i
\(856\) 0 0
\(857\) −19.4657 + 33.7156i −0.664937 + 1.15170i 0.314366 + 0.949302i \(0.398208\pi\)
−0.979303 + 0.202402i \(0.935125\pi\)
\(858\) 0 0
\(859\) 11.5922 6.69275i 0.395520 0.228354i −0.289029 0.957320i \(-0.593332\pi\)
0.684549 + 0.728967i \(0.259999\pi\)
\(860\) 0 0
\(861\) −31.5948 18.5423i −1.07675 0.631921i
\(862\) 0 0
\(863\) 21.7219i 0.739424i −0.929146 0.369712i \(-0.879456\pi\)
0.929146 0.369712i \(-0.120544\pi\)
\(864\) 0 0
\(865\) 4.66929 0.158761
\(866\) 0 0
\(867\) −19.5469 + 13.9697i −0.663849 + 0.474434i
\(868\) 0 0
\(869\) −64.0496 + 36.9791i −2.17273 + 1.25443i
\(870\) 0 0
\(871\) −16.1920 9.34845i −0.548645 0.316760i
\(872\) 0 0
\(873\) 10.3766 9.05358i 0.351195 0.306417i
\(874\) 0 0
\(875\) −27.6995 2.89185i −0.936415 0.0977625i
\(876\) 0 0
\(877\) −0.196152 0.339746i −0.00662360 0.0114724i 0.862695 0.505725i \(-0.168775\pi\)
−0.869318 + 0.494253i \(0.835442\pi\)
\(878\) 0 0
\(879\) 12.7936 + 5.81628i 0.431518 + 0.196178i
\(880\) 0 0
\(881\) −43.3363 −1.46004 −0.730018 0.683427i \(-0.760489\pi\)
−0.730018 + 0.683427i \(0.760489\pi\)
\(882\) 0 0
\(883\) −2.17403 −0.0731618 −0.0365809 0.999331i \(-0.511647\pi\)
−0.0365809 + 0.999331i \(0.511647\pi\)
\(884\) 0 0
\(885\) −0.877852 9.03038i −0.0295087 0.303553i
\(886\) 0 0
\(887\) −5.72215 9.91105i −0.192131 0.332781i 0.753825 0.657075i \(-0.228207\pi\)
−0.945956 + 0.324294i \(0.894873\pi\)
\(888\) 0 0
\(889\) 17.5693 + 1.83425i 0.589256 + 0.0615188i
\(890\) 0 0
\(891\) −19.3116 47.2996i −0.646963 1.58460i
\(892\) 0 0
\(893\) −11.6526 6.72762i −0.389939 0.225131i
\(894\) 0 0
\(895\) 16.9100 9.76302i 0.565240 0.326342i
\(896\) 0 0
\(897\) 1.05923 + 10.8962i 0.0353668 + 0.363815i
\(898\) 0 0
\(899\) −34.7832 −1.16009
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −0.114843 + 16.1351i −0.00382173 + 0.536943i
\(904\) 0 0
\(905\) 31.4430 18.1536i 1.04520 0.603447i
\(906\) 0 0
\(907\) −26.9446 + 46.6694i −0.894680 + 1.54963i −0.0604797 + 0.998169i \(0.519263\pi\)
−0.834200 + 0.551462i \(0.814070\pi\)
\(908\) 0 0
\(909\) 13.0628 + 14.9717i 0.433266 + 0.496580i
\(910\) 0 0
\(911\) 7.00460 + 4.04411i 0.232073 + 0.133987i 0.611528 0.791223i \(-0.290555\pi\)
−0.379455 + 0.925210i \(0.623889\pi\)
\(912\) 0 0
\(913\) −61.6777 + 35.6097i −2.04124 + 1.17851i
\(914\) 0 0
\(915\) 21.2935 + 29.7948i 0.703942 + 0.984986i
\(916\) 0 0
\(917\) 8.05450 + 18.0569i 0.265983 + 0.596290i
\(918\) 0 0
\(919\) −25.6751 −0.846943 −0.423472 0.905909i \(-0.639189\pi\)
−0.423472 + 0.905909i \(0.639189\pi\)
\(920\) 0 0
\(921\) 10.9770 + 15.3594i 0.361703 + 0.506110i
\(922\) 0 0
\(923\) 3.88777 + 6.73382i 0.127968 + 0.221646i
\(924\) 0 0
\(925\) 2.38903 4.13792i 0.0785507 0.136054i
\(926\) 0 0
\(927\) 3.38581 + 17.2502i 0.111205 + 0.566570i
\(928\) 0 0
\(929\) −5.42618 + 9.39842i −0.178027 + 0.308352i −0.941205 0.337837i \(-0.890305\pi\)
0.763177 + 0.646189i \(0.223638\pi\)
\(930\) 0 0
\(931\) 1.64729 7.80326i 0.0539877 0.255742i
\(932\) 0 0
\(933\) 12.9867 + 5.90408i 0.425167 + 0.193291i
\(934\) 0 0
\(935\) 23.5900i 0.771477i
\(936\) 0 0
\(937\) 0.458120i 0.0149661i 0.999972 + 0.00748306i \(0.00238195\pi\)
−0.999972 + 0.00748306i \(0.997618\pi\)
\(938\) 0 0
\(939\) 58.2725 5.66473i 1.90165 0.184861i
\(940\) 0 0
\(941\) 3.68890 + 6.38937i 0.120255 + 0.208287i 0.919868 0.392228i \(-0.128296\pi\)
−0.799613 + 0.600515i \(0.794962\pi\)
\(942\) 0 0
\(943\) −25.4433 14.6897i −0.828548 0.478362i
\(944\) 0 0
\(945\) −24.4876 + 21.0603i −0.796583 + 0.685093i
\(946\) 0 0
\(947\) 10.3846 + 5.99552i 0.337453 + 0.194828i 0.659145 0.752016i \(-0.270918\pi\)
−0.321692 + 0.946844i \(0.604252\pi\)
\(948\) 0 0
\(949\) 4.59401 + 7.95706i 0.149128 + 0.258297i
\(950\) 0 0
\(951\) 11.6036 1.12799i 0.376271 0.0365777i
\(952\) 0 0
\(953\) 58.6883i 1.90110i −0.310572 0.950550i \(-0.600521\pi\)
0.310572 0.950550i \(-0.399479\pi\)
\(954\) 0 0
\(955\) 28.9866i 0.937983i
\(956\) 0 0
\(957\) 37.1957 + 16.9100i 1.20237 + 0.546624i
\(958\) 0 0
\(959\) 17.1064 + 12.4103i 0.552394 + 0.400751i
\(960\) 0 0
\(961\) 19.5300 33.8270i 0.630000 1.09119i
\(962\) 0 0
\(963\) 13.3846 + 4.58134i 0.431311 + 0.147632i
\(964\) 0 0
\(965\) −5.16140 + 8.93981i −0.166151 + 0.287783i
\(966\) 0 0
\(967\) 3.37560 + 5.84671i 0.108552 + 0.188018i 0.915184 0.403037i \(-0.132045\pi\)
−0.806632 + 0.591054i \(0.798712\pi\)
\(968\) 0 0
\(969\) −2.02956 2.83985i −0.0651988 0.0912290i
\(970\) 0 0
\(971\) −6.40724 −0.205618 −0.102809 0.994701i \(-0.532783\pi\)
−0.102809 + 0.994701i \(0.532783\pi\)
\(972\) 0 0
\(973\) 50.1631 22.3759i 1.60816 0.717338i
\(974\) 0 0
\(975\) −0.899769 1.25900i −0.0288157 0.0403201i
\(976\) 0 0
\(977\) 11.7769 6.79937i 0.376775 0.217531i −0.299639 0.954053i \(-0.596866\pi\)
0.676414 + 0.736521i \(0.263533\pi\)
\(978\) 0 0
\(979\) 5.70793 + 3.29547i 0.182426 + 0.105324i
\(980\) 0 0
\(981\) 4.11604 12.0252i 0.131415 0.383934i
\(982\) 0 0
\(983\) 11.3849 19.7192i 0.363122 0.628946i −0.625351 0.780344i \(-0.715044\pi\)
0.988473 + 0.151398i \(0.0483774\pi\)
\(984\) 0 0
\(985\) −22.1497 + 12.7882i −0.705749 + 0.407464i
\(986\) 0 0
\(987\) 0.385191 54.1183i 0.0122608 1.72261i
\(988\) 0 0
\(989\) 12.9402i 0.411475i
\(990\) 0 0
\(991\) 26.9905 0.857383 0.428691 0.903451i \(-0.358975\pi\)
0.428691 + 0.903451i \(0.358975\pi\)
\(992\) 0 0
\(993\) 5.37223 + 55.2636i 0.170483 + 1.75374i
\(994\) 0 0
\(995\) 56.0869 32.3818i 1.77807 1.02657i
\(996\) 0 0
\(997\) 16.7263 + 9.65694i 0.529728 + 0.305838i 0.740906 0.671609i \(-0.234397\pi\)
−0.211178 + 0.977448i \(0.567730\pi\)
\(998\) 0 0
\(999\) 13.6994 + 45.7873i 0.433430 + 1.44865i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cc.b.209.6 16
3.2 odd 2 3024.2.cc.b.2897.7 16
4.3 odd 2 126.2.m.a.83.2 yes 16
7.6 odd 2 inner 1008.2.cc.b.209.3 16
9.4 even 3 3024.2.cc.b.881.2 16
9.5 odd 6 inner 1008.2.cc.b.545.3 16
12.11 even 2 378.2.m.a.251.7 16
21.20 even 2 3024.2.cc.b.2897.2 16
28.3 even 6 882.2.t.b.803.5 16
28.11 odd 6 882.2.t.b.803.8 16
28.19 even 6 882.2.l.a.227.7 16
28.23 odd 6 882.2.l.a.227.6 16
28.27 even 2 126.2.m.a.83.3 yes 16
36.7 odd 6 1134.2.d.a.1133.15 16
36.11 even 6 1134.2.d.a.1133.2 16
36.23 even 6 126.2.m.a.41.3 yes 16
36.31 odd 6 378.2.m.a.125.6 16
63.13 odd 6 3024.2.cc.b.881.7 16
63.41 even 6 inner 1008.2.cc.b.545.6 16
84.11 even 6 2646.2.t.a.1979.2 16
84.23 even 6 2646.2.l.b.521.3 16
84.47 odd 6 2646.2.l.b.521.2 16
84.59 odd 6 2646.2.t.a.1979.3 16
84.83 odd 2 378.2.m.a.251.6 16
252.23 even 6 882.2.t.b.815.5 16
252.31 even 6 2646.2.l.b.1097.7 16
252.59 odd 6 882.2.l.a.509.2 16
252.67 odd 6 2646.2.l.b.1097.6 16
252.83 odd 6 1134.2.d.a.1133.7 16
252.95 even 6 882.2.l.a.509.3 16
252.103 even 6 2646.2.t.a.2285.2 16
252.131 odd 6 882.2.t.b.815.8 16
252.139 even 6 378.2.m.a.125.7 16
252.167 odd 6 126.2.m.a.41.2 16
252.223 even 6 1134.2.d.a.1133.10 16
252.247 odd 6 2646.2.t.a.2285.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.m.a.41.2 16 252.167 odd 6
126.2.m.a.41.3 yes 16 36.23 even 6
126.2.m.a.83.2 yes 16 4.3 odd 2
126.2.m.a.83.3 yes 16 28.27 even 2
378.2.m.a.125.6 16 36.31 odd 6
378.2.m.a.125.7 16 252.139 even 6
378.2.m.a.251.6 16 84.83 odd 2
378.2.m.a.251.7 16 12.11 even 2
882.2.l.a.227.6 16 28.23 odd 6
882.2.l.a.227.7 16 28.19 even 6
882.2.l.a.509.2 16 252.59 odd 6
882.2.l.a.509.3 16 252.95 even 6
882.2.t.b.803.5 16 28.3 even 6
882.2.t.b.803.8 16 28.11 odd 6
882.2.t.b.815.5 16 252.23 even 6
882.2.t.b.815.8 16 252.131 odd 6
1008.2.cc.b.209.3 16 7.6 odd 2 inner
1008.2.cc.b.209.6 16 1.1 even 1 trivial
1008.2.cc.b.545.3 16 9.5 odd 6 inner
1008.2.cc.b.545.6 16 63.41 even 6 inner
1134.2.d.a.1133.2 16 36.11 even 6
1134.2.d.a.1133.7 16 252.83 odd 6
1134.2.d.a.1133.10 16 252.223 even 6
1134.2.d.a.1133.15 16 36.7 odd 6
2646.2.l.b.521.2 16 84.47 odd 6
2646.2.l.b.521.3 16 84.23 even 6
2646.2.l.b.1097.6 16 252.67 odd 6
2646.2.l.b.1097.7 16 252.31 even 6
2646.2.t.a.1979.2 16 84.11 even 6
2646.2.t.a.1979.3 16 84.59 odd 6
2646.2.t.a.2285.2 16 252.103 even 6
2646.2.t.a.2285.3 16 252.247 odd 6
3024.2.cc.b.881.2 16 9.4 even 3
3024.2.cc.b.881.7 16 63.13 odd 6
3024.2.cc.b.2897.2 16 21.20 even 2
3024.2.cc.b.2897.7 16 3.2 odd 2