Properties

Label 126.2.m.a.41.2
Level $126$
Weight $2$
Character 126.41
Analytic conductor $1.006$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} + 9 x^{12} + 54 x^{10} - 288 x^{8} + 486 x^{6} + 729 x^{4} - 4374 x^{2} + 6561\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 41.2
Root \(1.40917 + 1.00709i\) of defining polynomial
Character \(\chi\) \(=\) 126.41
Dual form 126.2.m.a.83.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-1.40917 - 1.00709i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.17468 + 2.03460i) q^{5} +(1.72392 + 0.167584i) q^{6} +(-2.63145 + 0.274725i) q^{7} +1.00000i q^{8} +(0.971521 + 2.83834i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(-1.40917 - 1.00709i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.17468 + 2.03460i) q^{5} +(1.72392 + 0.167584i) q^{6} +(-2.63145 + 0.274725i) q^{7} +1.00000i q^{8} +(0.971521 + 2.83834i) q^{9} -2.34936i q^{10} +(-4.91614 + 2.83834i) q^{11} +(-1.57675 + 0.716830i) q^{12} +(-1.48943 - 0.859925i) q^{13} +(2.14154 - 1.55364i) q^{14} +(3.70436 - 1.68409i) q^{15} +(-0.500000 - 0.866025i) q^{16} +1.76883 q^{17} +(-2.26053 - 1.97231i) q^{18} -1.13932i q^{19} +(1.17468 + 2.03460i) q^{20} +(3.98483 + 2.26298i) q^{21} +(2.83834 - 4.91614i) q^{22} +(-3.18272 - 1.83755i) q^{23} +(1.00709 - 1.40917i) q^{24} +(-0.259741 - 0.449885i) q^{25} +1.71985 q^{26} +(1.48943 - 4.97811i) q^{27} +(-1.07781 + 2.41626i) q^{28} +(3.59886 - 2.07781i) q^{29} +(-2.36603 + 3.31064i) q^{30} +(7.24879 + 4.18509i) q^{31} +(0.866025 + 0.500000i) q^{32} +(9.78615 + 0.951321i) q^{33} +(-1.53185 + 0.884414i) q^{34} +(2.53215 - 5.67667i) q^{35} +(2.94383 + 0.577806i) q^{36} -9.19773 q^{37} +(0.569660 + 0.986680i) q^{38} +(1.23284 + 2.71178i) q^{39} +(-2.03460 - 1.17468i) q^{40} +(-3.99709 + 6.92317i) q^{41} +(-4.58246 + 0.0326160i) q^{42} +(1.76053 + 3.04933i) q^{43} +5.67667i q^{44} +(-6.91611 - 1.35747i) q^{45} +3.67509 q^{46} +(-5.90494 - 10.2277i) q^{47} +(-0.167584 + 1.72392i) q^{48} +(6.84905 - 1.44585i) q^{49} +(0.449885 + 0.259741i) q^{50} +(-2.49258 - 1.78138i) q^{51} +(-1.48943 + 0.859925i) q^{52} +(1.19917 + 5.05589i) q^{54} -13.3365i q^{55} +(-0.274725 - 2.63145i) q^{56} +(-1.14740 + 1.60550i) q^{57} +(-2.07781 + 3.59886i) q^{58} +(-1.11483 + 1.93094i) q^{59} +(0.393716 - 4.05012i) q^{60} +(-7.79396 + 4.49985i) q^{61} -8.37019 q^{62} +(-3.33627 - 7.20203i) q^{63} -1.00000 q^{64} +(3.49921 - 2.02027i) q^{65} +(-8.95072 + 4.06921i) q^{66} +(-5.43562 + 9.41477i) q^{67} +(0.884414 - 1.53185i) q^{68} +(2.63442 + 5.79472i) q^{69} +(0.645428 + 6.18222i) q^{70} -4.52106i q^{71} +(-2.83834 + 0.971521i) q^{72} +5.34234i q^{73} +(7.96547 - 4.59886i) q^{74} +(-0.0870571 + 0.895548i) q^{75} +(-0.986680 - 0.569660i) q^{76} +(12.1568 - 8.81952i) q^{77} +(-2.42356 - 1.73205i) q^{78} +(6.51422 + 11.2830i) q^{79} +2.34936 q^{80} +(-7.11229 + 5.51501i) q^{81} -7.99419i q^{82} +(6.27298 + 10.8651i) q^{83} +(3.95222 - 2.31948i) q^{84} +(-2.07781 + 3.59886i) q^{85} +(-3.04933 - 1.76053i) q^{86} +(-7.16396 - 0.696415i) q^{87} +(-2.83834 - 4.91614i) q^{88} +1.16106 q^{89} +(6.66826 - 2.28245i) q^{90} +(4.15561 + 1.85366i) q^{91} +(-3.18272 + 1.83755i) q^{92} +(-6.00000 - 13.1977i) q^{93} +(10.2277 + 5.90494i) q^{94} +(2.31806 + 1.33834i) q^{95} +(-0.716830 - 1.57675i) q^{96} +(3.97536 - 2.29517i) q^{97} +(-5.20853 + 4.67667i) q^{98} +(-12.8323 - 11.1962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 2 q^{7} + 12 q^{9} + O(q^{10}) \) \( 16 q + 8 q^{4} + 2 q^{7} + 12 q^{9} - 12 q^{11} - 6 q^{14} - 8 q^{16} - 12 q^{18} + 18 q^{21} - 48 q^{23} - 8 q^{25} + 4 q^{28} - 12 q^{29} - 24 q^{30} + 12 q^{36} - 8 q^{37} - 36 q^{39} - 12 q^{42} + 4 q^{43} + 24 q^{46} - 8 q^{49} + 60 q^{50} + 12 q^{51} - 6 q^{56} + 48 q^{57} - 12 q^{58} + 24 q^{60} + 24 q^{63} - 16 q^{64} + 84 q^{65} - 28 q^{67} + 36 q^{74} + 78 q^{77} - 24 q^{78} - 4 q^{79} + 36 q^{81} + 18 q^{84} - 12 q^{85} - 24 q^{86} + 24 q^{91} - 48 q^{92} - 96 q^{93} + 12 q^{95} - 72 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −1.40917 1.00709i −0.813585 0.581446i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.17468 + 2.03460i −0.525332 + 0.909902i 0.474232 + 0.880400i \(0.342726\pi\)
−0.999565 + 0.0295026i \(0.990608\pi\)
\(6\) 1.72392 + 0.167584i 0.703789 + 0.0684160i
\(7\) −2.63145 + 0.274725i −0.994594 + 0.103836i
\(8\) 1.00000i 0.353553i
\(9\) 0.971521 + 2.83834i 0.323840 + 0.946112i
\(10\) 2.34936i 0.742932i
\(11\) −4.91614 + 2.83834i −1.48227 + 0.855790i −0.999798 0.0201197i \(-0.993595\pi\)
−0.482475 + 0.875910i \(0.660262\pi\)
\(12\) −1.57675 + 0.716830i −0.455170 + 0.206931i
\(13\) −1.48943 0.859925i −0.413094 0.238500i 0.279024 0.960284i \(-0.409989\pi\)
−0.692118 + 0.721784i \(0.743322\pi\)
\(14\) 2.14154 1.55364i 0.572350 0.415229i
\(15\) 3.70436 1.68409i 0.956462 0.434830i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.76883 0.429004 0.214502 0.976724i \(-0.431187\pi\)
0.214502 + 0.976724i \(0.431187\pi\)
\(18\) −2.26053 1.97231i −0.532812 0.464878i
\(19\) 1.13932i 0.261378i −0.991423 0.130689i \(-0.958281\pi\)
0.991423 0.130689i \(-0.0417189\pi\)
\(20\) 1.17468 + 2.03460i 0.262666 + 0.454951i
\(21\) 3.98483 + 2.26298i 0.869562 + 0.493823i
\(22\) 2.83834 4.91614i 0.605135 1.04812i
\(23\) −3.18272 1.83755i −0.663644 0.383155i 0.130020 0.991511i \(-0.458496\pi\)
−0.793664 + 0.608356i \(0.791829\pi\)
\(24\) 1.00709 1.40917i 0.205572 0.287646i
\(25\) −0.259741 0.449885i −0.0519482 0.0899769i
\(26\) 1.71985 0.337290
\(27\) 1.48943 4.97811i 0.286642 0.958038i
\(28\) −1.07781 + 2.41626i −0.203686 + 0.456631i
\(29\) 3.59886 2.07781i 0.668292 0.385839i −0.127137 0.991885i \(-0.540579\pi\)
0.795429 + 0.606046i \(0.207245\pi\)
\(30\) −2.36603 + 3.31064i −0.431975 + 0.604438i
\(31\) 7.24879 + 4.18509i 1.30192 + 0.751665i 0.980734 0.195350i \(-0.0625844\pi\)
0.321188 + 0.947015i \(0.395918\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 9.78615 + 0.951321i 1.70355 + 0.165604i
\(34\) −1.53185 + 0.884414i −0.262710 + 0.151676i
\(35\) 2.53215 5.67667i 0.428012 0.959532i
\(36\) 2.94383 + 0.577806i 0.490638 + 0.0963009i
\(37\) −9.19773 −1.51210 −0.756049 0.654515i \(-0.772873\pi\)
−0.756049 + 0.654515i \(0.772873\pi\)
\(38\) 0.569660 + 0.986680i 0.0924111 + 0.160061i
\(39\) 1.23284 + 2.71178i 0.197412 + 0.434232i
\(40\) −2.03460 1.17468i −0.321699 0.185733i
\(41\) −3.99709 + 6.92317i −0.624241 + 1.08122i 0.364446 + 0.931225i \(0.381258\pi\)
−0.988687 + 0.149993i \(0.952075\pi\)
\(42\) −4.58246 + 0.0326160i −0.707089 + 0.00503276i
\(43\) 1.76053 + 3.04933i 0.268478 + 0.465018i 0.968469 0.249134i \(-0.0801459\pi\)
−0.699991 + 0.714152i \(0.746813\pi\)
\(44\) 5.67667i 0.855790i
\(45\) −6.91611 1.35747i −1.03099 0.202360i
\(46\) 3.67509 0.541863
\(47\) −5.90494 10.2277i −0.861324 1.49186i −0.870651 0.491901i \(-0.836302\pi\)
0.00932669 0.999957i \(-0.497031\pi\)
\(48\) −0.167584 + 1.72392i −0.0241887 + 0.248827i
\(49\) 6.84905 1.44585i 0.978436 0.206550i
\(50\) 0.449885 + 0.259741i 0.0636233 + 0.0367329i
\(51\) −2.49258 1.78138i −0.349031 0.249443i
\(52\) −1.48943 + 0.859925i −0.206547 + 0.119250i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 1.19917 + 5.05589i 0.163186 + 0.688019i
\(55\) 13.3365i 1.79830i
\(56\) −0.274725 2.63145i −0.0367117 0.351642i
\(57\) −1.14740 + 1.60550i −0.151977 + 0.212653i
\(58\) −2.07781 + 3.59886i −0.272829 + 0.472554i
\(59\) −1.11483 + 1.93094i −0.145139 + 0.251387i −0.929425 0.369012i \(-0.879696\pi\)
0.784286 + 0.620399i \(0.213029\pi\)
\(60\) 0.393716 4.05012i 0.0508285 0.522868i
\(61\) −7.79396 + 4.49985i −0.997915 + 0.576146i −0.907631 0.419770i \(-0.862111\pi\)
−0.0902842 + 0.995916i \(0.528778\pi\)
\(62\) −8.37019 −1.06301
\(63\) −3.33627 7.20203i −0.420331 0.907371i
\(64\) −1.00000 −0.125000
\(65\) 3.49921 2.02027i 0.434024 0.250584i
\(66\) −8.95072 + 4.06921i −1.10176 + 0.500885i
\(67\) −5.43562 + 9.41477i −0.664067 + 1.15020i 0.315470 + 0.948935i \(0.397838\pi\)
−0.979537 + 0.201262i \(0.935496\pi\)
\(68\) 0.884414 1.53185i 0.107251 0.185764i
\(69\) 2.63442 + 5.79472i 0.317147 + 0.697602i
\(70\) 0.645428 + 6.18222i 0.0771434 + 0.738916i
\(71\) 4.52106i 0.536551i −0.963342 0.268276i \(-0.913546\pi\)
0.963342 0.268276i \(-0.0864538\pi\)
\(72\) −2.83834 + 0.971521i −0.334501 + 0.114495i
\(73\) 5.34234i 0.625274i 0.949873 + 0.312637i \(0.101212\pi\)
−0.949873 + 0.312637i \(0.898788\pi\)
\(74\) 7.96547 4.59886i 0.925967 0.534607i
\(75\) −0.0870571 + 0.895548i −0.0100525 + 0.103409i
\(76\) −0.986680 0.569660i −0.113180 0.0653445i
\(77\) 12.1568 8.81952i 1.38540 1.00508i
\(78\) −2.42356 1.73205i −0.274414 0.196116i
\(79\) 6.51422 + 11.2830i 0.732907 + 1.26943i 0.955636 + 0.294551i \(0.0951701\pi\)
−0.222729 + 0.974880i \(0.571497\pi\)
\(80\) 2.34936 0.262666
\(81\) −7.11229 + 5.51501i −0.790255 + 0.612778i
\(82\) 7.99419i 0.882810i
\(83\) 6.27298 + 10.8651i 0.688549 + 1.19260i 0.972307 + 0.233707i \(0.0750855\pi\)
−0.283758 + 0.958896i \(0.591581\pi\)
\(84\) 3.95222 2.31948i 0.431222 0.253076i
\(85\) −2.07781 + 3.59886i −0.225370 + 0.390352i
\(86\) −3.04933 1.76053i −0.328817 0.189843i
\(87\) −7.16396 0.696415i −0.768057 0.0746636i
\(88\) −2.83834 4.91614i −0.302568 0.524062i
\(89\) 1.16106 0.123072 0.0615360 0.998105i \(-0.480400\pi\)
0.0615360 + 0.998105i \(0.480400\pi\)
\(90\) 6.66826 2.28245i 0.702897 0.240591i
\(91\) 4.15561 + 1.85366i 0.435626 + 0.194317i
\(92\) −3.18272 + 1.83755i −0.331822 + 0.191577i
\(93\) −6.00000 13.1977i −0.622171 1.36854i
\(94\) 10.2277 + 5.90494i 1.05490 + 0.609048i
\(95\) 2.31806 + 1.33834i 0.237828 + 0.137310i
\(96\) −0.716830 1.57675i −0.0731611 0.160927i
\(97\) 3.97536 2.29517i 0.403636 0.233039i −0.284416 0.958701i \(-0.591800\pi\)
0.688052 + 0.725662i \(0.258466\pi\)
\(98\) −5.20853 + 4.67667i −0.526141 + 0.472415i
\(99\) −12.8323 11.1962i −1.28969 1.12526i
\(100\) −0.519482 −0.0519482
\(101\) −3.31155 5.73577i −0.329511 0.570730i 0.652904 0.757441i \(-0.273551\pi\)
−0.982415 + 0.186711i \(0.940217\pi\)
\(102\) 3.04933 + 0.296428i 0.301928 + 0.0293507i
\(103\) 5.07471 + 2.92989i 0.500026 + 0.288690i 0.728724 0.684807i \(-0.240114\pi\)
−0.228698 + 0.973497i \(0.573447\pi\)
\(104\) 0.859925 1.48943i 0.0843225 0.146051i
\(105\) −9.28518 + 5.44928i −0.906140 + 0.531795i
\(106\) 0 0
\(107\) 4.71563i 0.455878i 0.973675 + 0.227939i \(0.0731986\pi\)
−0.973675 + 0.227939i \(0.926801\pi\)
\(108\) −3.56645 3.77894i −0.343182 0.363629i
\(109\) 4.23669 0.405802 0.202901 0.979199i \(-0.434963\pi\)
0.202901 + 0.979199i \(0.434963\pi\)
\(110\) 6.66826 + 11.5498i 0.635794 + 1.10123i
\(111\) 12.9612 + 9.26298i 1.23022 + 0.879203i
\(112\) 1.55364 + 2.14154i 0.146806 + 0.202356i
\(113\) 5.91693 + 3.41614i 0.556618 + 0.321363i 0.751787 0.659406i \(-0.229192\pi\)
−0.195169 + 0.980770i \(0.562526\pi\)
\(114\) 0.190932 1.96410i 0.0178824 0.183955i
\(115\) 7.47736 4.31705i 0.697267 0.402567i
\(116\) 4.15561i 0.385839i
\(117\) 0.993738 5.06295i 0.0918712 0.468069i
\(118\) 2.22966i 0.205257i
\(119\) −4.65458 + 0.485942i −0.426685 + 0.0445462i
\(120\) 1.68409 + 3.70436i 0.153736 + 0.338160i
\(121\) 10.6123 18.3810i 0.964754 1.67100i
\(122\) 4.49985 7.79396i 0.407397 0.705632i
\(123\) 12.6049 5.73047i 1.13654 0.516699i
\(124\) 7.24879 4.18509i 0.650961 0.375832i
\(125\) −10.5263 −0.941504
\(126\) 6.49031 + 4.56901i 0.578203 + 0.407040i
\(127\) −6.67667 −0.592459 −0.296229 0.955117i \(-0.595729\pi\)
−0.296229 + 0.955117i \(0.595729\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0.590074 6.07004i 0.0519532 0.534437i
\(130\) −2.02027 + 3.49921i −0.177189 + 0.306901i
\(131\) −3.73653 + 6.47185i −0.326462 + 0.565448i −0.981807 0.189881i \(-0.939190\pi\)
0.655345 + 0.755329i \(0.272523\pi\)
\(132\) 5.71694 7.99939i 0.497596 0.696258i
\(133\) 0.313000 + 2.99806i 0.0271406 + 0.259965i
\(134\) 10.8712i 0.939133i
\(135\) 8.37888 + 8.87809i 0.721139 + 0.764104i
\(136\) 1.76883i 0.151676i
\(137\) 6.91772 3.99395i 0.591021 0.341226i −0.174480 0.984661i \(-0.555825\pi\)
0.765501 + 0.643435i \(0.222491\pi\)
\(138\) −5.17883 3.70117i −0.440851 0.315064i
\(139\) −17.9792 10.3803i −1.52498 0.880446i −0.999562 0.0295993i \(-0.990577\pi\)
−0.525415 0.850846i \(-0.676090\pi\)
\(140\) −3.65007 5.03124i −0.308487 0.425218i
\(141\) −1.97915 + 20.3593i −0.166675 + 1.71457i
\(142\) 2.26053 + 3.91535i 0.189699 + 0.328569i
\(143\) 9.76302 0.816425
\(144\) 1.97231 2.26053i 0.164359 0.188377i
\(145\) 9.76302i 0.810774i
\(146\) −2.67117 4.62660i −0.221068 0.382900i
\(147\) −11.1076 4.86019i −0.916139 0.400862i
\(148\) −4.59886 + 7.96547i −0.378024 + 0.654757i
\(149\) −1.03726 0.598865i −0.0849760 0.0490609i 0.456910 0.889513i \(-0.348956\pi\)
−0.541886 + 0.840452i \(0.682290\pi\)
\(150\) −0.372380 0.819096i −0.0304047 0.0668789i
\(151\) −7.61229 13.1849i −0.619480 1.07297i −0.989581 0.143979i \(-0.954010\pi\)
0.370101 0.928991i \(-0.379323\pi\)
\(152\) 1.13932 0.0924111
\(153\) 1.71845 + 5.02053i 0.138929 + 0.405886i
\(154\) −6.11835 + 13.7163i −0.493030 + 1.10529i
\(155\) −17.0300 + 9.83228i −1.36788 + 0.789748i
\(156\) 2.96489 + 0.288220i 0.237381 + 0.0230761i
\(157\) −8.68358 5.01347i −0.693025 0.400118i 0.111719 0.993740i \(-0.464364\pi\)
−0.804744 + 0.593621i \(0.797698\pi\)
\(158\) −11.2830 6.51422i −0.897624 0.518243i
\(159\) 0 0
\(160\) −2.03460 + 1.17468i −0.160850 + 0.0928665i
\(161\) 8.88000 + 3.96104i 0.699842 + 0.312173i
\(162\) 3.40192 8.33228i 0.267280 0.654646i
\(163\) 12.0032 0.940160 0.470080 0.882624i \(-0.344225\pi\)
0.470080 + 0.882624i \(0.344225\pi\)
\(164\) 3.99709 + 6.92317i 0.312121 + 0.540609i
\(165\) −13.4311 + 18.7934i −1.04561 + 1.46307i
\(166\) −10.8651 6.27298i −0.843297 0.486878i
\(167\) −8.57472 + 14.8518i −0.663532 + 1.14927i 0.316150 + 0.948709i \(0.397610\pi\)
−0.979681 + 0.200561i \(0.935723\pi\)
\(168\) −2.26298 + 3.98483i −0.174593 + 0.307437i
\(169\) −5.02106 8.69673i −0.386235 0.668979i
\(170\) 4.15561i 0.318721i
\(171\) 3.23377 1.10687i 0.247293 0.0846447i
\(172\) 3.52106 0.268478
\(173\) −0.993738 1.72121i −0.0755525 0.130861i 0.825774 0.564001i \(-0.190739\pi\)
−0.901326 + 0.433140i \(0.857405\pi\)
\(174\) 6.55238 2.97887i 0.496735 0.225827i
\(175\) 0.807090 + 1.11249i 0.0610103 + 0.0840964i
\(176\) 4.91614 + 2.83834i 0.370568 + 0.213948i
\(177\) 3.51563 1.59829i 0.264251 0.120135i
\(178\) −1.00551 + 0.580529i −0.0753659 + 0.0435125i
\(179\) 8.31122i 0.621210i 0.950539 + 0.310605i \(0.100532\pi\)
−0.950539 + 0.310605i \(0.899468\pi\)
\(180\) −4.63366 + 5.31079i −0.345373 + 0.395843i
\(181\) 15.4541i 1.14870i −0.818611 0.574348i \(-0.805256\pi\)
0.818611 0.574348i \(-0.194744\pi\)
\(182\) −4.52570 + 0.472486i −0.335467 + 0.0350230i
\(183\) 15.5148 + 1.50821i 1.14689 + 0.111490i
\(184\) 1.83755 3.18272i 0.135466 0.234634i
\(185\) 10.8044 18.7137i 0.794354 1.37586i
\(186\) 11.7950 + 8.42957i 0.864853 + 0.618086i
\(187\) −8.69581 + 5.02053i −0.635901 + 0.367137i
\(188\) −11.8099 −0.861324
\(189\) −2.55175 + 13.5088i −0.185613 + 0.982623i
\(190\) −2.67667 −0.194186
\(191\) 10.6851 6.16904i 0.773146 0.446376i −0.0608498 0.998147i \(-0.519381\pi\)
0.833996 + 0.551771i \(0.186048\pi\)
\(192\) 1.40917 + 1.00709i 0.101698 + 0.0726808i
\(193\) −2.19694 + 3.80521i −0.158139 + 0.273905i −0.934198 0.356756i \(-0.883883\pi\)
0.776058 + 0.630661i \(0.217216\pi\)
\(194\) −2.29517 + 3.97536i −0.164784 + 0.285414i
\(195\) −6.96559 0.677132i −0.498816 0.0484904i
\(196\) 2.17238 6.65438i 0.155170 0.475313i
\(197\) 10.8865i 0.775632i 0.921737 + 0.387816i \(0.126770\pi\)
−0.921737 + 0.387816i \(0.873230\pi\)
\(198\) 16.7112 + 3.28001i 1.18761 + 0.233100i
\(199\) 27.5665i 1.95414i 0.212926 + 0.977068i \(0.431701\pi\)
−0.212926 + 0.977068i \(0.568299\pi\)
\(200\) 0.449885 0.259741i 0.0318116 0.0183665i
\(201\) 17.1413 7.79283i 1.20905 0.549664i
\(202\) 5.73577 + 3.31155i 0.403567 + 0.233000i
\(203\) −8.89940 + 6.45634i −0.624616 + 0.453146i
\(204\) −2.78901 + 1.26795i −0.195270 + 0.0887742i
\(205\) −9.39060 16.2650i −0.655868 1.13600i
\(206\) −5.85977 −0.408270
\(207\) 2.12349 10.8189i 0.147593 0.751962i
\(208\) 1.71985i 0.119250i
\(209\) 3.23377 + 5.60106i 0.223685 + 0.387433i
\(210\) 5.31656 9.36180i 0.366877 0.646026i
\(211\) 5.15561 8.92978i 0.354927 0.614751i −0.632179 0.774823i \(-0.717839\pi\)
0.987105 + 0.160071i \(0.0511724\pi\)
\(212\) 0 0
\(213\) −4.55313 + 6.37094i −0.311976 + 0.436530i
\(214\) −2.35782 4.08386i −0.161177 0.279167i
\(215\) −8.27223 −0.564161
\(216\) 4.97811 + 1.48943i 0.338718 + 0.101343i
\(217\) −20.2246 9.02143i −1.37293 0.612415i
\(218\) −3.66908 + 2.11835i −0.248502 + 0.143473i
\(219\) 5.38024 7.52827i 0.363563 0.508713i
\(220\) −11.5498 6.66826i −0.778686 0.449574i
\(221\) −2.63455 1.52106i −0.177219 0.102318i
\(222\) −15.8562 1.54140i −1.06420 0.103452i
\(223\) 6.24329 3.60456i 0.418081 0.241379i −0.276175 0.961107i \(-0.589067\pi\)
0.694256 + 0.719728i \(0.255733\pi\)
\(224\) −2.41626 1.07781i −0.161443 0.0720139i
\(225\) 1.02458 1.17430i 0.0683053 0.0782870i
\(226\) −6.83228 −0.454477
\(227\) −6.37800 11.0470i −0.423323 0.733217i 0.572939 0.819598i \(-0.305803\pi\)
−0.996262 + 0.0863812i \(0.972470\pi\)
\(228\) 0.816699 + 1.79643i 0.0540872 + 0.118971i
\(229\) −3.89208 2.24709i −0.257196 0.148492i 0.365859 0.930670i \(-0.380775\pi\)
−0.623055 + 0.782178i \(0.714109\pi\)
\(230\) −4.31705 + 7.47736i −0.284658 + 0.493042i
\(231\) −26.0131 + 0.185150i −1.71154 + 0.0121820i
\(232\) 2.07781 + 3.59886i 0.136415 + 0.236277i
\(233\) 2.15403i 0.141115i 0.997508 + 0.0705577i \(0.0224779\pi\)
−0.997508 + 0.0705577i \(0.977522\pi\)
\(234\) 1.67087 + 4.88151i 0.109228 + 0.319114i
\(235\) 27.7456 1.80993
\(236\) 1.11483 + 1.93094i 0.0725693 + 0.125694i
\(237\) 2.18336 22.4600i 0.141825 1.45894i
\(238\) 3.78802 2.74813i 0.245541 0.178135i
\(239\) −8.78317 5.07096i −0.568136 0.328013i 0.188269 0.982118i \(-0.439712\pi\)
−0.756404 + 0.654104i \(0.773046\pi\)
\(240\) −3.31064 2.36603i −0.213701 0.152726i
\(241\) −9.13490 + 5.27404i −0.588431 + 0.339731i −0.764477 0.644651i \(-0.777003\pi\)
0.176046 + 0.984382i \(0.443669\pi\)
\(242\) 21.2246i 1.36437i
\(243\) 15.5766 0.608830i 0.999237 0.0390564i
\(244\) 8.99970i 0.576146i
\(245\) −5.10370 + 15.6335i −0.326064 + 0.998789i
\(246\) −8.05090 + 11.2652i −0.513307 + 0.718241i
\(247\) −0.979729 + 1.69694i −0.0623387 + 0.107974i
\(248\) −4.18509 + 7.24879i −0.265754 + 0.460299i
\(249\) 2.10251 21.6283i 0.133241 1.37064i
\(250\) 9.11608 5.26317i 0.576551 0.332872i
\(251\) 29.3005 1.84943 0.924714 0.380662i \(-0.124304\pi\)
0.924714 + 0.380662i \(0.124304\pi\)
\(252\) −7.90528 0.711721i −0.497986 0.0448342i
\(253\) 20.8623 1.31160
\(254\) 5.78217 3.33834i 0.362805 0.209466i
\(255\) 6.55238 2.97887i 0.410326 0.186544i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.81430 6.60656i 0.237930 0.412106i −0.722190 0.691694i \(-0.756865\pi\)
0.960120 + 0.279588i \(0.0901979\pi\)
\(258\) 2.52400 + 5.55185i 0.157137 + 0.345643i
\(259\) 24.2034 2.52685i 1.50392 0.157011i
\(260\) 4.04054i 0.250584i
\(261\) 9.39388 + 8.19615i 0.581467 + 0.507329i
\(262\) 7.47305i 0.461687i
\(263\) −10.5531 + 6.09281i −0.650729 + 0.375699i −0.788736 0.614733i \(-0.789264\pi\)
0.138006 + 0.990431i \(0.455931\pi\)
\(264\) −0.951321 + 9.78615i −0.0585498 + 0.602296i
\(265\) 0 0
\(266\) −1.77010 2.43990i −0.108532 0.149600i
\(267\) −1.63613 1.16930i −0.100129 0.0715597i
\(268\) 5.43562 + 9.41477i 0.332034 + 0.575099i
\(269\) −2.77433 −0.169154 −0.0845771 0.996417i \(-0.526954\pi\)
−0.0845771 + 0.996417i \(0.526954\pi\)
\(270\) −11.6954 3.49921i −0.711757 0.212955i
\(271\) 3.20793i 0.194868i −0.995242 0.0974338i \(-0.968937\pi\)
0.995242 0.0974338i \(-0.0310634\pi\)
\(272\) −0.884414 1.53185i −0.0536255 0.0928821i
\(273\) −3.98915 6.79722i −0.241434 0.411386i
\(274\) −3.99395 + 6.91772i −0.241283 + 0.417915i
\(275\) 2.55385 + 1.47446i 0.154003 + 0.0889135i
\(276\) 6.33558 + 0.615888i 0.381357 + 0.0370721i
\(277\) −5.04054 8.73047i −0.302857 0.524563i 0.673925 0.738800i \(-0.264607\pi\)
−0.976782 + 0.214236i \(0.931274\pi\)
\(278\) 20.7606 1.24514
\(279\) −4.83634 + 24.6404i −0.289544 + 1.47518i
\(280\) 5.67667 + 2.53215i 0.339246 + 0.151325i
\(281\) 4.21999 2.43641i 0.251743 0.145344i −0.368819 0.929501i \(-0.620238\pi\)
0.620562 + 0.784157i \(0.286904\pi\)
\(282\) −8.46568 18.6213i −0.504124 1.10888i
\(283\) 2.44030 + 1.40891i 0.145061 + 0.0837508i 0.570774 0.821107i \(-0.306643\pi\)
−0.425713 + 0.904858i \(0.639977\pi\)
\(284\) −3.91535 2.26053i −0.232333 0.134138i
\(285\) −1.91872 4.22045i −0.113655 0.249998i
\(286\) −8.45502 + 4.88151i −0.499956 + 0.288650i
\(287\) 8.61618 19.3161i 0.508597 1.14019i
\(288\) −0.577806 + 2.94383i −0.0340475 + 0.173467i
\(289\) −13.8712 −0.815956
\(290\) −4.88151 8.45502i −0.286652 0.496496i
\(291\) −7.91341 0.769270i −0.463892 0.0450954i
\(292\) 4.62660 + 2.67117i 0.270751 + 0.156318i
\(293\) 4.05694 7.02683i 0.237009 0.410512i −0.722846 0.691010i \(-0.757166\pi\)
0.959855 + 0.280498i \(0.0904995\pi\)
\(294\) 12.0496 1.34475i 0.702744 0.0784271i
\(295\) −2.61914 4.53648i −0.152492 0.264124i
\(296\) 9.19773i 0.534607i
\(297\) 6.80728 + 28.7006i 0.394999 + 1.66538i
\(298\) 1.19773 0.0693826
\(299\) 3.16030 + 5.47381i 0.182765 + 0.316558i
\(300\) 0.732039 + 0.523168i 0.0422643 + 0.0302051i
\(301\) −5.47047 7.54049i −0.315313 0.434626i
\(302\) 13.1849 + 7.61229i 0.758705 + 0.438038i
\(303\) −1.10993 + 11.4177i −0.0637637 + 0.655931i
\(304\) −0.986680 + 0.569660i −0.0565900 + 0.0326722i
\(305\) 21.1435i 1.21067i
\(306\) −3.99849 3.48868i −0.228578 0.199434i
\(307\) 10.8996i 0.622074i 0.950398 + 0.311037i \(0.100676\pi\)
−0.950398 + 0.311037i \(0.899324\pi\)
\(308\) −1.55953 14.9379i −0.0888622 0.851164i
\(309\) −4.20046 9.23943i −0.238956 0.525613i
\(310\) 9.83228 17.0300i 0.558436 0.967240i
\(311\) −4.11819 + 7.13291i −0.233521 + 0.404470i −0.958842 0.283941i \(-0.908358\pi\)
0.725321 + 0.688411i \(0.241691\pi\)
\(312\) −2.71178 + 1.23284i −0.153524 + 0.0697958i
\(313\) 29.2736 16.9011i 1.65464 0.955308i 0.679516 0.733661i \(-0.262190\pi\)
0.975127 0.221648i \(-0.0711435\pi\)
\(314\) 10.0269 0.565853
\(315\) 18.5723 + 1.67209i 1.04643 + 0.0942115i
\(316\) 13.0284 0.732907
\(317\) 5.82913 3.36545i 0.327396 0.189022i −0.327288 0.944925i \(-0.606135\pi\)
0.654685 + 0.755902i \(0.272801\pi\)
\(318\) 0 0
\(319\) −11.7950 + 20.4296i −0.660394 + 1.14384i
\(320\) 1.17468 2.03460i 0.0656665 0.113738i
\(321\) 4.74909 6.64513i 0.265068 0.370895i
\(322\) −9.67082 + 1.00964i −0.538934 + 0.0562651i
\(323\) 2.01526i 0.112132i
\(324\) 1.21999 + 8.91693i 0.0677771 + 0.495385i
\(325\) 0.893431i 0.0495586i
\(326\) −10.3950 + 6.00158i −0.575728 + 0.332397i
\(327\) −5.97022 4.26675i −0.330154 0.235952i
\(328\) −6.92317 3.99709i −0.382268 0.220703i
\(329\) 18.3484 + 25.2913i 1.01158 + 1.39436i
\(330\) 2.23499 22.9912i 0.123032 1.26562i
\(331\) 16.0284 + 27.7621i 0.881002 + 1.52594i 0.850228 + 0.526415i \(0.176464\pi\)
0.0307744 + 0.999526i \(0.490203\pi\)
\(332\) 12.5460 0.688549
\(333\) −8.93579 26.1062i −0.489678 1.43061i
\(334\) 17.1494i 0.938375i
\(335\) −12.7702 22.1187i −0.697712 1.20847i
\(336\) −0.0326160 4.58246i −0.00177935 0.249994i
\(337\) −12.1123 + 20.9791i −0.659799 + 1.14280i 0.320869 + 0.947124i \(0.396025\pi\)
−0.980668 + 0.195681i \(0.937308\pi\)
\(338\) 8.69673 + 5.02106i 0.473040 + 0.273110i
\(339\) −4.89758 10.7728i −0.266000 0.585100i
\(340\) 2.07781 + 3.59886i 0.112685 + 0.195176i
\(341\) −47.5148 −2.57307
\(342\) −2.24709 + 2.57547i −0.121509 + 0.139265i
\(343\) −17.6257 + 5.68629i −0.951700 + 0.307031i
\(344\) −3.04933 + 1.76053i −0.164409 + 0.0949214i
\(345\) −14.8846 1.44694i −0.801357 0.0779007i
\(346\) 1.72121 + 0.993738i 0.0925326 + 0.0534237i
\(347\) 19.7453 + 11.3999i 1.05998 + 0.611981i 0.925427 0.378926i \(-0.123706\pi\)
0.134554 + 0.990906i \(0.457040\pi\)
\(348\) −4.18509 + 5.85596i −0.224345 + 0.313913i
\(349\) 2.46389 1.42253i 0.131889 0.0761461i −0.432604 0.901584i \(-0.642405\pi\)
0.564493 + 0.825438i \(0.309072\pi\)
\(350\) −1.25521 0.559901i −0.0670936 0.0299279i
\(351\) −6.49921 + 6.13376i −0.346902 + 0.327396i
\(352\) −5.67667 −0.302568
\(353\) 3.57212 + 6.18709i 0.190125 + 0.329306i 0.945291 0.326227i \(-0.105777\pi\)
−0.755167 + 0.655533i \(0.772444\pi\)
\(354\) −2.24548 + 3.14197i −0.119346 + 0.166994i
\(355\) 9.19856 + 5.31079i 0.488209 + 0.281868i
\(356\) 0.580529 1.00551i 0.0307680 0.0532917i
\(357\) 7.04849 + 4.00283i 0.373046 + 0.211852i
\(358\) −4.15561 7.19773i −0.219631 0.380412i
\(359\) 11.6037i 0.612421i 0.951964 + 0.306210i \(0.0990611\pi\)
−0.951964 + 0.306210i \(0.900939\pi\)
\(360\) 1.35747 6.91611i 0.0715451 0.364511i
\(361\) 17.7019 0.931682
\(362\) 7.72706 + 13.3837i 0.406125 + 0.703429i
\(363\) −33.4660 + 15.2144i −1.75651 + 0.798550i
\(364\) 3.68312 2.67203i 0.193048 0.140053i
\(365\) −10.8695 6.27554i −0.568938 0.328477i
\(366\) −14.1903 + 6.45125i −0.741739 + 0.337212i
\(367\) −6.78525 + 3.91747i −0.354187 + 0.204490i −0.666528 0.745480i \(-0.732220\pi\)
0.312341 + 0.949970i \(0.398887\pi\)
\(368\) 3.67509i 0.191577i
\(369\) −23.5335 4.61909i −1.22511 0.240460i
\(370\) 21.6088i 1.12339i
\(371\) 0 0
\(372\) −14.4296 1.40271i −0.748138 0.0727272i
\(373\) −12.8339 + 22.2289i −0.664512 + 1.15097i 0.314905 + 0.949123i \(0.398027\pi\)
−0.979417 + 0.201845i \(0.935306\pi\)
\(374\) 5.02053 8.69581i 0.259605 0.449650i
\(375\) 14.8334 + 10.6010i 0.765994 + 0.547434i
\(376\) 10.2277 5.90494i 0.527451 0.304524i
\(377\) −7.14702 −0.368091
\(378\) −4.54453 12.9749i −0.233745 0.667355i
\(379\) −15.1045 −0.775868 −0.387934 0.921687i \(-0.626811\pi\)
−0.387934 + 0.921687i \(0.626811\pi\)
\(380\) 2.31806 1.33834i 0.118914 0.0686551i
\(381\) 9.40856 + 6.72404i 0.482015 + 0.344483i
\(382\) −6.16904 + 10.6851i −0.315636 + 0.546697i
\(383\) −0.763322 + 1.32211i −0.0390040 + 0.0675568i −0.884868 0.465841i \(-0.845752\pi\)
0.845864 + 0.533398i \(0.179085\pi\)
\(384\) −1.72392 0.167584i −0.0879737 0.00855200i
\(385\) 3.66388 + 35.0944i 0.186729 + 1.78858i
\(386\) 4.39388i 0.223643i
\(387\) −6.94462 + 7.95946i −0.353015 + 0.404602i
\(388\) 4.59035i 0.233039i
\(389\) 12.8948 7.44483i 0.653794 0.377468i −0.136115 0.990693i \(-0.543462\pi\)
0.789908 + 0.613225i \(0.210128\pi\)
\(390\) 6.37094 2.89638i 0.322605 0.146664i
\(391\) −5.62969 3.25030i −0.284706 0.164375i
\(392\) 1.44585 + 6.84905i 0.0730265 + 0.345929i
\(393\) 11.7832 5.35691i 0.594382 0.270220i
\(394\) −5.44325 9.42799i −0.274227 0.474975i
\(395\) −30.6085 −1.54008
\(396\) −16.1123 + 5.51501i −0.809673 + 0.277139i
\(397\) 28.7869i 1.44478i 0.691488 + 0.722388i \(0.256955\pi\)
−0.691488 + 0.722388i \(0.743045\pi\)
\(398\) −13.7832 23.8733i −0.690892 1.19666i
\(399\) 2.57826 4.54000i 0.129075 0.227284i
\(400\) −0.259741 + 0.449885i −0.0129871 + 0.0224942i
\(401\) −33.0592 19.0868i −1.65090 0.953147i −0.976703 0.214595i \(-0.931157\pi\)
−0.674196 0.738552i \(-0.735510\pi\)
\(402\) −10.9484 + 15.3194i −0.546055 + 0.764064i
\(403\) −7.19773 12.4668i −0.358544 0.621017i
\(404\) −6.62310 −0.329511
\(405\) −2.86619 20.9491i −0.142422 1.04097i
\(406\) 4.47894 10.0411i 0.222286 0.498329i
\(407\) 45.2173 26.1062i 2.24134 1.29404i
\(408\) 1.78138 2.49258i 0.0881913 0.123401i
\(409\) −6.03355 3.48347i −0.298340 0.172247i 0.343357 0.939205i \(-0.388436\pi\)
−0.641697 + 0.766958i \(0.721769\pi\)
\(410\) 16.2650 + 9.39060i 0.803271 + 0.463769i
\(411\) −13.7705 1.33865i −0.679250 0.0660305i
\(412\) 5.07471 2.92989i 0.250013 0.144345i
\(413\) 2.40314 5.38745i 0.118251 0.265099i
\(414\) 3.57043 + 10.4311i 0.175477 + 0.512663i
\(415\) −29.4750 −1.44687
\(416\) −0.859925 1.48943i −0.0421613 0.0730255i
\(417\) 14.8818 + 32.7344i 0.728766 + 1.60301i
\(418\) −5.60106 3.23377i −0.273957 0.158169i
\(419\) 17.4232 30.1778i 0.851177 1.47428i −0.0289690 0.999580i \(-0.509222\pi\)
0.880146 0.474702i \(-0.157444\pi\)
\(420\) 0.0766266 + 10.7658i 0.00373900 + 0.525319i
\(421\) 2.84597 + 4.92936i 0.138704 + 0.240242i 0.927006 0.375046i \(-0.122373\pi\)
−0.788302 + 0.615288i \(0.789040\pi\)
\(422\) 10.3112i 0.501942i
\(423\) 23.2928 26.6966i 1.13253 1.29803i
\(424\) 0 0
\(425\) −0.459437 0.795769i −0.0222860 0.0386005i
\(426\) 0.757659 7.79396i 0.0367087 0.377619i
\(427\) 19.2732 13.9823i 0.932696 0.676652i
\(428\) 4.08386 + 2.35782i 0.197401 + 0.113969i
\(429\) −13.7578 9.83228i −0.664231 0.474707i
\(430\) 7.16396 4.13611i 0.345477 0.199461i
\(431\) 30.2936i 1.45919i −0.683880 0.729595i \(-0.739709\pi\)
0.683880 0.729595i \(-0.260291\pi\)
\(432\) −5.05589 + 1.19917i −0.243251 + 0.0576950i
\(433\) 23.6094i 1.13459i 0.823513 + 0.567297i \(0.192011\pi\)
−0.823513 + 0.567297i \(0.807989\pi\)
\(434\) 22.0257 2.29950i 1.05727 0.110380i
\(435\) 9.83228 13.7578i 0.471422 0.659634i
\(436\) 2.11835 3.66908i 0.101450 0.175717i
\(437\) −2.09355 + 3.62614i −0.100148 + 0.173462i
\(438\) −0.895293 + 9.20979i −0.0427787 + 0.440061i
\(439\) −21.6681 + 12.5101i −1.03416 + 0.597075i −0.918175 0.396175i \(-0.870337\pi\)
−0.115989 + 0.993250i \(0.537004\pi\)
\(440\) 13.3365 0.635794
\(441\) 10.7578 + 18.0352i 0.512277 + 0.858820i
\(442\) 3.04212 0.144699
\(443\) −19.9446 + 11.5150i −0.947595 + 0.547094i −0.892333 0.451377i \(-0.850933\pi\)
−0.0552622 + 0.998472i \(0.517599\pi\)
\(444\) 14.5026 6.59321i 0.688261 0.312900i
\(445\) −1.36387 + 2.36229i −0.0646537 + 0.111983i
\(446\) −3.60456 + 6.24329i −0.170681 + 0.295628i
\(447\) 0.858568 + 1.88853i 0.0406089 + 0.0893242i
\(448\) 2.63145 0.274725i 0.124324 0.0129796i
\(449\) 15.9028i 0.750501i 0.926923 + 0.375251i \(0.122443\pi\)
−0.926923 + 0.375251i \(0.877557\pi\)
\(450\) −0.300160 + 1.52927i −0.0141497 + 0.0720904i
\(451\) 45.3804i 2.13688i
\(452\) 5.91693 3.41614i 0.278309 0.160682i
\(453\) −2.55140 + 26.2460i −0.119875 + 1.23315i
\(454\) 11.0470 + 6.37800i 0.518462 + 0.299334i
\(455\) −8.65298 + 6.27756i −0.405658 + 0.294297i
\(456\) −1.60550 1.14740i −0.0751842 0.0537321i
\(457\) 2.83307 + 4.90702i 0.132525 + 0.229541i 0.924649 0.380819i \(-0.124358\pi\)
−0.792124 + 0.610360i \(0.791025\pi\)
\(458\) 4.49418 0.209999
\(459\) 2.63455 8.80542i 0.122970 0.411002i
\(460\) 8.63411i 0.402567i
\(461\) 15.7292 + 27.2438i 0.732582 + 1.26887i 0.955776 + 0.294095i \(0.0950183\pi\)
−0.223194 + 0.974774i \(0.571648\pi\)
\(462\) 22.4354 13.1669i 1.04379 0.612580i
\(463\) 4.55148 7.88340i 0.211525 0.366373i −0.740667 0.671873i \(-0.765490\pi\)
0.952192 + 0.305500i \(0.0988236\pi\)
\(464\) −3.59886 2.07781i −0.167073 0.0964597i
\(465\) 33.9002 + 3.29547i 1.57209 + 0.152824i
\(466\) −1.07702 1.86545i −0.0498918 0.0864152i
\(467\) 30.3032 1.40226 0.701132 0.713032i \(-0.252678\pi\)
0.701132 + 0.713032i \(0.252678\pi\)
\(468\) −3.88777 3.39208i −0.179712 0.156799i
\(469\) 11.7171 26.2678i 0.541045 1.21293i
\(470\) −24.0284 + 13.8728i −1.10835 + 0.639906i
\(471\) 7.18761 + 15.8100i 0.331188 + 0.728487i
\(472\) −1.93094 1.11483i −0.0888788 0.0513142i
\(473\) −17.3100 9.99395i −0.795916 0.459522i
\(474\) 9.33917 + 20.5426i 0.428962 + 0.943555i
\(475\) −0.512563 + 0.295928i −0.0235180 + 0.0135781i
\(476\) −1.90645 + 4.27396i −0.0873821 + 0.195897i
\(477\) 0 0
\(478\) 10.1419 0.463881
\(479\) 2.33143 + 4.03816i 0.106526 + 0.184508i 0.914361 0.404901i \(-0.132694\pi\)
−0.807835 + 0.589409i \(0.799361\pi\)
\(480\) 4.05012 + 0.393716i 0.184862 + 0.0179706i
\(481\) 13.6994 + 7.90935i 0.624639 + 0.360636i
\(482\) 5.27404 9.13490i 0.240226 0.416083i
\(483\) −8.52429 14.5248i −0.387869 0.660900i
\(484\) −10.6123 18.3810i −0.482377 0.835501i
\(485\) 10.7844i 0.489693i
\(486\) −13.1853 + 8.31554i −0.598097 + 0.377201i
\(487\) −19.4821 −0.882818 −0.441409 0.897306i \(-0.645521\pi\)
−0.441409 + 0.897306i \(0.645521\pi\)
\(488\) −4.49985 7.79396i −0.203699 0.352816i
\(489\) −16.9145 12.0883i −0.764900 0.546652i
\(490\) −3.39682 16.0909i −0.153453 0.726912i
\(491\) −17.7437 10.2443i −0.800762 0.462320i 0.0429758 0.999076i \(-0.486316\pi\)
−0.843737 + 0.536756i \(0.819649\pi\)
\(492\) 1.33970 13.7814i 0.0603984 0.621312i
\(493\) 6.36577 3.67528i 0.286700 0.165526i
\(494\) 1.95946i 0.0881602i
\(495\) 37.8535 12.9567i 1.70139 0.582361i
\(496\) 8.37019i 0.375832i
\(497\) 1.24205 + 11.8969i 0.0557135 + 0.533651i
\(498\) 8.99332 + 19.7819i 0.403000 + 0.886449i
\(499\) 5.12598 8.87845i 0.229470 0.397454i −0.728181 0.685385i \(-0.759634\pi\)
0.957651 + 0.287931i \(0.0929673\pi\)
\(500\) −5.26317 + 9.11608i −0.235376 + 0.407683i
\(501\) 27.0405 12.2932i 1.20808 0.549221i
\(502\) −25.3749 + 14.6502i −1.13254 + 0.653872i
\(503\) 14.5521 0.648845 0.324422 0.945912i \(-0.394830\pi\)
0.324422 + 0.945912i \(0.394830\pi\)
\(504\) 7.20203 3.33627i 0.320804 0.148609i
\(505\) 15.5600 0.692412
\(506\) −18.0673 + 10.4311i −0.803188 + 0.463721i
\(507\) −1.68290 + 17.3119i −0.0747403 + 0.768846i
\(508\) −3.33834 + 5.78217i −0.148115 + 0.256542i
\(509\) 16.6617 28.8589i 0.738517 1.27915i −0.214646 0.976692i \(-0.568860\pi\)
0.953163 0.302457i \(-0.0978068\pi\)
\(510\) −4.18509 + 5.85596i −0.185319 + 0.259306i
\(511\) −1.46768 14.0581i −0.0649262 0.621894i
\(512\) 1.00000i 0.0441942i
\(513\) −5.67166 1.69694i −0.250410 0.0749218i
\(514\) 7.62860i 0.336483i
\(515\) −11.9223 + 6.88335i −0.525360 + 0.303317i
\(516\) −4.96177 3.54604i −0.218430 0.156106i
\(517\) 58.0591 + 33.5204i 2.55343 + 1.47423i
\(518\) −19.6973 + 14.2900i −0.865450 + 0.627866i
\(519\) −0.333070 + 3.42626i −0.0146202 + 0.150396i
\(520\) 2.02027 + 3.49921i 0.0885947 + 0.153451i
\(521\) 6.53925 0.286490 0.143245 0.989687i \(-0.454246\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(522\) −12.2334 2.40114i −0.535442 0.105095i
\(523\) 0.786858i 0.0344069i −0.999852 0.0172034i \(-0.994524\pi\)
0.999852 0.0172034i \(-0.00547630\pi\)
\(524\) 3.73653 + 6.47185i 0.163231 + 0.282724i
\(525\) −0.0169434 2.38051i −0.000739472 0.103894i
\(526\) 6.09281 10.5531i 0.265659 0.460135i
\(527\) 12.8219 + 7.40271i 0.558530 + 0.322467i
\(528\) −4.06921 8.95072i −0.177090 0.389530i
\(529\) −4.74685 8.22178i −0.206385 0.357469i
\(530\) 0 0
\(531\) −6.56374 1.28831i −0.284842 0.0559079i
\(532\) 2.75290 + 1.22797i 0.119353 + 0.0532391i
\(533\) 11.9068 6.87440i 0.515741 0.297763i
\(534\) 2.00158 + 0.194575i 0.0866167 + 0.00842009i
\(535\) −9.59445 5.53936i −0.414804 0.239487i
\(536\) −9.41477 5.43562i −0.406656 0.234783i
\(537\) 8.37019 11.7119i 0.361200 0.505407i
\(538\) 2.40264 1.38717i 0.103585 0.0598050i
\(539\) −29.5671 + 26.5479i −1.27354 + 1.14350i
\(540\) 11.8781 2.81728i 0.511152 0.121236i
\(541\) 5.60454 0.240958 0.120479 0.992716i \(-0.461557\pi\)
0.120479 + 0.992716i \(0.461557\pi\)
\(542\) 1.60396 + 2.77815i 0.0688961 + 0.119332i
\(543\) −15.5638 + 21.7775i −0.667905 + 0.934561i
\(544\) 1.53185 + 0.884414i 0.0656775 + 0.0379189i
\(545\) −4.97675 + 8.61999i −0.213181 + 0.369240i
\(546\) 6.85331 + 3.89199i 0.293295 + 0.166562i
\(547\) −6.91456 11.9764i −0.295645 0.512073i 0.679489 0.733685i \(-0.262201\pi\)
−0.975135 + 0.221612i \(0.928868\pi\)
\(548\) 7.98789i 0.341226i
\(549\) −20.3441 17.7502i −0.868264 0.757559i
\(550\) −2.94893 −0.125743
\(551\) −2.36729 4.10026i −0.100850 0.174677i
\(552\) −5.79472 + 2.63442i −0.246640 + 0.112128i
\(553\) −20.2415 27.9009i −0.860758 1.18647i
\(554\) 8.73047 + 5.04054i 0.370922 + 0.214152i
\(555\) −34.0717 + 15.4898i −1.44626 + 0.657506i
\(556\) −17.9792 + 10.3803i −0.762488 + 0.440223i
\(557\) 27.8233i 1.17891i 0.807800 + 0.589456i \(0.200658\pi\)
−0.807800 + 0.589456i \(0.799342\pi\)
\(558\) −8.13181 23.7574i −0.344247 1.00573i
\(559\) 6.05569i 0.256128i
\(560\) −6.18222 + 0.645428i −0.261246 + 0.0272743i
\(561\) 17.3100 + 1.68272i 0.730830 + 0.0710447i
\(562\) −2.43641 + 4.21999i −0.102774 + 0.178009i
\(563\) −12.2650 + 21.2436i −0.516909 + 0.895312i 0.482898 + 0.875676i \(0.339584\pi\)
−0.999807 + 0.0196359i \(0.993749\pi\)
\(564\) 16.6421 + 11.8937i 0.700760 + 0.500814i
\(565\) −13.9010 + 8.02574i −0.584819 + 0.337645i
\(566\) −2.81781 −0.118441
\(567\) 17.2005 16.4664i 0.722354 0.691523i
\(568\) 4.52106 0.189699
\(569\) −23.4762 + 13.5540i −0.984172 + 0.568212i −0.903527 0.428531i \(-0.859031\pi\)
−0.0806449 + 0.996743i \(0.525698\pi\)
\(570\) 3.77188 + 2.69566i 0.157987 + 0.112909i
\(571\) 14.9177 25.8382i 0.624287 1.08130i −0.364391 0.931246i \(-0.618723\pi\)
0.988678 0.150051i \(-0.0479438\pi\)
\(572\) 4.88151 8.45502i 0.204106 0.353522i
\(573\) −21.2699 2.06767i −0.888563 0.0863781i
\(574\) 2.19621 + 21.0363i 0.0916679 + 0.878038i
\(575\) 1.90915i 0.0796169i
\(576\) −0.971521 2.83834i −0.0404800 0.118264i
\(577\) 28.1666i 1.17259i −0.810097 0.586296i \(-0.800585\pi\)
0.810097 0.586296i \(-0.199415\pi\)
\(578\) 12.0129 6.93562i 0.499669 0.288484i
\(579\) 6.92807 3.14967i 0.287921 0.130896i
\(580\) 8.45502 + 4.88151i 0.351076 + 0.202694i
\(581\) −19.4920 26.8677i −0.808663 1.11466i
\(582\) 7.23785 3.29050i 0.300018 0.136395i
\(583\) 0 0
\(584\) −5.34234 −0.221068
\(585\) 9.13376 + 7.96920i 0.377635 + 0.329486i
\(586\) 8.11389i 0.335182i
\(587\) −4.95928 8.58973i −0.204692 0.354536i 0.745343 0.666681i \(-0.232286\pi\)
−0.950034 + 0.312145i \(0.898952\pi\)
\(588\) −9.76284 + 7.18936i −0.402613 + 0.296484i
\(589\) 4.76816 8.25870i 0.196469 0.340294i
\(590\) 4.53648 + 2.61914i 0.186764 + 0.107828i
\(591\) 10.9637 15.3409i 0.450988 0.631042i
\(592\) 4.59886 + 7.96547i 0.189012 + 0.327379i
\(593\) 4.69872 0.192953 0.0964766 0.995335i \(-0.469243\pi\)
0.0964766 + 0.995335i \(0.469243\pi\)
\(594\) −20.2456 21.4518i −0.830686 0.880178i
\(595\) 4.47894 10.0411i 0.183619 0.411643i
\(596\) −1.03726 + 0.598865i −0.0424880 + 0.0245305i
\(597\) 27.7621 38.8459i 1.13623 1.58986i
\(598\) −5.47381 3.16030i −0.223841 0.129234i
\(599\) 12.7309 + 7.35019i 0.520170 + 0.300320i 0.737004 0.675888i \(-0.236240\pi\)
−0.216834 + 0.976208i \(0.569573\pi\)
\(600\) −0.895548 0.0870571i −0.0365606 0.00355409i
\(601\) −16.2923 + 9.40634i −0.664575 + 0.383693i −0.794018 0.607894i \(-0.792014\pi\)
0.129443 + 0.991587i \(0.458681\pi\)
\(602\) 8.50781 + 3.79502i 0.346752 + 0.154673i
\(603\) −32.0031 6.28147i −1.30327 0.255801i
\(604\) −15.2246 −0.619480
\(605\) 24.9321 + 43.1836i 1.01363 + 1.75566i
\(606\) −4.74763 10.4430i −0.192859 0.424218i
\(607\) −10.9051 6.29608i −0.442625 0.255550i 0.262085 0.965045i \(-0.415590\pi\)
−0.704711 + 0.709495i \(0.748923\pi\)
\(608\) 0.569660 0.986680i 0.0231028 0.0400152i
\(609\) 19.0429 0.135539i 0.771658 0.00549233i
\(610\) 10.5718 + 18.3108i 0.428038 + 0.741383i
\(611\) 20.3112i 0.821704i
\(612\) 5.20713 + 1.02204i 0.210486 + 0.0413135i
\(613\) −9.82017 −0.396633 −0.198317 0.980138i \(-0.563547\pi\)
−0.198317 + 0.980138i \(0.563547\pi\)
\(614\) −5.44981 9.43935i −0.219937 0.380941i
\(615\) −3.14744 + 32.3774i −0.126917 + 1.30558i
\(616\) 8.81952 + 12.1568i 0.355349 + 0.489812i
\(617\) −3.25158 1.87730i −0.130904 0.0755772i 0.433118 0.901337i \(-0.357413\pi\)
−0.564022 + 0.825760i \(0.690747\pi\)
\(618\) 8.25742 + 5.90135i 0.332162 + 0.237387i
\(619\) −9.56902 + 5.52468i −0.384611 + 0.222055i −0.679823 0.733376i \(-0.737943\pi\)
0.295211 + 0.955432i \(0.404610\pi\)
\(620\) 19.6646i 0.789748i
\(621\) −13.8880 + 13.1071i −0.557305 + 0.525968i
\(622\) 8.23637i 0.330248i
\(623\) −3.05527 + 0.318972i −0.122407 + 0.0127794i
\(624\) 1.73205 2.42356i 0.0693375 0.0970201i
\(625\) 13.6638 23.6664i 0.546551 0.946654i
\(626\) −16.9011 + 29.2736i −0.675505 + 1.17001i
\(627\) 1.08386 11.1496i 0.0432852 0.445270i
\(628\) −8.68358 + 5.01347i −0.346513 + 0.200059i
\(629\) −16.2692 −0.648696
\(630\) −16.9202 + 7.83810i −0.674115 + 0.312277i
\(631\) 19.4921 0.775969 0.387984 0.921666i \(-0.373171\pi\)
0.387984 + 0.921666i \(0.373171\pi\)
\(632\) −11.2830 + 6.51422i −0.448812 + 0.259122i
\(633\) −16.2583 + 7.39139i −0.646208 + 0.293781i
\(634\) −3.36545 + 5.82913i −0.133659 + 0.231504i
\(635\) 7.84294 13.5844i 0.311238 0.539080i
\(636\) 0 0
\(637\) −11.4445 3.73617i −0.453449 0.148032i
\(638\) 23.5900i 0.933938i
\(639\) 12.8323 4.39230i 0.507637 0.173757i
\(640\) 2.34936i 0.0928665i
\(641\) −22.6669 + 13.0868i −0.895290 + 0.516896i −0.875669 0.482912i \(-0.839579\pi\)
−0.0196208 + 0.999807i \(0.506246\pi\)
\(642\) −0.790267 + 8.12940i −0.0311893 + 0.320842i
\(643\) −9.50955 5.49034i −0.375020 0.216518i 0.300629 0.953741i \(-0.402803\pi\)
−0.675649 + 0.737223i \(0.736137\pi\)
\(644\) 7.87036 5.70979i 0.310136 0.224997i
\(645\) 11.6570 + 8.33092i 0.458993 + 0.328029i
\(646\) 1.00763 + 1.74527i 0.0396447 + 0.0686666i
\(647\) −32.0126 −1.25855 −0.629273 0.777185i \(-0.716647\pi\)
−0.629273 + 0.777185i \(0.716647\pi\)
\(648\) −5.51501 7.11229i −0.216650 0.279397i
\(649\) 12.6570i 0.496833i
\(650\) −0.446715 0.773734i −0.0175216 0.0303483i
\(651\) 19.4144 + 33.0808i 0.760912 + 1.29654i
\(652\) 6.00158 10.3950i 0.235040 0.407101i
\(653\) 19.3686 + 11.1825i 0.757952 + 0.437604i 0.828560 0.559900i \(-0.189161\pi\)
−0.0706080 + 0.997504i \(0.522494\pi\)
\(654\) 7.30374 + 0.710004i 0.285599 + 0.0277633i
\(655\) −8.77843 15.2047i −0.343002 0.594097i
\(656\) 7.99419 0.312121
\(657\) −15.1634 + 5.19020i −0.591579 + 0.202489i
\(658\) −28.5358 12.7288i −1.11244 0.496219i
\(659\) −19.2546 + 11.1166i −0.750053 + 0.433043i −0.825713 0.564091i \(-0.809227\pi\)
0.0756603 + 0.997134i \(0.475894\pi\)
\(660\) 9.56002 + 21.0284i 0.372123 + 0.818531i
\(661\) 9.13646 + 5.27494i 0.355367 + 0.205171i 0.667047 0.745016i \(-0.267558\pi\)
−0.311679 + 0.950187i \(0.600892\pi\)
\(662\) −27.7621 16.0284i −1.07900 0.622963i
\(663\) 2.18068 + 4.79667i 0.0846907 + 0.186287i
\(664\) −10.8651 + 6.27298i −0.421649 + 0.243439i
\(665\) −6.46754 2.88493i −0.250801 0.111873i
\(666\) 20.7917 + 18.1408i 0.805664 + 0.702941i
\(667\) −15.2723 −0.591344
\(668\) 8.57472 + 14.8518i 0.331766 + 0.574635i
\(669\) −12.4280 1.20814i −0.480494 0.0467093i
\(670\) 22.1187 + 12.7702i 0.854519 + 0.493357i
\(671\) 25.5442 44.2438i 0.986121 1.70801i
\(672\) 2.31948 + 3.95222i 0.0894757 + 0.152460i
\(673\) 9.93562 + 17.2090i 0.382990 + 0.663358i 0.991488 0.130197i \(-0.0415610\pi\)
−0.608498 + 0.793555i \(0.708228\pi\)
\(674\) 24.2246i 0.933096i
\(675\) −2.62644 + 0.622947i −0.101092 + 0.0239772i
\(676\) −10.0421 −0.386235
\(677\) 7.96449 + 13.7949i 0.306100 + 0.530181i 0.977506 0.210909i \(-0.0676424\pi\)
−0.671405 + 0.741090i \(0.734309\pi\)
\(678\) 9.62785 + 6.88075i 0.369755 + 0.264254i
\(679\) −9.83041 + 7.13176i −0.377256 + 0.273692i
\(680\) −3.59886 2.07781i −0.138010 0.0796802i
\(681\) −2.13771 + 21.9904i −0.0819171 + 0.842673i
\(682\) 41.1490 23.7574i 1.57568 0.909718i
\(683\) 19.0269i 0.728042i −0.931391 0.364021i \(-0.881404\pi\)
0.931391 0.364021i \(-0.118596\pi\)
\(684\) 0.658305 3.35397i 0.0251709 0.128242i
\(685\) 18.7664i 0.717028i
\(686\) 12.4212 13.7373i 0.474243 0.524494i
\(687\) 3.22157 + 7.08623i 0.122910 + 0.270356i
\(688\) 1.76053 3.04933i 0.0671196 0.116254i
\(689\) 0 0
\(690\) 13.6139 6.18919i 0.518271 0.235618i
\(691\) −0.139477 + 0.0805273i −0.00530597 + 0.00306340i −0.502651 0.864490i \(-0.667642\pi\)
0.497345 + 0.867553i \(0.334308\pi\)
\(692\) −1.98748 −0.0755525
\(693\) 36.8434 + 25.9368i 1.39956 + 0.985256i
\(694\) −22.7999 −0.865471
\(695\) 42.2396 24.3870i 1.60224 0.925053i
\(696\) 0.696415 7.16396i 0.0263976 0.271549i
\(697\) −7.07017 + 12.2459i −0.267802 + 0.463847i
\(698\) −1.42253 + 2.46389i −0.0538434 + 0.0932595i
\(699\) 2.16932 3.03540i 0.0820511 0.114809i
\(700\) 1.36699 0.142715i 0.0516674 0.00539412i
\(701\) 9.98234i 0.377028i 0.982071 + 0.188514i \(0.0603670\pi\)
−0.982071 + 0.188514i \(0.939633\pi\)
\(702\) 2.56160 8.56160i 0.0966814 0.323137i
\(703\) 10.4792i 0.395229i
\(704\) 4.91614 2.83834i 0.185284 0.106974i
\(705\) −39.0983 27.9425i −1.47253 1.05237i
\(706\) −6.18709 3.57212i −0.232854 0.134438i
\(707\) 10.2899 + 14.1836i 0.386993 + 0.533430i
\(708\) 0.373656 3.84377i 0.0140429 0.144458i
\(709\) 12.1962 + 21.1244i 0.458036 + 0.793342i 0.998857 0.0477959i \(-0.0152197\pi\)
−0.540821 + 0.841138i \(0.681886\pi\)
\(710\) −10.6216 −0.398621
\(711\) −25.6961 + 29.4512i −0.963679 + 1.10450i
\(712\) 1.16106i 0.0435125i
\(713\) −15.3806 26.6400i −0.576008 0.997676i
\(714\) −8.10559 + 0.0576921i −0.303344 + 0.00215907i
\(715\) −11.4684 + 19.8639i −0.428894 + 0.742867i
\(716\) 7.19773 + 4.15561i 0.268992 + 0.155302i
\(717\) 7.27004 + 15.9913i 0.271504 + 0.597207i
\(718\) −5.80186 10.0491i −0.216523 0.375030i
\(719\) 16.2692 0.606739 0.303370 0.952873i \(-0.401888\pi\)
0.303370 + 0.952873i \(0.401888\pi\)
\(720\) 2.28245 + 6.66826i 0.0850619 + 0.248512i
\(721\) −14.1588 6.31570i −0.527300 0.235209i
\(722\) −15.3303 + 8.85097i −0.570536 + 0.329399i
\(723\) 18.1841 + 1.76769i 0.676274 + 0.0657412i
\(724\) −13.3837 7.72706i −0.497400 0.287174i
\(725\) −1.86955 1.07938i −0.0694332 0.0400873i
\(726\) 21.3752 29.9091i 0.793307 1.11003i
\(727\) −20.6626 + 11.9296i −0.766335 + 0.442444i −0.831566 0.555427i \(-0.812555\pi\)
0.0652306 + 0.997870i \(0.479222\pi\)
\(728\) −1.85366 + 4.15561i −0.0687013 + 0.154017i
\(729\) −22.5632 14.8291i −0.835673 0.549227i
\(730\) 12.5511 0.464536
\(731\) 3.11408 + 5.39374i 0.115178 + 0.199495i
\(732\) 9.06354 12.6821i 0.334998 0.468744i
\(733\) −10.6259 6.13486i −0.392476 0.226596i 0.290756 0.956797i \(-0.406093\pi\)
−0.683233 + 0.730201i \(0.739426\pi\)
\(734\) 3.91747 6.78525i 0.144596 0.250448i
\(735\) 22.9364 16.8904i 0.846022 0.623011i
\(736\) −1.83755 3.18272i −0.0677329 0.117317i
\(737\) 61.7125i 2.27321i
\(738\) 22.6902 7.76652i 0.835237 0.285890i
\(739\) 41.8891 1.54092 0.770459 0.637490i \(-0.220027\pi\)
0.770459 + 0.637490i \(0.220027\pi\)
\(740\) −10.8044 18.7137i −0.397177 0.687931i
\(741\) 3.08959 1.40460i 0.113499 0.0515992i
\(742\) 0 0
\(743\) 43.9160 + 25.3549i 1.61112 + 0.930182i 0.989111 + 0.147173i \(0.0470176\pi\)
0.622011 + 0.783008i \(0.286316\pi\)
\(744\) 13.1977 6.00000i 0.483852 0.219971i
\(745\) 2.43690 1.40695i 0.0892813 0.0515466i
\(746\) 25.6677i 0.939762i
\(747\) −24.7445 + 28.3605i −0.905355 + 1.03766i
\(748\) 10.0411i 0.367137i
\(749\) −1.29550 12.4090i −0.0473367 0.453413i
\(750\) −18.1466 1.76405i −0.662621 0.0644140i
\(751\) 16.3683 28.3508i 0.597289 1.03454i −0.395930 0.918281i \(-0.629578\pi\)
0.993219 0.116255i \(-0.0370890\pi\)
\(752\) −5.90494 + 10.2277i −0.215331 + 0.372964i
\(753\) −41.2893 29.5083i −1.50467 1.07534i
\(754\) 6.18951 3.57351i 0.225408 0.130140i
\(755\) 35.7680 1.30173
\(756\) 10.4231 + 8.96430i 0.379085 + 0.326028i
\(757\) −17.9255 −0.651512 −0.325756 0.945454i \(-0.605619\pi\)
−0.325756 + 0.945454i \(0.605619\pi\)
\(758\) 13.0809 7.55227i 0.475120 0.274311i
\(759\) −29.3985 21.0103i −1.06710 0.762626i
\(760\) −1.33834 + 2.31806i −0.0485465 + 0.0840850i
\(761\) −21.8509 + 37.8469i −0.792096 + 1.37195i 0.132571 + 0.991174i \(0.457677\pi\)
−0.924667 + 0.380777i \(0.875657\pi\)
\(762\) −11.5101 1.11891i −0.416966 0.0405337i
\(763\) −11.1486 + 1.16393i −0.403608 + 0.0421370i
\(764\) 12.3381i 0.446376i
\(765\) −12.2334 2.40114i −0.442300 0.0868132i
\(766\) 1.52664i 0.0551599i
\(767\) 3.32093 1.91734i 0.119912 0.0692311i
\(768\) 1.57675 0.716830i 0.0568962 0.0258664i
\(769\) 37.0864 + 21.4118i 1.33737 + 0.772131i 0.986417 0.164262i \(-0.0525242\pi\)
0.350953 + 0.936393i \(0.385858\pi\)
\(770\) −20.7202 28.5607i −0.746705 1.02926i
\(771\) −12.0284 + 5.46841i −0.433193 + 0.196940i
\(772\) 2.19694 + 3.80521i 0.0790696 + 0.136953i
\(773\) 21.6051 0.777080 0.388540 0.921432i \(-0.372980\pi\)
0.388540 + 0.921432i \(0.372980\pi\)
\(774\) 2.03449 10.3654i 0.0731281 0.372577i