Properties

Label 1008.2.bf.i.31.4
Level $1008$
Weight $2$
Character 1008.31
Analytic conductor $8.049$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(31,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.4
Character \(\chi\) \(=\) 1008.31
Dual form 1008.2.bf.i.943.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14316 + 1.30123i) q^{3} +4.29566i q^{5} +(0.334043 - 2.62458i) q^{7} +(-0.386381 - 2.97501i) q^{9} -3.60507i q^{11} +(-4.45873 - 2.57425i) q^{13} +(-5.58963 - 4.91062i) q^{15} +(-0.886675 - 0.511922i) q^{17} +(0.662930 + 1.14823i) q^{19} +(3.03331 + 3.43497i) q^{21} -3.14466i q^{23} -13.4527 q^{25} +(4.31286 + 2.89814i) q^{27} +(-0.373020 - 0.646090i) q^{29} +(-4.64826 - 8.05102i) q^{31} +(4.69102 + 4.12117i) q^{33} +(11.2743 + 1.43494i) q^{35} +(-0.761414 - 1.31881i) q^{37} +(8.44671 - 2.85904i) q^{39} +(4.22328 + 2.43831i) q^{41} +(6.14560 - 3.54817i) q^{43} +(12.7796 - 1.65976i) q^{45} +(-3.70487 + 6.41703i) q^{47} +(-6.77683 - 1.75345i) q^{49} +(1.67974 - 0.568557i) q^{51} +(-0.0746200 + 0.129246i) q^{53} +15.4862 q^{55} +(-2.25194 - 0.449984i) q^{57} +(0.996973 + 1.72681i) q^{59} +(5.05446 + 2.91820i) q^{61} +(-7.93723 + 0.0203037i) q^{63} +(11.0581 - 19.1532i) q^{65} +(-7.86136 + 4.53876i) q^{67} +(4.09191 + 3.59484i) q^{69} -11.3710i q^{71} +(4.04560 + 2.33573i) q^{73} +(15.3785 - 17.5050i) q^{75} +(-9.46180 - 1.20425i) q^{77} +(-9.68102 - 5.58934i) q^{79} +(-8.70142 + 2.29898i) q^{81} +(-6.90574 - 11.9611i) q^{83} +(2.19904 - 3.80885i) q^{85} +(1.26713 + 0.253199i) q^{87} +(14.0722 - 8.12459i) q^{89} +(-8.24573 + 10.8424i) q^{91} +(15.7899 + 3.15515i) q^{93} +(-4.93240 + 2.84772i) q^{95} +(-6.25228 + 3.60975i) q^{97} +(-10.7251 + 1.39293i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{9} - 6 q^{13} - 18 q^{17} - 8 q^{21} - 32 q^{25} - 12 q^{29} + 30 q^{33} + 2 q^{37} + 36 q^{41} + 30 q^{45} + 2 q^{49} - 12 q^{53} - 46 q^{57} + 42 q^{61} + 18 q^{65} - 42 q^{69} - 66 q^{77}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.14316 + 1.30123i −0.660002 + 0.751263i
\(4\) 0 0
\(5\) 4.29566i 1.92108i 0.278147 + 0.960539i \(0.410280\pi\)
−0.278147 + 0.960539i \(0.589720\pi\)
\(6\) 0 0
\(7\) 0.334043 2.62458i 0.126256 0.991998i
\(8\) 0 0
\(9\) −0.386381 2.97501i −0.128794 0.991671i
\(10\) 0 0
\(11\) 3.60507i 1.08697i −0.839419 0.543485i \(-0.817104\pi\)
0.839419 0.543485i \(-0.182896\pi\)
\(12\) 0 0
\(13\) −4.45873 2.57425i −1.23663 0.713968i −0.268225 0.963356i \(-0.586437\pi\)
−0.968404 + 0.249388i \(0.919770\pi\)
\(14\) 0 0
\(15\) −5.58963 4.91062i −1.44324 1.26792i
\(16\) 0 0
\(17\) −0.886675 0.511922i −0.215050 0.124159i 0.388606 0.921404i \(-0.372957\pi\)
−0.603656 + 0.797245i \(0.706290\pi\)
\(18\) 0 0
\(19\) 0.662930 + 1.14823i 0.152087 + 0.263422i 0.931994 0.362473i \(-0.118067\pi\)
−0.779908 + 0.625894i \(0.784734\pi\)
\(20\) 0 0
\(21\) 3.03331 + 3.43497i 0.661922 + 0.749573i
\(22\) 0 0
\(23\) 3.14466i 0.655706i −0.944729 0.327853i \(-0.893675\pi\)
0.944729 0.327853i \(-0.106325\pi\)
\(24\) 0 0
\(25\) −13.4527 −2.69054
\(26\) 0 0
\(27\) 4.31286 + 2.89814i 0.830011 + 0.557748i
\(28\) 0 0
\(29\) −0.373020 0.646090i −0.0692681 0.119976i 0.829311 0.558787i \(-0.188733\pi\)
−0.898579 + 0.438811i \(0.855400\pi\)
\(30\) 0 0
\(31\) −4.64826 8.05102i −0.834851 1.44601i −0.894151 0.447765i \(-0.852220\pi\)
0.0592999 0.998240i \(-0.481113\pi\)
\(32\) 0 0
\(33\) 4.69102 + 4.12117i 0.816601 + 0.717403i
\(34\) 0 0
\(35\) 11.2743 + 1.43494i 1.90570 + 0.242548i
\(36\) 0 0
\(37\) −0.761414 1.31881i −0.125176 0.216811i 0.796626 0.604473i \(-0.206616\pi\)
−0.921802 + 0.387662i \(0.873283\pi\)
\(38\) 0 0
\(39\) 8.44671 2.85904i 1.35256 0.457813i
\(40\) 0 0
\(41\) 4.22328 + 2.43831i 0.659565 + 0.380800i 0.792111 0.610377i \(-0.208982\pi\)
−0.132546 + 0.991177i \(0.542315\pi\)
\(42\) 0 0
\(43\) 6.14560 3.54817i 0.937196 0.541090i 0.0481156 0.998842i \(-0.484678\pi\)
0.889080 + 0.457752i \(0.151345\pi\)
\(44\) 0 0
\(45\) 12.7796 1.65976i 1.90508 0.247422i
\(46\) 0 0
\(47\) −3.70487 + 6.41703i −0.540411 + 0.936020i 0.458469 + 0.888710i \(0.348398\pi\)
−0.998880 + 0.0473095i \(0.984935\pi\)
\(48\) 0 0
\(49\) −6.77683 1.75345i −0.968119 0.250492i
\(50\) 0 0
\(51\) 1.67974 0.568557i 0.235210 0.0796139i
\(52\) 0 0
\(53\) −0.0746200 + 0.129246i −0.0102499 + 0.0177533i −0.871105 0.491097i \(-0.836596\pi\)
0.860855 + 0.508850i \(0.169929\pi\)
\(54\) 0 0
\(55\) 15.4862 2.08815
\(56\) 0 0
\(57\) −2.25194 0.449984i −0.298277 0.0596019i
\(58\) 0 0
\(59\) 0.996973 + 1.72681i 0.129795 + 0.224811i 0.923597 0.383365i \(-0.125235\pi\)
−0.793802 + 0.608176i \(0.791901\pi\)
\(60\) 0 0
\(61\) 5.05446 + 2.91820i 0.647158 + 0.373637i 0.787366 0.616485i \(-0.211444\pi\)
−0.140209 + 0.990122i \(0.544777\pi\)
\(62\) 0 0
\(63\) −7.93723 + 0.0203037i −0.999997 + 0.00255802i
\(64\) 0 0
\(65\) 11.0581 19.1532i 1.37159 2.37566i
\(66\) 0 0
\(67\) −7.86136 + 4.53876i −0.960418 + 0.554498i −0.896302 0.443445i \(-0.853756\pi\)
−0.0641164 + 0.997942i \(0.520423\pi\)
\(68\) 0 0
\(69\) 4.09191 + 3.59484i 0.492608 + 0.432768i
\(70\) 0 0
\(71\) 11.3710i 1.34949i −0.738052 0.674743i \(-0.764254\pi\)
0.738052 0.674743i \(-0.235746\pi\)
\(72\) 0 0
\(73\) 4.04560 + 2.33573i 0.473502 + 0.273377i 0.717705 0.696348i \(-0.245193\pi\)
−0.244202 + 0.969724i \(0.578526\pi\)
\(74\) 0 0
\(75\) 15.3785 17.5050i 1.77576 2.02130i
\(76\) 0 0
\(77\) −9.46180 1.20425i −1.07827 0.137237i
\(78\) 0 0
\(79\) −9.68102 5.58934i −1.08920 0.628850i −0.155836 0.987783i \(-0.549807\pi\)
−0.933363 + 0.358933i \(0.883141\pi\)
\(80\) 0 0
\(81\) −8.70142 + 2.29898i −0.966824 + 0.255442i
\(82\) 0 0
\(83\) −6.90574 11.9611i −0.758003 1.31290i −0.943867 0.330324i \(-0.892842\pi\)
0.185864 0.982575i \(-0.440492\pi\)
\(84\) 0 0
\(85\) 2.19904 3.80885i 0.238520 0.413128i
\(86\) 0 0
\(87\) 1.26713 + 0.253199i 0.135851 + 0.0271458i
\(88\) 0 0
\(89\) 14.0722 8.12459i 1.49165 0.861205i 0.491697 0.870767i \(-0.336377\pi\)
0.999954 + 0.00956141i \(0.00304354\pi\)
\(90\) 0 0
\(91\) −8.24573 + 10.8424i −0.864387 + 1.13659i
\(92\) 0 0
\(93\) 15.7899 + 3.15515i 1.63733 + 0.327173i
\(94\) 0 0
\(95\) −4.93240 + 2.84772i −0.506053 + 0.292170i
\(96\) 0 0
\(97\) −6.25228 + 3.60975i −0.634822 + 0.366515i −0.782617 0.622503i \(-0.786116\pi\)
0.147795 + 0.989018i \(0.452782\pi\)
\(98\) 0 0
\(99\) −10.7251 + 1.39293i −1.07792 + 0.139995i
\(100\) 0 0
\(101\) 9.00333i 0.895865i 0.894067 + 0.447932i \(0.147839\pi\)
−0.894067 + 0.447932i \(0.852161\pi\)
\(102\) 0 0
\(103\) −9.29530 −0.915893 −0.457947 0.888980i \(-0.651415\pi\)
−0.457947 + 0.888980i \(0.651415\pi\)
\(104\) 0 0
\(105\) −14.7555 + 13.0301i −1.43999 + 1.27160i
\(106\) 0 0
\(107\) −4.62335 + 2.66929i −0.446956 + 0.258050i −0.706544 0.707669i \(-0.749747\pi\)
0.259588 + 0.965720i \(0.416413\pi\)
\(108\) 0 0
\(109\) −2.66385 + 4.61393i −0.255151 + 0.441934i −0.964936 0.262484i \(-0.915458\pi\)
0.709786 + 0.704418i \(0.248792\pi\)
\(110\) 0 0
\(111\) 2.58648 + 0.516833i 0.245498 + 0.0490556i
\(112\) 0 0
\(113\) 5.83794 10.1116i 0.549187 0.951221i −0.449143 0.893460i \(-0.648271\pi\)
0.998330 0.0577607i \(-0.0183960\pi\)
\(114\) 0 0
\(115\) 13.5084 1.25966
\(116\) 0 0
\(117\) −5.93566 + 14.2594i −0.548752 + 1.31828i
\(118\) 0 0
\(119\) −1.63977 + 2.15614i −0.150317 + 0.197653i
\(120\) 0 0
\(121\) −1.99655 −0.181504
\(122\) 0 0
\(123\) −8.00066 + 2.70807i −0.721395 + 0.244178i
\(124\) 0 0
\(125\) 36.3099i 3.24765i
\(126\) 0 0
\(127\) 13.4887i 1.19693i 0.801150 + 0.598463i \(0.204222\pi\)
−0.801150 + 0.598463i \(0.795778\pi\)
\(128\) 0 0
\(129\) −2.40843 + 12.0529i −0.212050 + 1.06120i
\(130\) 0 0
\(131\) −16.5823 −1.44880 −0.724399 0.689381i \(-0.757883\pi\)
−0.724399 + 0.689381i \(0.757883\pi\)
\(132\) 0 0
\(133\) 3.23506 1.35635i 0.280516 0.117611i
\(134\) 0 0
\(135\) −12.4494 + 18.5266i −1.07148 + 1.59451i
\(136\) 0 0
\(137\) 5.97903 0.510823 0.255411 0.966832i \(-0.417789\pi\)
0.255411 + 0.966832i \(0.417789\pi\)
\(138\) 0 0
\(139\) 8.75126 15.1576i 0.742272 1.28565i −0.209187 0.977876i \(-0.567082\pi\)
0.951459 0.307777i \(-0.0995850\pi\)
\(140\) 0 0
\(141\) −4.11475 12.1566i −0.346525 1.02377i
\(142\) 0 0
\(143\) −9.28035 + 16.0740i −0.776062 + 1.34418i
\(144\) 0 0
\(145\) 2.77538 1.60237i 0.230483 0.133069i
\(146\) 0 0
\(147\) 10.0286 6.81373i 0.827146 0.561987i
\(148\) 0 0
\(149\) −15.1776 −1.24339 −0.621697 0.783258i \(-0.713556\pi\)
−0.621697 + 0.783258i \(0.713556\pi\)
\(150\) 0 0
\(151\) 7.04117i 0.573003i −0.958080 0.286501i \(-0.907508\pi\)
0.958080 0.286501i \(-0.0924923\pi\)
\(152\) 0 0
\(153\) −1.18038 + 2.83567i −0.0954281 + 0.229250i
\(154\) 0 0
\(155\) 34.5844 19.9673i 2.77789 1.60381i
\(156\) 0 0
\(157\) −13.7064 + 7.91337i −1.09389 + 0.631556i −0.934609 0.355678i \(-0.884250\pi\)
−0.159278 + 0.987234i \(0.550917\pi\)
\(158\) 0 0
\(159\) −0.0828755 0.244846i −0.00657245 0.0194175i
\(160\) 0 0
\(161\) −8.25340 1.05045i −0.650459 0.0827871i
\(162\) 0 0
\(163\) 9.98202 5.76312i 0.781852 0.451403i −0.0552341 0.998473i \(-0.517591\pi\)
0.837086 + 0.547071i \(0.184257\pi\)
\(164\) 0 0
\(165\) −17.7031 + 20.1510i −1.37819 + 1.56875i
\(166\) 0 0
\(167\) −3.14269 + 5.44330i −0.243189 + 0.421215i −0.961621 0.274382i \(-0.911527\pi\)
0.718432 + 0.695597i \(0.244860\pi\)
\(168\) 0 0
\(169\) 6.75351 + 11.6974i 0.519500 + 0.899801i
\(170\) 0 0
\(171\) 3.15985 2.41588i 0.241640 0.184747i
\(172\) 0 0
\(173\) 6.21442 + 3.58789i 0.472473 + 0.272783i 0.717274 0.696791i \(-0.245389\pi\)
−0.244801 + 0.969573i \(0.578723\pi\)
\(174\) 0 0
\(175\) −4.49378 + 35.3076i −0.339698 + 2.66901i
\(176\) 0 0
\(177\) −3.38667 0.676726i −0.254557 0.0508659i
\(178\) 0 0
\(179\) 17.9847 + 10.3835i 1.34424 + 0.776098i 0.987427 0.158077i \(-0.0505293\pi\)
0.356815 + 0.934175i \(0.383863\pi\)
\(180\) 0 0
\(181\) 13.7498i 1.02201i −0.859577 0.511005i \(-0.829273\pi\)
0.859577 0.511005i \(-0.170727\pi\)
\(182\) 0 0
\(183\) −9.57529 + 3.24104i −0.707825 + 0.239585i
\(184\) 0 0
\(185\) 5.66515 3.27077i 0.416510 0.240472i
\(186\) 0 0
\(187\) −1.84552 + 3.19653i −0.134957 + 0.233753i
\(188\) 0 0
\(189\) 9.04708 10.3513i 0.658079 0.752949i
\(190\) 0 0
\(191\) 5.06422 + 2.92383i 0.366434 + 0.211561i 0.671899 0.740642i \(-0.265479\pi\)
−0.305466 + 0.952203i \(0.598812\pi\)
\(192\) 0 0
\(193\) 1.13564 + 1.96698i 0.0817448 + 0.141586i 0.903999 0.427534i \(-0.140617\pi\)
−0.822255 + 0.569120i \(0.807284\pi\)
\(194\) 0 0
\(195\) 12.2815 + 36.2842i 0.879495 + 2.59836i
\(196\) 0 0
\(197\) −9.34192 −0.665584 −0.332792 0.943000i \(-0.607991\pi\)
−0.332792 + 0.943000i \(0.607991\pi\)
\(198\) 0 0
\(199\) −1.05079 + 1.82002i −0.0744883 + 0.129017i −0.900864 0.434102i \(-0.857066\pi\)
0.826375 + 0.563120i \(0.190399\pi\)
\(200\) 0 0
\(201\) 3.08082 15.4179i 0.217304 1.08750i
\(202\) 0 0
\(203\) −1.82032 + 0.763199i −0.127761 + 0.0535660i
\(204\) 0 0
\(205\) −10.4741 + 18.1418i −0.731546 + 1.26707i
\(206\) 0 0
\(207\) −9.35540 + 1.21503i −0.650245 + 0.0844508i
\(208\) 0 0
\(209\) 4.13945 2.38991i 0.286332 0.165314i
\(210\) 0 0
\(211\) 8.07179 + 4.66025i 0.555685 + 0.320825i 0.751412 0.659834i \(-0.229373\pi\)
−0.195727 + 0.980658i \(0.562707\pi\)
\(212\) 0 0
\(213\) 14.7962 + 12.9988i 1.01382 + 0.890664i
\(214\) 0 0
\(215\) 15.2417 + 26.3994i 1.03948 + 1.80043i
\(216\) 0 0
\(217\) −22.6832 + 9.51033i −1.53984 + 0.645603i
\(218\) 0 0
\(219\) −7.66408 + 2.59414i −0.517890 + 0.175296i
\(220\) 0 0
\(221\) 2.63563 + 4.56504i 0.177292 + 0.307078i
\(222\) 0 0
\(223\) 3.87550 + 6.71256i 0.259523 + 0.449506i 0.966114 0.258115i \(-0.0831014\pi\)
−0.706591 + 0.707622i \(0.749768\pi\)
\(224\) 0 0
\(225\) 5.19786 + 40.0219i 0.346524 + 2.66813i
\(226\) 0 0
\(227\) −18.3087 −1.21519 −0.607595 0.794247i \(-0.707866\pi\)
−0.607595 + 0.794247i \(0.707866\pi\)
\(228\) 0 0
\(229\) 22.2784i 1.47220i −0.676874 0.736099i \(-0.736666\pi\)
0.676874 0.736099i \(-0.263334\pi\)
\(230\) 0 0
\(231\) 12.3833 10.9353i 0.814763 0.719489i
\(232\) 0 0
\(233\) 2.35026 + 4.07076i 0.153970 + 0.266684i 0.932684 0.360696i \(-0.117461\pi\)
−0.778713 + 0.627380i \(0.784127\pi\)
\(234\) 0 0
\(235\) −27.5654 15.9149i −1.79817 1.03817i
\(236\) 0 0
\(237\) 18.3399 6.20770i 1.19131 0.403233i
\(238\) 0 0
\(239\) −9.76287 5.63659i −0.631507 0.364601i 0.149828 0.988712i \(-0.452128\pi\)
−0.781336 + 0.624111i \(0.785461\pi\)
\(240\) 0 0
\(241\) 3.72908i 0.240211i −0.992761 0.120106i \(-0.961677\pi\)
0.992761 0.120106i \(-0.0383233\pi\)
\(242\) 0 0
\(243\) 6.95561 13.9506i 0.446202 0.894932i
\(244\) 0 0
\(245\) 7.53220 29.1110i 0.481215 1.85983i
\(246\) 0 0
\(247\) 6.82619i 0.434340i
\(248\) 0 0
\(249\) 23.4584 + 4.68748i 1.48662 + 0.297057i
\(250\) 0 0
\(251\) −12.5374 −0.791354 −0.395677 0.918390i \(-0.629490\pi\)
−0.395677 + 0.918390i \(0.629490\pi\)
\(252\) 0 0
\(253\) −11.3367 −0.712733
\(254\) 0 0
\(255\) 2.44233 + 7.21557i 0.152944 + 0.451857i
\(256\) 0 0
\(257\) 15.4524i 0.963894i −0.876200 0.481947i \(-0.839930\pi\)
0.876200 0.481947i \(-0.160070\pi\)
\(258\) 0 0
\(259\) −3.71566 + 1.55785i −0.230880 + 0.0968002i
\(260\) 0 0
\(261\) −1.77800 + 1.35938i −0.110055 + 0.0841433i
\(262\) 0 0
\(263\) 17.2727i 1.06508i −0.846404 0.532541i \(-0.821237\pi\)
0.846404 0.532541i \(-0.178763\pi\)
\(264\) 0 0
\(265\) −0.555196 0.320542i −0.0341054 0.0196908i
\(266\) 0 0
\(267\) −5.51482 + 27.5988i −0.337501 + 1.68902i
\(268\) 0 0
\(269\) 8.06706 + 4.65752i 0.491857 + 0.283974i 0.725345 0.688386i \(-0.241680\pi\)
−0.233487 + 0.972360i \(0.575014\pi\)
\(270\) 0 0
\(271\) −10.1759 17.6251i −0.618140 1.07065i −0.989825 0.142291i \(-0.954553\pi\)
0.371685 0.928359i \(-0.378780\pi\)
\(272\) 0 0
\(273\) −4.68222 23.1241i −0.283381 1.39953i
\(274\) 0 0
\(275\) 48.4979i 2.92453i
\(276\) 0 0
\(277\) −32.6761 −1.96331 −0.981657 0.190654i \(-0.938939\pi\)
−0.981657 + 0.190654i \(0.938939\pi\)
\(278\) 0 0
\(279\) −22.1559 + 16.9394i −1.32644 + 1.01413i
\(280\) 0 0
\(281\) 10.8916 + 18.8647i 0.649736 + 1.12538i 0.983186 + 0.182609i \(0.0584541\pi\)
−0.333449 + 0.942768i \(0.608213\pi\)
\(282\) 0 0
\(283\) −1.72157 2.98184i −0.102336 0.177252i 0.810310 0.586001i \(-0.199298\pi\)
−0.912647 + 0.408749i \(0.865965\pi\)
\(284\) 0 0
\(285\) 1.93298 9.67356i 0.114500 0.573012i
\(286\) 0 0
\(287\) 7.81029 10.2698i 0.461027 0.606208i
\(288\) 0 0
\(289\) −7.97587 13.8146i −0.469169 0.812624i
\(290\) 0 0
\(291\) 2.45023 12.2621i 0.143635 0.718820i
\(292\) 0 0
\(293\) 17.0502 + 9.84397i 0.996086 + 0.575091i 0.907088 0.420941i \(-0.138300\pi\)
0.0889983 + 0.996032i \(0.471633\pi\)
\(294\) 0 0
\(295\) −7.41778 + 4.28266i −0.431880 + 0.249346i
\(296\) 0 0
\(297\) 10.4480 15.5482i 0.606255 0.902197i
\(298\) 0 0
\(299\) −8.09513 + 14.0212i −0.468153 + 0.810865i
\(300\) 0 0
\(301\) −7.25954 17.3149i −0.418433 0.998012i
\(302\) 0 0
\(303\) −11.7154 10.2922i −0.673030 0.591273i
\(304\) 0 0
\(305\) −12.5356 + 21.7123i −0.717785 + 1.24324i
\(306\) 0 0
\(307\) −12.5054 −0.713719 −0.356859 0.934158i \(-0.616152\pi\)
−0.356859 + 0.934158i \(0.616152\pi\)
\(308\) 0 0
\(309\) 10.6260 12.0953i 0.604492 0.688077i
\(310\) 0 0
\(311\) 5.35524 + 9.27554i 0.303668 + 0.525968i 0.976964 0.213405i \(-0.0684554\pi\)
−0.673296 + 0.739373i \(0.735122\pi\)
\(312\) 0 0
\(313\) −9.95819 5.74936i −0.562870 0.324973i 0.191427 0.981507i \(-0.438689\pi\)
−0.754297 + 0.656534i \(0.772022\pi\)
\(314\) 0 0
\(315\) −0.0872176 34.0956i −0.00491416 1.92107i
\(316\) 0 0
\(317\) −8.70784 + 15.0824i −0.489081 + 0.847113i −0.999921 0.0125628i \(-0.996001\pi\)
0.510840 + 0.859676i \(0.329334\pi\)
\(318\) 0 0
\(319\) −2.32920 + 1.34476i −0.130410 + 0.0752923i
\(320\) 0 0
\(321\) 1.81186 9.06745i 0.101128 0.506096i
\(322\) 0 0
\(323\) 1.35747i 0.0755319i
\(324\) 0 0
\(325\) 59.9819 + 34.6306i 3.32720 + 1.92096i
\(326\) 0 0
\(327\) −2.95856 8.74072i −0.163609 0.483363i
\(328\) 0 0
\(329\) 15.6044 + 11.8673i 0.860299 + 0.654265i
\(330\) 0 0
\(331\) 10.1816 + 5.87837i 0.559634 + 0.323105i 0.752998 0.658022i \(-0.228607\pi\)
−0.193365 + 0.981127i \(0.561940\pi\)
\(332\) 0 0
\(333\) −3.62927 + 2.77478i −0.198883 + 0.152057i
\(334\) 0 0
\(335\) −19.4970 33.7697i −1.06523 1.84504i
\(336\) 0 0
\(337\) 9.72282 16.8404i 0.529636 0.917356i −0.469767 0.882791i \(-0.655662\pi\)
0.999402 0.0345655i \(-0.0110047\pi\)
\(338\) 0 0
\(339\) 6.48381 + 19.1557i 0.352152 + 1.04039i
\(340\) 0 0
\(341\) −29.0245 + 16.7573i −1.57176 + 0.907459i
\(342\) 0 0
\(343\) −6.86581 + 17.2006i −0.370719 + 0.928745i
\(344\) 0 0
\(345\) −15.4422 + 17.5775i −0.831380 + 0.946338i
\(346\) 0 0
\(347\) 8.58776 4.95814i 0.461015 0.266167i −0.251456 0.967869i \(-0.580909\pi\)
0.712471 + 0.701702i \(0.247576\pi\)
\(348\) 0 0
\(349\) 8.22452 4.74843i 0.440248 0.254178i −0.263455 0.964672i \(-0.584862\pi\)
0.703703 + 0.710494i \(0.251529\pi\)
\(350\) 0 0
\(351\) −11.7693 24.0244i −0.628201 1.28233i
\(352\) 0 0
\(353\) 7.38308i 0.392962i 0.980508 + 0.196481i \(0.0629514\pi\)
−0.980508 + 0.196481i \(0.937049\pi\)
\(354\) 0 0
\(355\) 48.8458 2.59247
\(356\) 0 0
\(357\) −0.931119 4.59852i −0.0492800 0.243380i
\(358\) 0 0
\(359\) 9.92939 5.73274i 0.524053 0.302562i −0.214538 0.976716i \(-0.568825\pi\)
0.738591 + 0.674153i \(0.235491\pi\)
\(360\) 0 0
\(361\) 8.62105 14.9321i 0.453739 0.785900i
\(362\) 0 0
\(363\) 2.28237 2.59796i 0.119793 0.136357i
\(364\) 0 0
\(365\) −10.0335 + 17.3785i −0.525178 + 0.909634i
\(366\) 0 0
\(367\) −26.7766 −1.39773 −0.698864 0.715254i \(-0.746311\pi\)
−0.698864 + 0.715254i \(0.746311\pi\)
\(368\) 0 0
\(369\) 5.62221 13.5064i 0.292681 0.703116i
\(370\) 0 0
\(371\) 0.314289 + 0.239020i 0.0163171 + 0.0124093i
\(372\) 0 0
\(373\) −13.6607 −0.707323 −0.353662 0.935373i \(-0.615064\pi\)
−0.353662 + 0.935373i \(0.615064\pi\)
\(374\) 0 0
\(375\) 47.2474 + 41.5079i 2.43984 + 2.14346i
\(376\) 0 0
\(377\) 3.84098i 0.197821i
\(378\) 0 0
\(379\) 1.70006i 0.0873261i 0.999046 + 0.0436630i \(0.0139028\pi\)
−0.999046 + 0.0436630i \(0.986097\pi\)
\(380\) 0 0
\(381\) −17.5518 15.4197i −0.899207 0.789974i
\(382\) 0 0
\(383\) −20.6059 −1.05291 −0.526455 0.850203i \(-0.676479\pi\)
−0.526455 + 0.850203i \(0.676479\pi\)
\(384\) 0 0
\(385\) 5.17305 40.6447i 0.263643 2.07144i
\(386\) 0 0
\(387\) −12.9304 16.9123i −0.657289 0.859701i
\(388\) 0 0
\(389\) −13.4475 −0.681814 −0.340907 0.940097i \(-0.610734\pi\)
−0.340907 + 0.940097i \(0.610734\pi\)
\(390\) 0 0
\(391\) −1.60982 + 2.78829i −0.0814120 + 0.141010i
\(392\) 0 0
\(393\) 18.9561 21.5773i 0.956211 1.08843i
\(394\) 0 0
\(395\) 24.0099 41.5863i 1.20807 2.09244i
\(396\) 0 0
\(397\) −10.9040 + 6.29540i −0.547254 + 0.315957i −0.748014 0.663683i \(-0.768992\pi\)
0.200760 + 0.979641i \(0.435659\pi\)
\(398\) 0 0
\(399\) −1.93326 + 5.76008i −0.0967843 + 0.288365i
\(400\) 0 0
\(401\) 4.60899 0.230162 0.115081 0.993356i \(-0.463287\pi\)
0.115081 + 0.993356i \(0.463287\pi\)
\(402\) 0 0
\(403\) 47.8631i 2.38423i
\(404\) 0 0
\(405\) −9.87562 37.3783i −0.490724 1.85734i
\(406\) 0 0
\(407\) −4.75439 + 2.74495i −0.235667 + 0.136062i
\(408\) 0 0
\(409\) −17.8209 + 10.2889i −0.881187 + 0.508754i −0.871050 0.491195i \(-0.836560\pi\)
−0.0101377 + 0.999949i \(0.503227\pi\)
\(410\) 0 0
\(411\) −6.83497 + 7.78007i −0.337144 + 0.383762i
\(412\) 0 0
\(413\) 4.86518 2.03981i 0.239400 0.100372i
\(414\) 0 0
\(415\) 51.3808 29.6647i 2.52218 1.45618i
\(416\) 0 0
\(417\) 9.71943 + 28.7149i 0.475963 + 1.40618i
\(418\) 0 0
\(419\) −3.93303 + 6.81221i −0.192141 + 0.332798i −0.945960 0.324284i \(-0.894877\pi\)
0.753818 + 0.657083i \(0.228210\pi\)
\(420\) 0 0
\(421\) 10.8367 + 18.7697i 0.528149 + 0.914781i 0.999461 + 0.0328148i \(0.0104471\pi\)
−0.471312 + 0.881966i \(0.656220\pi\)
\(422\) 0 0
\(423\) 20.5222 + 8.54263i 0.997826 + 0.415357i
\(424\) 0 0
\(425\) 11.9282 + 6.88672i 0.578601 + 0.334055i
\(426\) 0 0
\(427\) 9.34745 12.2910i 0.452355 0.594805i
\(428\) 0 0
\(429\) −10.3071 30.4510i −0.497630 1.47019i
\(430\) 0 0
\(431\) −0.640472 0.369776i −0.0308504 0.0178115i 0.484495 0.874794i \(-0.339003\pi\)
−0.515346 + 0.856982i \(0.672337\pi\)
\(432\) 0 0
\(433\) 26.1089i 1.25471i −0.778732 0.627357i \(-0.784137\pi\)
0.778732 0.627357i \(-0.215863\pi\)
\(434\) 0 0
\(435\) −1.08766 + 5.44316i −0.0521491 + 0.260979i
\(436\) 0 0
\(437\) 3.61078 2.08469i 0.172727 0.0997241i
\(438\) 0 0
\(439\) −7.41381 + 12.8411i −0.353842 + 0.612872i −0.986919 0.161216i \(-0.948458\pi\)
0.633077 + 0.774089i \(0.281792\pi\)
\(440\) 0 0
\(441\) −2.59809 + 20.8387i −0.123718 + 0.992317i
\(442\) 0 0
\(443\) −8.78723 5.07331i −0.417494 0.241040i 0.276511 0.961011i \(-0.410822\pi\)
−0.694005 + 0.719971i \(0.744155\pi\)
\(444\) 0 0
\(445\) 34.9005 + 60.4494i 1.65444 + 2.86558i
\(446\) 0 0
\(447\) 17.3503 19.7494i 0.820643 0.934116i
\(448\) 0 0
\(449\) 25.0880 1.18397 0.591987 0.805948i \(-0.298344\pi\)
0.591987 + 0.805948i \(0.298344\pi\)
\(450\) 0 0
\(451\) 8.79028 15.2252i 0.413918 0.716927i
\(452\) 0 0
\(453\) 9.16216 + 8.04917i 0.430476 + 0.378183i
\(454\) 0 0
\(455\) −46.5751 35.4208i −2.18348 1.66055i
\(456\) 0 0
\(457\) 11.9988 20.7825i 0.561279 0.972163i −0.436107 0.899895i \(-0.643643\pi\)
0.997385 0.0722682i \(-0.0230237\pi\)
\(458\) 0 0
\(459\) −2.34048 4.77756i −0.109244 0.222997i
\(460\) 0 0
\(461\) −12.2178 + 7.05393i −0.569038 + 0.328534i −0.756765 0.653687i \(-0.773221\pi\)
0.187727 + 0.982221i \(0.439888\pi\)
\(462\) 0 0
\(463\) 12.0911 + 6.98080i 0.561921 + 0.324425i 0.753916 0.656971i \(-0.228163\pi\)
−0.191995 + 0.981396i \(0.561496\pi\)
\(464\) 0 0
\(465\) −13.5534 + 67.8280i −0.628526 + 3.14545i
\(466\) 0 0
\(467\) 13.2526 + 22.9542i 0.613258 + 1.06219i 0.990687 + 0.136156i \(0.0434748\pi\)
−0.377429 + 0.926038i \(0.623192\pi\)
\(468\) 0 0
\(469\) 9.28630 + 22.1489i 0.428801 + 1.02274i
\(470\) 0 0
\(471\) 5.37145 26.8813i 0.247503 1.23863i
\(472\) 0 0
\(473\) −12.7914 22.1553i −0.588149 1.01870i
\(474\) 0 0
\(475\) −8.91819 15.4468i −0.409195 0.708746i
\(476\) 0 0
\(477\) 0.413340 + 0.172058i 0.0189255 + 0.00787798i
\(478\) 0 0
\(479\) 39.0894 1.78604 0.893019 0.450018i \(-0.148582\pi\)
0.893019 + 0.450018i \(0.148582\pi\)
\(480\) 0 0
\(481\) 7.84027i 0.357486i
\(482\) 0 0
\(483\) 10.8018 9.53871i 0.491499 0.434026i
\(484\) 0 0
\(485\) −15.5063 26.8576i −0.704103 1.21954i
\(486\) 0 0
\(487\) −6.79167 3.92117i −0.307760 0.177685i 0.338164 0.941087i \(-0.390194\pi\)
−0.645924 + 0.763402i \(0.723528\pi\)
\(488\) 0 0
\(489\) −3.91190 + 19.5770i −0.176902 + 0.885304i
\(490\) 0 0
\(491\) 17.8659 + 10.3149i 0.806278 + 0.465505i 0.845662 0.533720i \(-0.179206\pi\)
−0.0393839 + 0.999224i \(0.512540\pi\)
\(492\) 0 0
\(493\) 0.763828i 0.0344011i
\(494\) 0 0
\(495\) −5.98356 46.0716i −0.268941 2.07076i
\(496\) 0 0
\(497\) −29.8440 3.79840i −1.33869 0.170381i
\(498\) 0 0
\(499\) 34.4187i 1.54079i −0.637565 0.770397i \(-0.720058\pi\)
0.637565 0.770397i \(-0.279942\pi\)
\(500\) 0 0
\(501\) −3.49038 10.3119i −0.155939 0.460702i
\(502\) 0 0
\(503\) 25.7268 1.14710 0.573552 0.819169i \(-0.305565\pi\)
0.573552 + 0.819169i \(0.305565\pi\)
\(504\) 0 0
\(505\) −38.6752 −1.72103
\(506\) 0 0
\(507\) −22.9413 4.58415i −1.01886 0.203589i
\(508\) 0 0
\(509\) 24.1729i 1.07144i −0.844395 0.535722i \(-0.820040\pi\)
0.844395 0.535722i \(-0.179960\pi\)
\(510\) 0 0
\(511\) 7.48172 9.83777i 0.330972 0.435198i
\(512\) 0 0
\(513\) −0.468603 + 6.87342i −0.0206893 + 0.303469i
\(514\) 0 0
\(515\) 39.9294i 1.75950i
\(516\) 0 0
\(517\) 23.1339 + 13.3563i 1.01743 + 0.587411i
\(518\) 0 0
\(519\) −11.7727 + 3.98483i −0.516765 + 0.174915i
\(520\) 0 0
\(521\) 31.1079 + 17.9602i 1.36286 + 0.786849i 0.990004 0.141040i \(-0.0450445\pi\)
0.372858 + 0.927888i \(0.378378\pi\)
\(522\) 0 0
\(523\) 7.02897 + 12.1745i 0.307355 + 0.532355i 0.977783 0.209620i \(-0.0672226\pi\)
−0.670428 + 0.741975i \(0.733889\pi\)
\(524\) 0 0
\(525\) −40.8061 46.2096i −1.78093 2.01675i
\(526\) 0 0
\(527\) 9.51817i 0.414618i
\(528\) 0 0
\(529\) 13.1111 0.570049
\(530\) 0 0
\(531\) 4.75207 3.63322i 0.206222 0.157668i
\(532\) 0 0
\(533\) −12.5536 21.7435i −0.543758 0.941816i
\(534\) 0 0
\(535\) −11.4664 19.8603i −0.495735 0.858638i
\(536\) 0 0
\(537\) −34.0707 + 11.5322i −1.47026 + 0.497653i
\(538\) 0 0
\(539\) −6.32130 + 24.4310i −0.272278 + 1.05232i
\(540\) 0 0
\(541\) −2.60496 4.51193i −0.111996 0.193983i 0.804579 0.593846i \(-0.202391\pi\)
−0.916575 + 0.399863i \(0.869058\pi\)
\(542\) 0 0
\(543\) 17.8915 + 15.7181i 0.767800 + 0.674530i
\(544\) 0 0
\(545\) −19.8199 11.4430i −0.848989 0.490164i
\(546\) 0 0
\(547\) −11.1833 + 6.45666i −0.478162 + 0.276067i −0.719650 0.694337i \(-0.755698\pi\)
0.241488 + 0.970404i \(0.422365\pi\)
\(548\) 0 0
\(549\) 6.72873 16.1646i 0.287175 0.689890i
\(550\) 0 0
\(551\) 0.494572 0.856625i 0.0210695 0.0364934i
\(552\) 0 0
\(553\) −17.9035 + 23.5415i −0.761336 + 1.00109i
\(554\) 0 0
\(555\) −2.22014 + 11.1106i −0.0942396 + 0.471621i
\(556\) 0 0
\(557\) −12.6086 + 21.8388i −0.534245 + 0.925339i 0.464955 + 0.885334i \(0.346071\pi\)
−0.999199 + 0.0400045i \(0.987263\pi\)
\(558\) 0 0
\(559\) −36.5354 −1.54528
\(560\) 0 0
\(561\) −2.04969 6.05557i −0.0865380 0.255666i
\(562\) 0 0
\(563\) −16.9925 29.4318i −0.716148 1.24040i −0.962515 0.271228i \(-0.912570\pi\)
0.246367 0.969176i \(-0.420763\pi\)
\(564\) 0 0
\(565\) 43.4360 + 25.0778i 1.82737 + 1.05503i
\(566\) 0 0
\(567\) 3.12720 + 23.6055i 0.131330 + 0.991339i
\(568\) 0 0
\(569\) −13.3518 + 23.1260i −0.559736 + 0.969490i 0.437783 + 0.899081i \(0.355764\pi\)
−0.997518 + 0.0704095i \(0.977569\pi\)
\(570\) 0 0
\(571\) −24.4861 + 14.1371i −1.02471 + 0.591618i −0.915465 0.402397i \(-0.868177\pi\)
−0.109247 + 0.994015i \(0.534844\pi\)
\(572\) 0 0
\(573\) −9.59376 + 3.24730i −0.400785 + 0.135658i
\(574\) 0 0
\(575\) 42.3041i 1.76420i
\(576\) 0 0
\(577\) −8.61528 4.97403i −0.358659 0.207072i 0.309833 0.950791i \(-0.399727\pi\)
−0.668492 + 0.743719i \(0.733060\pi\)
\(578\) 0 0
\(579\) −3.85770 0.770848i −0.160320 0.0320353i
\(580\) 0 0
\(581\) −33.6996 + 14.1291i −1.39810 + 0.586175i
\(582\) 0 0
\(583\) 0.465940 + 0.269011i 0.0192973 + 0.0111413i
\(584\) 0 0
\(585\) −61.2536 25.4976i −2.53253 1.05419i
\(586\) 0 0
\(587\) 0.00256306 + 0.00443935i 0.000105789 + 0.000183231i 0.866078 0.499908i \(-0.166633\pi\)
−0.865973 + 0.500092i \(0.833300\pi\)
\(588\) 0 0
\(589\) 6.16294 10.6745i 0.253939 0.439836i
\(590\) 0 0
\(591\) 10.6793 12.1559i 0.439287 0.500029i
\(592\) 0 0
\(593\) 9.34883 5.39755i 0.383910 0.221651i −0.295608 0.955309i \(-0.595522\pi\)
0.679518 + 0.733659i \(0.262189\pi\)
\(594\) 0 0
\(595\) −9.26206 7.04388i −0.379707 0.288771i
\(596\) 0 0
\(597\) −1.16704 3.44788i −0.0477637 0.141112i
\(598\) 0 0
\(599\) 16.2237 9.36674i 0.662881 0.382714i −0.130493 0.991449i \(-0.541656\pi\)
0.793374 + 0.608735i \(0.208323\pi\)
\(600\) 0 0
\(601\) 37.3269 21.5507i 1.52260 0.879072i 0.522954 0.852361i \(-0.324830\pi\)
0.999643 0.0267107i \(-0.00850329\pi\)
\(602\) 0 0
\(603\) 16.5404 + 21.6340i 0.673575 + 0.881003i
\(604\) 0 0
\(605\) 8.57648i 0.348684i
\(606\) 0 0
\(607\) 30.9609 1.25666 0.628331 0.777946i \(-0.283738\pi\)
0.628331 + 0.777946i \(0.283738\pi\)
\(608\) 0 0
\(609\) 1.08782 3.24110i 0.0440805 0.131336i
\(610\) 0 0
\(611\) 33.0380 19.0745i 1.33658 0.771673i
\(612\) 0 0
\(613\) 15.9145 27.5646i 0.642779 1.11333i −0.342031 0.939689i \(-0.611115\pi\)
0.984810 0.173637i \(-0.0555519\pi\)
\(614\) 0 0
\(615\) −11.6329 34.3681i −0.469085 1.38586i
\(616\) 0 0
\(617\) −8.34757 + 14.4584i −0.336060 + 0.582074i −0.983688 0.179883i \(-0.942428\pi\)
0.647627 + 0.761957i \(0.275761\pi\)
\(618\) 0 0
\(619\) 8.08787 0.325079 0.162539 0.986702i \(-0.448032\pi\)
0.162539 + 0.986702i \(0.448032\pi\)
\(620\) 0 0
\(621\) 9.11366 13.5625i 0.365719 0.544243i
\(622\) 0 0
\(623\) −16.6229 39.6476i −0.665983 1.58845i
\(624\) 0 0
\(625\) 88.7114 3.54846
\(626\) 0 0
\(627\) −1.62223 + 8.11840i −0.0647855 + 0.324218i
\(628\) 0 0
\(629\) 1.55914i 0.0621669i
\(630\) 0 0
\(631\) 46.7312i 1.86034i −0.367130 0.930170i \(-0.619660\pi\)
0.367130 0.930170i \(-0.380340\pi\)
\(632\) 0 0
\(633\) −15.2914 + 5.17583i −0.607778 + 0.205721i
\(634\) 0 0
\(635\) −57.9427 −2.29939
\(636\) 0 0
\(637\) 25.7022 + 25.2634i 1.01836 + 1.00097i
\(638\) 0 0
\(639\) −33.8288 + 4.39353i −1.33825 + 0.173805i
\(640\) 0 0
\(641\) −32.3555 −1.27796 −0.638982 0.769222i \(-0.720644\pi\)
−0.638982 + 0.769222i \(0.720644\pi\)
\(642\) 0 0
\(643\) −7.92549 + 13.7273i −0.312551 + 0.541354i −0.978914 0.204274i \(-0.934517\pi\)
0.666363 + 0.745627i \(0.267850\pi\)
\(644\) 0 0
\(645\) −51.7753 10.3458i −2.03865 0.407365i
\(646\) 0 0
\(647\) −22.9784 + 39.7997i −0.903373 + 1.56469i −0.0802858 + 0.996772i \(0.525583\pi\)
−0.823087 + 0.567916i \(0.807750\pi\)
\(648\) 0 0
\(649\) 6.22527 3.59416i 0.244363 0.141083i
\(650\) 0 0
\(651\) 13.5554 40.3878i 0.531279 1.58292i
\(652\) 0 0
\(653\) 28.4529 1.11345 0.556725 0.830697i \(-0.312058\pi\)
0.556725 + 0.830697i \(0.312058\pi\)
\(654\) 0 0
\(655\) 71.2317i 2.78325i
\(656\) 0 0
\(657\) 5.38569 12.9382i 0.210116 0.504768i
\(658\) 0 0
\(659\) −24.8634 + 14.3549i −0.968539 + 0.559186i −0.898791 0.438378i \(-0.855553\pi\)
−0.0697486 + 0.997565i \(0.522220\pi\)
\(660\) 0 0
\(661\) 18.2524 10.5380i 0.709935 0.409881i −0.101102 0.994876i \(-0.532237\pi\)
0.811037 + 0.584995i \(0.198903\pi\)
\(662\) 0 0
\(663\) −8.95309 1.78901i −0.347709 0.0694795i
\(664\) 0 0
\(665\) 5.82644 + 13.8967i 0.225940 + 0.538892i
\(666\) 0 0
\(667\) −2.03173 + 1.17302i −0.0786689 + 0.0454195i
\(668\) 0 0
\(669\) −13.1649 2.63062i −0.508983 0.101705i
\(670\) 0 0
\(671\) 10.5203 18.2217i 0.406132 0.703441i
\(672\) 0 0
\(673\) −1.51490 2.62388i −0.0583950 0.101143i 0.835350 0.549718i \(-0.185265\pi\)
−0.893745 + 0.448575i \(0.851932\pi\)
\(674\) 0 0
\(675\) −58.0196 38.9878i −2.23317 1.50064i
\(676\) 0 0
\(677\) 30.8917 + 17.8353i 1.18726 + 0.685468i 0.957684 0.287822i \(-0.0929311\pi\)
0.229581 + 0.973290i \(0.426264\pi\)
\(678\) 0 0
\(679\) 7.38555 + 17.6154i 0.283431 + 0.676017i
\(680\) 0 0
\(681\) 20.9297 23.8237i 0.802028 0.912928i
\(682\) 0 0
\(683\) 14.7745 + 8.53004i 0.565329 + 0.326393i 0.755282 0.655400i \(-0.227500\pi\)
−0.189952 + 0.981793i \(0.560833\pi\)
\(684\) 0 0
\(685\) 25.6839i 0.981330i
\(686\) 0 0
\(687\) 28.9893 + 25.4677i 1.10601 + 0.971655i
\(688\) 0 0
\(689\) 0.665421 0.384181i 0.0253505 0.0146361i
\(690\) 0 0
\(691\) 2.03132 3.51835i 0.0772750 0.133844i −0.824798 0.565427i \(-0.808711\pi\)
0.902073 + 0.431583i \(0.142045\pi\)
\(692\) 0 0
\(693\) 0.0731962 + 28.6143i 0.00278049 + 1.08697i
\(694\) 0 0
\(695\) 65.1120 + 37.5924i 2.46984 + 1.42596i
\(696\) 0 0
\(697\) −2.49645 4.32397i −0.0945597 0.163782i
\(698\) 0 0
\(699\) −7.98370 1.59531i −0.301971 0.0603401i
\(700\) 0 0
\(701\) 40.4912 1.52933 0.764666 0.644427i \(-0.222904\pi\)
0.764666 + 0.644427i \(0.222904\pi\)
\(702\) 0 0
\(703\) 1.00953 1.74855i 0.0380751 0.0659480i
\(704\) 0 0
\(705\) 52.2204 17.6756i 1.96673 0.665701i
\(706\) 0 0
\(707\) 23.6299 + 3.00750i 0.888696 + 0.113109i
\(708\) 0 0
\(709\) 8.81206 15.2629i 0.330944 0.573212i −0.651753 0.758431i \(-0.725966\pi\)
0.982697 + 0.185219i \(0.0592996\pi\)
\(710\) 0 0
\(711\) −12.8878 + 30.9608i −0.483330 + 1.16112i
\(712\) 0 0
\(713\) −25.3177 + 14.6172i −0.948155 + 0.547417i
\(714\) 0 0
\(715\) −69.0486 39.8652i −2.58227 1.49087i
\(716\) 0 0
\(717\) 18.4950 6.26019i 0.690708 0.233791i
\(718\) 0 0
\(719\) −20.7748 35.9829i −0.774768 1.34194i −0.934925 0.354846i \(-0.884533\pi\)
0.160157 0.987092i \(-0.448800\pi\)
\(720\) 0 0
\(721\) −3.10503 + 24.3963i −0.115637 + 0.908564i
\(722\) 0 0
\(723\) 4.85238 + 4.26293i 0.180462 + 0.158540i
\(724\) 0 0
\(725\) 5.01812 + 8.69164i 0.186368 + 0.322799i
\(726\) 0 0
\(727\) 19.2047 + 33.2636i 0.712264 + 1.23368i 0.964005 + 0.265884i \(0.0856637\pi\)
−0.251741 + 0.967795i \(0.581003\pi\)
\(728\) 0 0
\(729\) 10.2016 + 24.9986i 0.377835 + 0.925873i
\(730\) 0 0
\(731\) −7.26553 −0.268726
\(732\) 0 0
\(733\) 35.1602i 1.29867i 0.760501 + 0.649336i \(0.224953\pi\)
−0.760501 + 0.649336i \(0.775047\pi\)
\(734\) 0 0
\(735\) 29.2694 + 43.0795i 1.07962 + 1.58901i
\(736\) 0 0
\(737\) 16.3626 + 28.3408i 0.602722 + 1.04395i
\(738\) 0 0
\(739\) 14.6816 + 8.47640i 0.540070 + 0.311809i 0.745107 0.666945i \(-0.232398\pi\)
−0.205037 + 0.978754i \(0.565732\pi\)
\(740\) 0 0
\(741\) 8.88241 + 7.80341i 0.326304 + 0.286665i
\(742\) 0 0
\(743\) 23.2333 + 13.4138i 0.852349 + 0.492104i 0.861443 0.507855i \(-0.169561\pi\)
−0.00909404 + 0.999959i \(0.502895\pi\)
\(744\) 0 0
\(745\) 65.1976i 2.38866i
\(746\) 0 0
\(747\) −32.9162 + 25.1662i −1.20434 + 0.920783i
\(748\) 0 0
\(749\) 5.46137 + 13.0260i 0.199554 + 0.475960i
\(750\) 0 0
\(751\) 22.4872i 0.820569i −0.911958 0.410285i \(-0.865429\pi\)
0.911958 0.410285i \(-0.134571\pi\)
\(752\) 0 0
\(753\) 14.3322 16.3140i 0.522295 0.594515i
\(754\) 0 0
\(755\) 30.2465 1.10078
\(756\) 0 0
\(757\) 27.2088 0.988921 0.494460 0.869200i \(-0.335366\pi\)
0.494460 + 0.869200i \(0.335366\pi\)
\(758\) 0 0
\(759\) 12.9597 14.7516i 0.470406 0.535450i
\(760\) 0 0
\(761\) 2.76386i 0.100190i 0.998744 + 0.0500949i \(0.0159524\pi\)
−0.998744 + 0.0500949i \(0.984048\pi\)
\(762\) 0 0
\(763\) 11.2198 + 8.53274i 0.406183 + 0.308906i
\(764\) 0 0
\(765\) −12.1811 5.07051i −0.440407 0.183325i
\(766\) 0 0
\(767\) 10.2658i 0.370678i
\(768\) 0 0
\(769\) −13.4636 7.77321i −0.485510 0.280309i 0.237200 0.971461i \(-0.423770\pi\)
−0.722710 + 0.691152i \(0.757104\pi\)
\(770\) 0 0
\(771\) 20.1071 + 17.6645i 0.724138 + 0.636172i
\(772\) 0 0
\(773\) −2.21399 1.27825i −0.0796317 0.0459754i 0.459655 0.888097i \(-0.347973\pi\)
−0.539287 + 0.842122i \(0.681306\pi\)
\(774\) 0 0
\(775\) 62.5315 + 108.308i 2.24620 + 3.89053i
\(776\) 0 0
\(777\) 2.22047 6.61578i 0.0796588 0.237340i
\(778\) 0 0
\(779\) 6.46571i 0.231658i
\(780\) 0 0
\(781\) −40.9932 −1.46685
\(782\) 0 0
\(783\) 0.263676 3.86756i 0.00942299 0.138215i
\(784\) 0 0
\(785\) −33.9932 58.8779i −1.21327 2.10144i
\(786\) 0 0
\(787\) 25.4781 + 44.1294i 0.908196 + 1.57304i 0.816568 + 0.577249i \(0.195874\pi\)
0.0916280 + 0.995793i \(0.470793\pi\)
\(788\) 0 0
\(789\) 22.4757 + 19.7454i 0.800157 + 0.702956i
\(790\) 0 0
\(791\) −24.5886 18.6999i −0.874270 0.664890i
\(792\) 0 0
\(793\) −15.0243 26.0229i −0.533529 0.924100i
\(794\) 0 0
\(795\) 1.05177 0.356005i 0.0373026 0.0126262i
\(796\) 0 0
\(797\) 12.2946 + 7.09827i 0.435496 + 0.251434i 0.701685 0.712487i \(-0.252431\pi\)
−0.266189 + 0.963921i \(0.585765\pi\)
\(798\) 0 0
\(799\) 6.57003 3.79321i 0.232431 0.134194i
\(800\) 0 0
\(801\) −29.6080 38.7258i −1.04615 1.36831i
\(802\) 0 0
\(803\) 8.42048 14.5847i 0.297152 0.514683i
\(804\) 0 0
\(805\) 4.51238 35.4538i 0.159041 1.24958i
\(806\) 0 0
\(807\) −15.2824 + 5.17279i −0.537966 + 0.182091i
\(808\) 0 0
\(809\) −8.76155 + 15.1755i −0.308040 + 0.533541i −0.977933 0.208916i \(-0.933006\pi\)
0.669894 + 0.742457i \(0.266340\pi\)
\(810\) 0 0
\(811\) −21.5806 −0.757796 −0.378898 0.925438i \(-0.623697\pi\)
−0.378898 + 0.925438i \(0.623697\pi\)
\(812\) 0 0
\(813\) 34.5669 + 6.90718i 1.21231 + 0.242246i
\(814\) 0 0
\(815\) 24.7564 + 42.8794i 0.867179 + 1.50200i
\(816\) 0 0
\(817\) 8.14821 + 4.70437i 0.285070 + 0.164585i
\(818\) 0 0
\(819\) 35.4422 + 20.3419i 1.23845 + 0.710802i
\(820\) 0 0
\(821\) −3.69769 + 6.40458i −0.129050 + 0.223522i −0.923309 0.384058i \(-0.874526\pi\)
0.794259 + 0.607580i \(0.207860\pi\)
\(822\) 0 0
\(823\) 7.58110 4.37695i 0.264261 0.152571i −0.362016 0.932172i \(-0.617911\pi\)
0.626277 + 0.779601i \(0.284578\pi\)
\(824\) 0 0
\(825\) −63.1068 55.4408i −2.19710 1.93020i
\(826\) 0 0
\(827\) 10.9322i 0.380150i −0.981770 0.190075i \(-0.939127\pi\)
0.981770 0.190075i \(-0.0608732\pi\)
\(828\) 0 0
\(829\) 2.09152 + 1.20754i 0.0726415 + 0.0419396i 0.535881 0.844294i \(-0.319980\pi\)
−0.463239 + 0.886233i \(0.653313\pi\)
\(830\) 0 0
\(831\) 37.3539 42.5190i 1.29579 1.47497i
\(832\) 0 0
\(833\) 5.11122 + 5.02394i 0.177093 + 0.174069i
\(834\) 0 0
\(835\) −23.3826 13.4999i −0.809187 0.467185i
\(836\) 0 0
\(837\) 3.28570 48.1942i 0.113570 1.66584i
\(838\) 0 0
\(839\) 17.1615 + 29.7246i 0.592481 + 1.02621i 0.993897 + 0.110311i \(0.0351847\pi\)
−0.401416 + 0.915896i \(0.631482\pi\)
\(840\) 0 0
\(841\) 14.2217 24.6327i 0.490404 0.849404i
\(842\) 0 0
\(843\) −36.9981 7.39299i −1.27428 0.254628i
\(844\) 0 0
\(845\) −50.2481 + 29.0108i −1.72859 + 0.998001i
\(846\) 0 0
\(847\) −0.666933 + 5.24009i −0.0229161 + 0.180052i
\(848\) 0 0
\(849\) 5.84807 + 1.16857i 0.200705 + 0.0401051i
\(850\) 0 0
\(851\) −4.14720 + 2.39438i −0.142164 + 0.0820784i
\(852\) 0 0
\(853\) −35.5925 + 20.5493i −1.21866 + 0.703596i −0.964632 0.263600i \(-0.915090\pi\)
−0.254032 + 0.967196i \(0.581757\pi\)
\(854\) 0 0
\(855\) 10.3778 + 13.5737i 0.354913 + 0.464209i
\(856\) 0 0
\(857\) 20.9248i 0.714779i 0.933955 + 0.357390i \(0.116333\pi\)
−0.933955 + 0.357390i \(0.883667\pi\)
\(858\) 0 0
\(859\) 16.5702 0.565366 0.282683 0.959213i \(-0.408775\pi\)
0.282683 + 0.959213i \(0.408775\pi\)
\(860\) 0 0
\(861\) 4.43497 + 21.9030i 0.151143 + 0.746452i
\(862\) 0 0
\(863\) −7.89280 + 4.55691i −0.268674 + 0.155119i −0.628285 0.777983i \(-0.716243\pi\)
0.359611 + 0.933102i \(0.382909\pi\)
\(864\) 0 0
\(865\) −15.4124 + 26.6950i −0.524036 + 0.907658i
\(866\) 0 0
\(867\) 27.0936 + 5.41387i 0.920148 + 0.183865i
\(868\) 0 0
\(869\) −20.1500 + 34.9008i −0.683541 + 1.18393i
\(870\) 0 0
\(871\) 46.7356 1.58357
\(872\) 0 0
\(873\) 13.1548 + 17.2059i 0.445223 + 0.582331i
\(874\) 0 0
\(875\) −95.2981 12.1291i −3.22166 0.410037i
\(876\) 0 0
\(877\) −23.0860 −0.779558 −0.389779 0.920908i \(-0.627449\pi\)
−0.389779 + 0.920908i \(0.627449\pi\)
\(878\) 0 0
\(879\) −32.3004 + 10.9330i −1.08946 + 0.368762i
\(880\) 0 0
\(881\) 17.9457i 0.604606i 0.953212 + 0.302303i \(0.0977554\pi\)
−0.953212 + 0.302303i \(0.902245\pi\)
\(882\) 0 0
\(883\) 12.6165i 0.424580i −0.977207 0.212290i \(-0.931908\pi\)
0.977207 0.212290i \(-0.0680922\pi\)
\(884\) 0 0
\(885\) 2.90699 14.5480i 0.0977173 0.489025i
\(886\) 0 0
\(887\) −28.5632 −0.959059 −0.479530 0.877526i \(-0.659193\pi\)
−0.479530 + 0.877526i \(0.659193\pi\)
\(888\) 0 0
\(889\) 35.4021 + 4.50580i 1.18735 + 0.151120i
\(890\) 0 0
\(891\) 8.28798 + 31.3692i 0.277658 + 1.05091i
\(892\) 0 0
\(893\) −9.82429 −0.328757
\(894\) 0 0
\(895\) −44.6039 + 77.2563i −1.49094 + 2.58239i
\(896\) 0 0
\(897\) −8.99071 26.5620i −0.300191 0.886879i
\(898\) 0 0
\(899\) −3.46778 + 6.00638i −0.115657 + 0.200324i
\(900\) 0 0
\(901\) 0.132327 0.0763993i 0.00440846 0.00254523i
\(902\) 0 0
\(903\) 30.8294 + 10.3473i 1.02594 + 0.344337i
\(904\) 0 0
\(905\) 59.0642 1.96336
\(906\) 0 0
\(907\) 14.8918i 0.494474i 0.968955 + 0.247237i \(0.0795226\pi\)
−0.968955 + 0.247237i \(0.920477\pi\)
\(908\) 0 0
\(909\) 26.7850 3.47871i 0.888403 0.115382i
\(910\) 0 0
\(911\) 16.3355 9.43130i 0.541219 0.312473i −0.204354 0.978897i \(-0.565509\pi\)
0.745573 + 0.666424i \(0.232176\pi\)
\(912\) 0 0
\(913\) −43.1206 + 24.8957i −1.42708 + 0.823927i
\(914\) 0 0
\(915\) −13.9224 41.1322i −0.460261 1.35979i
\(916\) 0 0
\(917\) −5.53919 + 43.5214i −0.182920 + 1.43720i
\(918\) 0 0
\(919\) −23.9314 + 13.8168i −0.789424 + 0.455774i −0.839760 0.542958i \(-0.817304\pi\)
0.0503355 + 0.998732i \(0.483971\pi\)
\(920\) 0 0
\(921\) 14.2956 16.2723i 0.471056 0.536191i
\(922\) 0 0
\(923\) −29.2717 + 50.7001i −0.963490 + 1.66881i
\(924\) 0 0
\(925\) 10.2431 + 17.7415i 0.336790 + 0.583337i
\(926\) 0 0
\(927\) 3.59153 + 27.6537i 0.117961 + 0.908265i
\(928\) 0 0
\(929\) −15.1178 8.72825i −0.495998 0.286365i 0.231061 0.972939i \(-0.425780\pi\)
−0.727059 + 0.686575i \(0.759114\pi\)
\(930\) 0 0
\(931\) −2.47921 8.94376i −0.0812528 0.293120i
\(932\) 0 0
\(933\) −18.1915 3.63503i −0.595562 0.119006i
\(934\) 0 0
\(935\) −13.7312 7.92770i −0.449058 0.259264i
\(936\) 0 0
\(937\) 6.00080i 0.196038i −0.995185 0.0980189i \(-0.968749\pi\)
0.995185 0.0980189i \(-0.0312505\pi\)
\(938\) 0 0
\(939\) 18.8650 6.38543i 0.615636 0.208381i
\(940\) 0 0
\(941\) −15.0847 + 8.70913i −0.491746 + 0.283909i −0.725298 0.688435i \(-0.758298\pi\)
0.233553 + 0.972344i \(0.424965\pi\)
\(942\) 0 0
\(943\) 7.66764 13.2808i 0.249693 0.432481i
\(944\) 0 0
\(945\) 44.4658 + 38.8632i 1.44647 + 1.26422i
\(946\) 0 0
\(947\) 11.7264 + 6.77021i 0.381055 + 0.220002i 0.678277 0.734806i \(-0.262727\pi\)
−0.297222 + 0.954808i \(0.596060\pi\)
\(948\) 0 0
\(949\) −12.0255 20.8288i −0.390364 0.676131i
\(950\) 0 0
\(951\) −9.67121 28.5724i −0.313610 0.926525i
\(952\) 0 0
\(953\) −4.27802 −0.138579 −0.0692893 0.997597i \(-0.522073\pi\)
−0.0692893 + 0.997597i \(0.522073\pi\)
\(954\) 0 0
\(955\) −12.5598 + 21.7541i −0.406424 + 0.703948i
\(956\) 0 0
\(957\) 0.912800 4.56809i 0.0295066 0.147666i
\(958\) 0 0
\(959\) 1.99725 15.6924i 0.0644947 0.506735i
\(960\) 0 0
\(961\) −27.7126 + 47.9996i −0.893954 + 1.54837i
\(962\) 0 0
\(963\) 9.72756 + 12.7232i 0.313466 + 0.409999i
\(964\) 0 0
\(965\) −8.44947 + 4.87830i −0.271998 + 0.157038i
\(966\) 0 0
\(967\) −40.6804 23.4868i −1.30819 0.755285i −0.326398 0.945232i \(-0.605835\pi\)
−0.981794 + 0.189947i \(0.939168\pi\)
\(968\) 0 0
\(969\) 1.76638 + 1.55181i 0.0567443 + 0.0498512i
\(970\) 0 0
\(971\) −28.9103 50.0741i −0.927776 1.60695i −0.787035 0.616908i \(-0.788385\pi\)
−0.140740 0.990047i \(-0.544948\pi\)
\(972\) 0 0
\(973\) −36.8591 28.0317i −1.18165 0.898654i
\(974\) 0 0
\(975\) −113.631 + 38.4618i −3.63910 + 1.23176i
\(976\) 0 0
\(977\) 5.53978 + 9.59517i 0.177233 + 0.306977i 0.940932 0.338596i \(-0.109952\pi\)
−0.763699 + 0.645573i \(0.776619\pi\)
\(978\) 0 0
\(979\) −29.2897 50.7313i −0.936104 1.62138i
\(980\) 0 0
\(981\) 14.7558 + 6.14226i 0.471115 + 0.196107i
\(982\) 0 0
\(983\) 22.1053 0.705050 0.352525 0.935802i \(-0.385323\pi\)
0.352525 + 0.935802i \(0.385323\pi\)
\(984\) 0 0
\(985\) 40.1297i 1.27864i
\(986\) 0 0
\(987\) −33.2803 + 6.73868i −1.05933 + 0.214495i
\(988\) 0 0
\(989\) −11.1578 19.3258i −0.354796 0.614525i
\(990\) 0 0
\(991\) −0.396571 0.228961i −0.0125975 0.00727317i 0.493688 0.869639i \(-0.335648\pi\)
−0.506286 + 0.862366i \(0.668982\pi\)
\(992\) 0 0
\(993\) −19.2883 + 6.52871i −0.612096 + 0.207182i
\(994\) 0 0
\(995\) −7.81817 4.51382i −0.247853 0.143098i
\(996\) 0 0
\(997\) 34.3499i 1.08787i −0.839127 0.543936i \(-0.816934\pi\)
0.839127 0.543936i \(-0.183066\pi\)
\(998\) 0 0
\(999\) 0.538218 7.89452i 0.0170285 0.249771i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.bf.i.31.4 32
3.2 odd 2 3024.2.bf.i.1711.2 32
4.3 odd 2 inner 1008.2.bf.i.31.13 yes 32
7.5 odd 6 1008.2.cz.i.607.10 yes 32
9.2 odd 6 3024.2.cz.i.2719.15 32
9.7 even 3 1008.2.cz.i.367.7 yes 32
12.11 even 2 3024.2.bf.i.1711.1 32
21.5 even 6 3024.2.cz.i.1279.16 32
28.19 even 6 1008.2.cz.i.607.7 yes 32
36.7 odd 6 1008.2.cz.i.367.10 yes 32
36.11 even 6 3024.2.cz.i.2719.16 32
63.47 even 6 3024.2.bf.i.2287.16 32
63.61 odd 6 inner 1008.2.bf.i.943.13 yes 32
84.47 odd 6 3024.2.cz.i.1279.15 32
252.47 odd 6 3024.2.bf.i.2287.15 32
252.187 even 6 inner 1008.2.bf.i.943.4 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.i.31.4 32 1.1 even 1 trivial
1008.2.bf.i.31.13 yes 32 4.3 odd 2 inner
1008.2.bf.i.943.4 yes 32 252.187 even 6 inner
1008.2.bf.i.943.13 yes 32 63.61 odd 6 inner
1008.2.cz.i.367.7 yes 32 9.7 even 3
1008.2.cz.i.367.10 yes 32 36.7 odd 6
1008.2.cz.i.607.7 yes 32 28.19 even 6
1008.2.cz.i.607.10 yes 32 7.5 odd 6
3024.2.bf.i.1711.1 32 12.11 even 2
3024.2.bf.i.1711.2 32 3.2 odd 2
3024.2.bf.i.2287.15 32 252.47 odd 6
3024.2.bf.i.2287.16 32 63.47 even 6
3024.2.cz.i.1279.15 32 84.47 odd 6
3024.2.cz.i.1279.16 32 21.5 even 6
3024.2.cz.i.2719.15 32 9.2 odd 6
3024.2.cz.i.2719.16 32 36.11 even 6