Properties

Label 3024.2.bf.i.2287.15
Level $3024$
Weight $2$
Character 3024.2287
Analytic conductor $24.147$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(1711,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.1711"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.bf (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2287.15
Character \(\chi\) \(=\) 3024.2287
Dual form 3024.2.bf.i.1711.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.29566i q^{5} +(0.334043 + 2.62458i) q^{7} -3.60507i q^{11} +(-4.45873 + 2.57425i) q^{13} +(0.886675 - 0.511922i) q^{17} +(0.662930 - 1.14823i) q^{19} -3.14466i q^{23} -13.4527 q^{25} +(0.373020 - 0.646090i) q^{29} +(-4.64826 + 8.05102i) q^{31} +(-11.2743 + 1.43494i) q^{35} +(-0.761414 + 1.31881i) q^{37} +(-4.22328 + 2.43831i) q^{41} +(6.14560 + 3.54817i) q^{43} +(3.70487 + 6.41703i) q^{47} +(-6.77683 + 1.75345i) q^{49} +(0.0746200 + 0.129246i) q^{53} +15.4862 q^{55} +(-0.996973 + 1.72681i) q^{59} +(5.05446 - 2.91820i) q^{61} +(-11.0581 - 19.1532i) q^{65} +(-7.86136 - 4.53876i) q^{67} -11.3710i q^{71} +(4.04560 - 2.33573i) q^{73} +(9.46180 - 1.20425i) q^{77} +(-9.68102 + 5.58934i) q^{79} +(6.90574 - 11.9611i) q^{83} +(2.19904 + 3.80885i) q^{85} +(-14.0722 - 8.12459i) q^{89} +(-8.24573 - 10.8424i) q^{91} +(4.93240 + 2.84772i) q^{95} +(-6.25228 - 3.60975i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 6 q^{13} + 18 q^{17} - 32 q^{25} + 12 q^{29} + 2 q^{37} - 36 q^{41} + 2 q^{49} + 12 q^{53} + 42 q^{61} - 18 q^{65} + 66 q^{77} - 12 q^{85} + 18 q^{89} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.29566i 1.92108i 0.278147 + 0.960539i \(0.410280\pi\)
−0.278147 + 0.960539i \(0.589720\pi\)
\(6\) 0 0
\(7\) 0.334043 + 2.62458i 0.126256 + 0.991998i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.60507i 1.08697i −0.839419 0.543485i \(-0.817104\pi\)
0.839419 0.543485i \(-0.182896\pi\)
\(12\) 0 0
\(13\) −4.45873 + 2.57425i −1.23663 + 0.713968i −0.968404 0.249388i \(-0.919770\pi\)
−0.268225 + 0.963356i \(0.586437\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.886675 0.511922i 0.215050 0.124159i −0.388606 0.921404i \(-0.627043\pi\)
0.603656 + 0.797245i \(0.293710\pi\)
\(18\) 0 0
\(19\) 0.662930 1.14823i 0.152087 0.263422i −0.779908 0.625894i \(-0.784734\pi\)
0.931994 + 0.362473i \(0.118067\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.14466i 0.655706i −0.944729 0.327853i \(-0.893675\pi\)
0.944729 0.327853i \(-0.106325\pi\)
\(24\) 0 0
\(25\) −13.4527 −2.69054
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.373020 0.646090i 0.0692681 0.119976i −0.829311 0.558787i \(-0.811267\pi\)
0.898579 + 0.438811i \(0.144600\pi\)
\(30\) 0 0
\(31\) −4.64826 + 8.05102i −0.834851 + 1.44601i 0.0592999 + 0.998240i \(0.481113\pi\)
−0.894151 + 0.447765i \(0.852220\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −11.2743 + 1.43494i −1.90570 + 0.242548i
\(36\) 0 0
\(37\) −0.761414 + 1.31881i −0.125176 + 0.216811i −0.921802 0.387662i \(-0.873283\pi\)
0.796626 + 0.604473i \(0.206616\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.22328 + 2.43831i −0.659565 + 0.380800i −0.792111 0.610377i \(-0.791018\pi\)
0.132546 + 0.991177i \(0.457685\pi\)
\(42\) 0 0
\(43\) 6.14560 + 3.54817i 0.937196 + 0.541090i 0.889080 0.457752i \(-0.151345\pi\)
0.0481156 + 0.998842i \(0.484678\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.70487 + 6.41703i 0.540411 + 0.936020i 0.998880 + 0.0473095i \(0.0150647\pi\)
−0.458469 + 0.888710i \(0.651602\pi\)
\(48\) 0 0
\(49\) −6.77683 + 1.75345i −0.968119 + 0.250492i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.0746200 + 0.129246i 0.0102499 + 0.0177533i 0.871105 0.491097i \(-0.163404\pi\)
−0.860855 + 0.508850i \(0.830071\pi\)
\(54\) 0 0
\(55\) 15.4862 2.08815
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.996973 + 1.72681i −0.129795 + 0.224811i −0.923597 0.383365i \(-0.874765\pi\)
0.793802 + 0.608176i \(0.208099\pi\)
\(60\) 0 0
\(61\) 5.05446 2.91820i 0.647158 0.373637i −0.140209 0.990122i \(-0.544777\pi\)
0.787366 + 0.616485i \(0.211444\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −11.0581 19.1532i −1.37159 2.37566i
\(66\) 0 0
\(67\) −7.86136 4.53876i −0.960418 0.554498i −0.0641164 0.997942i \(-0.520423\pi\)
−0.896302 + 0.443445i \(0.853756\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3710i 1.34949i −0.738052 0.674743i \(-0.764254\pi\)
0.738052 0.674743i \(-0.235746\pi\)
\(72\) 0 0
\(73\) 4.04560 2.33573i 0.473502 0.273377i −0.244202 0.969724i \(-0.578526\pi\)
0.717705 + 0.696348i \(0.245193\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.46180 1.20425i 1.07827 0.137237i
\(78\) 0 0
\(79\) −9.68102 + 5.58934i −1.08920 + 0.628850i −0.933363 0.358933i \(-0.883141\pi\)
−0.155836 + 0.987783i \(0.549807\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.90574 11.9611i 0.758003 1.31290i −0.185864 0.982575i \(-0.559508\pi\)
0.943867 0.330324i \(-0.107158\pi\)
\(84\) 0 0
\(85\) 2.19904 + 3.80885i 0.238520 + 0.413128i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0722 8.12459i −1.49165 0.861205i −0.491697 0.870767i \(-0.663623\pi\)
−0.999954 + 0.00956141i \(0.996956\pi\)
\(90\) 0 0
\(91\) −8.24573 10.8424i −0.864387 1.13659i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.93240 + 2.84772i 0.506053 + 0.292170i
\(96\) 0 0
\(97\) −6.25228 3.60975i −0.634822 0.366515i 0.147795 0.989018i \(-0.452782\pi\)
−0.782617 + 0.622503i \(0.786116\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.00333i 0.895865i 0.894067 + 0.447932i \(0.147839\pi\)
−0.894067 + 0.447932i \(0.852161\pi\)
\(102\) 0 0
\(103\) −9.29530 −0.915893 −0.457947 0.888980i \(-0.651415\pi\)
−0.457947 + 0.888980i \(0.651415\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.62335 + 2.66929i 0.446956 + 0.258050i 0.706544 0.707669i \(-0.250253\pi\)
−0.259588 + 0.965720i \(0.583587\pi\)
\(108\) 0 0
\(109\) −2.66385 4.61393i −0.255151 0.441934i 0.709786 0.704418i \(-0.248792\pi\)
−0.964936 + 0.262484i \(0.915458\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.83794 10.1116i −0.549187 0.951221i −0.998330 0.0577607i \(-0.981604\pi\)
0.449143 0.893460i \(-0.351729\pi\)
\(114\) 0 0
\(115\) 13.5084 1.25966
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.63977 + 2.15614i 0.150317 + 0.197653i
\(120\) 0 0
\(121\) −1.99655 −0.181504
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 36.3099i 3.24765i
\(126\) 0 0
\(127\) 13.4887i 1.19693i −0.801150 0.598463i \(-0.795778\pi\)
0.801150 0.598463i \(-0.204222\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.5823 1.44880 0.724399 0.689381i \(-0.242117\pi\)
0.724399 + 0.689381i \(0.242117\pi\)
\(132\) 0 0
\(133\) 3.23506 + 1.35635i 0.280516 + 0.117611i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.97903 −0.510823 −0.255411 0.966832i \(-0.582211\pi\)
−0.255411 + 0.966832i \(0.582211\pi\)
\(138\) 0 0
\(139\) 8.75126 + 15.1576i 0.742272 + 1.28565i 0.951459 + 0.307777i \(0.0995850\pi\)
−0.209187 + 0.977876i \(0.567082\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.28035 + 16.0740i 0.776062 + 1.34418i
\(144\) 0 0
\(145\) 2.77538 + 1.60237i 0.230483 + 0.133069i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.1776 1.24339 0.621697 0.783258i \(-0.286444\pi\)
0.621697 + 0.783258i \(0.286444\pi\)
\(150\) 0 0
\(151\) 7.04117i 0.573003i 0.958080 + 0.286501i \(0.0924923\pi\)
−0.958080 + 0.286501i \(0.907508\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −34.5844 19.9673i −2.77789 1.60381i
\(156\) 0 0
\(157\) −13.7064 7.91337i −1.09389 0.631556i −0.159278 0.987234i \(-0.550917\pi\)
−0.934609 + 0.355678i \(0.884250\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.25340 1.05045i 0.650459 0.0827871i
\(162\) 0 0
\(163\) 9.98202 + 5.76312i 0.781852 + 0.451403i 0.837086 0.547071i \(-0.184257\pi\)
−0.0552341 + 0.998473i \(0.517591\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.14269 + 5.44330i 0.243189 + 0.421215i 0.961621 0.274382i \(-0.0884732\pi\)
−0.718432 + 0.695597i \(0.755140\pi\)
\(168\) 0 0
\(169\) 6.75351 11.6974i 0.519500 0.899801i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.21442 + 3.58789i −0.472473 + 0.272783i −0.717274 0.696791i \(-0.754611\pi\)
0.244801 + 0.969573i \(0.421277\pi\)
\(174\) 0 0
\(175\) −4.49378 35.3076i −0.339698 2.66901i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.9847 + 10.3835i −1.34424 + 0.776098i −0.987427 0.158077i \(-0.949471\pi\)
−0.356815 + 0.934175i \(0.616137\pi\)
\(180\) 0 0
\(181\) 13.7498i 1.02201i 0.859577 + 0.511005i \(0.170727\pi\)
−0.859577 + 0.511005i \(0.829273\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.66515 3.27077i −0.416510 0.240472i
\(186\) 0 0
\(187\) −1.84552 3.19653i −0.134957 0.233753i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.06422 + 2.92383i −0.366434 + 0.211561i −0.671899 0.740642i \(-0.734521\pi\)
0.305466 + 0.952203i \(0.401188\pi\)
\(192\) 0 0
\(193\) 1.13564 1.96698i 0.0817448 0.141586i −0.822255 0.569120i \(-0.807284\pi\)
0.903999 + 0.427534i \(0.140617\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.34192 0.665584 0.332792 0.943000i \(-0.392009\pi\)
0.332792 + 0.943000i \(0.392009\pi\)
\(198\) 0 0
\(199\) −1.05079 1.82002i −0.0744883 0.129017i 0.826375 0.563120i \(-0.190399\pi\)
−0.900864 + 0.434102i \(0.857066\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.82032 + 0.763199i 0.127761 + 0.0535660i
\(204\) 0 0
\(205\) −10.4741 18.1418i −0.731546 1.26707i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.13945 2.38991i −0.286332 0.165314i
\(210\) 0 0
\(211\) 8.07179 4.66025i 0.555685 0.320825i −0.195727 0.980658i \(-0.562707\pi\)
0.751412 + 0.659834i \(0.229373\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.2417 + 26.3994i −1.03948 + 1.80043i
\(216\) 0 0
\(217\) −22.6832 9.51033i −1.53984 0.645603i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.63563 + 4.56504i −0.177292 + 0.307078i
\(222\) 0 0
\(223\) 3.87550 6.71256i 0.259523 0.449506i −0.706591 0.707622i \(-0.749768\pi\)
0.966114 + 0.258115i \(0.0831014\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.3087 1.21519 0.607595 0.794247i \(-0.292134\pi\)
0.607595 + 0.794247i \(0.292134\pi\)
\(228\) 0 0
\(229\) 22.2784i 1.47220i 0.676874 + 0.736099i \(0.263334\pi\)
−0.676874 + 0.736099i \(0.736666\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.35026 + 4.07076i −0.153970 + 0.266684i −0.932684 0.360696i \(-0.882539\pi\)
0.778713 + 0.627380i \(0.215873\pi\)
\(234\) 0 0
\(235\) −27.5654 + 15.9149i −1.79817 + 1.03817i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.76287 5.63659i 0.631507 0.364601i −0.149828 0.988712i \(-0.547872\pi\)
0.781336 + 0.624111i \(0.214539\pi\)
\(240\) 0 0
\(241\) 3.72908i 0.240211i 0.992761 + 0.120106i \(0.0383233\pi\)
−0.992761 + 0.120106i \(0.961677\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.53220 29.1110i −0.481215 1.85983i
\(246\) 0 0
\(247\) 6.82619i 0.434340i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.5374 0.791354 0.395677 0.918390i \(-0.370510\pi\)
0.395677 + 0.918390i \(0.370510\pi\)
\(252\) 0 0
\(253\) −11.3367 −0.712733
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.4524i 0.963894i −0.876200 0.481947i \(-0.839930\pi\)
0.876200 0.481947i \(-0.160070\pi\)
\(258\) 0 0
\(259\) −3.71566 1.55785i −0.230880 0.0968002i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.2727i 1.06508i −0.846404 0.532541i \(-0.821237\pi\)
0.846404 0.532541i \(-0.178763\pi\)
\(264\) 0 0
\(265\) −0.555196 + 0.320542i −0.0341054 + 0.0196908i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.06706 + 4.65752i −0.491857 + 0.283974i −0.725345 0.688386i \(-0.758320\pi\)
0.233487 + 0.972360i \(0.424986\pi\)
\(270\) 0 0
\(271\) −10.1759 + 17.6251i −0.618140 + 1.07065i 0.371685 + 0.928359i \(0.378780\pi\)
−0.989825 + 0.142291i \(0.954553\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 48.4979i 2.92453i
\(276\) 0 0
\(277\) −32.6761 −1.96331 −0.981657 0.190654i \(-0.938939\pi\)
−0.981657 + 0.190654i \(0.938939\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.8916 + 18.8647i −0.649736 + 1.12538i 0.333449 + 0.942768i \(0.391787\pi\)
−0.983186 + 0.182609i \(0.941546\pi\)
\(282\) 0 0
\(283\) −1.72157 + 2.98184i −0.102336 + 0.177252i −0.912647 0.408749i \(-0.865965\pi\)
0.810310 + 0.586001i \(0.199298\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.81029 10.2698i −0.461027 0.606208i
\(288\) 0 0
\(289\) −7.97587 + 13.8146i −0.469169 + 0.812624i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −17.0502 + 9.84397i −0.996086 + 0.575091i −0.907088 0.420941i \(-0.861700\pi\)
−0.0889983 + 0.996032i \(0.528367\pi\)
\(294\) 0 0
\(295\) −7.41778 4.28266i −0.431880 0.249346i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.09513 + 14.0212i 0.468153 + 0.810865i
\(300\) 0 0
\(301\) −7.25954 + 17.3149i −0.418433 + 0.998012i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.5356 + 21.7123i 0.717785 + 1.24324i
\(306\) 0 0
\(307\) −12.5054 −0.713719 −0.356859 0.934158i \(-0.616152\pi\)
−0.356859 + 0.934158i \(0.616152\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.35524 + 9.27554i −0.303668 + 0.525968i −0.976964 0.213405i \(-0.931545\pi\)
0.673296 + 0.739373i \(0.264878\pi\)
\(312\) 0 0
\(313\) −9.95819 + 5.74936i −0.562870 + 0.324973i −0.754297 0.656534i \(-0.772022\pi\)
0.191427 + 0.981507i \(0.438689\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.70784 + 15.0824i 0.489081 + 0.847113i 0.999921 0.0125628i \(-0.00399896\pi\)
−0.510840 + 0.859676i \(0.670666\pi\)
\(318\) 0 0
\(319\) −2.32920 1.34476i −0.130410 0.0752923i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.35747i 0.0755319i
\(324\) 0 0
\(325\) 59.9819 34.6306i 3.32720 1.92096i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.6044 + 11.8673i −0.860299 + 0.654265i
\(330\) 0 0
\(331\) 10.1816 5.87837i 0.559634 0.323105i −0.193365 0.981127i \(-0.561940\pi\)
0.752998 + 0.658022i \(0.228607\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 19.4970 33.7697i 1.06523 1.84504i
\(336\) 0 0
\(337\) 9.72282 + 16.8404i 0.529636 + 0.917356i 0.999402 + 0.0345655i \(0.0110047\pi\)
−0.469767 + 0.882791i \(0.655662\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 29.0245 + 16.7573i 1.57176 + 0.907459i
\(342\) 0 0
\(343\) −6.86581 17.2006i −0.370719 0.928745i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.58776 4.95814i −0.461015 0.266167i 0.251456 0.967869i \(-0.419091\pi\)
−0.712471 + 0.701702i \(0.752424\pi\)
\(348\) 0 0
\(349\) 8.22452 + 4.74843i 0.440248 + 0.254178i 0.703703 0.710494i \(-0.251529\pi\)
−0.263455 + 0.964672i \(0.584862\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.38308i 0.392962i 0.980508 + 0.196481i \(0.0629514\pi\)
−0.980508 + 0.196481i \(0.937049\pi\)
\(354\) 0 0
\(355\) 48.8458 2.59247
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.92939 5.73274i −0.524053 0.302562i 0.214538 0.976716i \(-0.431175\pi\)
−0.738591 + 0.674153i \(0.764509\pi\)
\(360\) 0 0
\(361\) 8.62105 + 14.9321i 0.453739 + 0.785900i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.0335 + 17.3785i 0.525178 + 0.909634i
\(366\) 0 0
\(367\) −26.7766 −1.39773 −0.698864 0.715254i \(-0.746311\pi\)
−0.698864 + 0.715254i \(0.746311\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.314289 + 0.239020i −0.0163171 + 0.0124093i
\(372\) 0 0
\(373\) −13.6607 −0.707323 −0.353662 0.935373i \(-0.615064\pi\)
−0.353662 + 0.935373i \(0.615064\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.84098i 0.197821i
\(378\) 0 0
\(379\) 1.70006i 0.0873261i −0.999046 0.0436630i \(-0.986097\pi\)
0.999046 0.0436630i \(-0.0139028\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.6059 1.05291 0.526455 0.850203i \(-0.323521\pi\)
0.526455 + 0.850203i \(0.323521\pi\)
\(384\) 0 0
\(385\) 5.17305 + 40.6447i 0.263643 + 2.07144i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.4475 0.681814 0.340907 0.940097i \(-0.389266\pi\)
0.340907 + 0.940097i \(0.389266\pi\)
\(390\) 0 0
\(391\) −1.60982 2.78829i −0.0814120 0.141010i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −24.0099 41.5863i −1.20807 2.09244i
\(396\) 0 0
\(397\) −10.9040 6.29540i −0.547254 0.315957i 0.200760 0.979641i \(-0.435659\pi\)
−0.748014 + 0.663683i \(0.768992\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.60899 −0.230162 −0.115081 0.993356i \(-0.536713\pi\)
−0.115081 + 0.993356i \(0.536713\pi\)
\(402\) 0 0
\(403\) 47.8631i 2.38423i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.75439 + 2.74495i 0.235667 + 0.136062i
\(408\) 0 0
\(409\) −17.8209 10.2889i −0.881187 0.508754i −0.0101377 0.999949i \(-0.503227\pi\)
−0.871050 + 0.491195i \(0.836560\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.86518 2.03981i −0.239400 0.100372i
\(414\) 0 0
\(415\) 51.3808 + 29.6647i 2.52218 + 1.45618i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.93303 + 6.81221i 0.192141 + 0.332798i 0.945960 0.324284i \(-0.105123\pi\)
−0.753818 + 0.657083i \(0.771790\pi\)
\(420\) 0 0
\(421\) 10.8367 18.7697i 0.528149 0.914781i −0.471312 0.881966i \(-0.656220\pi\)
0.999461 0.0328148i \(-0.0104471\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11.9282 + 6.88672i −0.578601 + 0.334055i
\(426\) 0 0
\(427\) 9.34745 + 12.2910i 0.452355 + 0.594805i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.640472 0.369776i 0.0308504 0.0178115i −0.484495 0.874794i \(-0.660997\pi\)
0.515346 + 0.856982i \(0.327663\pi\)
\(432\) 0 0
\(433\) 26.1089i 1.25471i 0.778732 + 0.627357i \(0.215863\pi\)
−0.778732 + 0.627357i \(0.784137\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.61078 2.08469i −0.172727 0.0997241i
\(438\) 0 0
\(439\) −7.41381 12.8411i −0.353842 0.612872i 0.633077 0.774089i \(-0.281792\pi\)
−0.986919 + 0.161216i \(0.948458\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.78723 5.07331i 0.417494 0.241040i −0.276511 0.961011i \(-0.589178\pi\)
0.694005 + 0.719971i \(0.255845\pi\)
\(444\) 0 0
\(445\) 34.9005 60.4494i 1.65444 2.86558i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −25.0880 −1.18397 −0.591987 0.805948i \(-0.701656\pi\)
−0.591987 + 0.805948i \(0.701656\pi\)
\(450\) 0 0
\(451\) 8.79028 + 15.2252i 0.413918 + 0.716927i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 46.5751 35.4208i 2.18348 1.66055i
\(456\) 0 0
\(457\) 11.9988 + 20.7825i 0.561279 + 0.972163i 0.997385 + 0.0722682i \(0.0230237\pi\)
−0.436107 + 0.899895i \(0.643643\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.2178 + 7.05393i 0.569038 + 0.328534i 0.756765 0.653687i \(-0.226779\pi\)
−0.187727 + 0.982221i \(0.560112\pi\)
\(462\) 0 0
\(463\) 12.0911 6.98080i 0.561921 0.324425i −0.191995 0.981396i \(-0.561496\pi\)
0.753916 + 0.656971i \(0.228163\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.2526 + 22.9542i −0.613258 + 1.06219i 0.377429 + 0.926038i \(0.376808\pi\)
−0.990687 + 0.136156i \(0.956525\pi\)
\(468\) 0 0
\(469\) 9.28630 22.1489i 0.428801 1.02274i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.7914 22.1553i 0.588149 1.01870i
\(474\) 0 0
\(475\) −8.91819 + 15.4468i −0.409195 + 0.708746i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −39.0894 −1.78604 −0.893019 0.450018i \(-0.851418\pi\)
−0.893019 + 0.450018i \(0.851418\pi\)
\(480\) 0 0
\(481\) 7.84027i 0.357486i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15.5063 26.8576i 0.704103 1.21954i
\(486\) 0 0
\(487\) −6.79167 + 3.92117i −0.307760 + 0.177685i −0.645924 0.763402i \(-0.723528\pi\)
0.338164 + 0.941087i \(0.390194\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17.8659 + 10.3149i −0.806278 + 0.465505i −0.845662 0.533720i \(-0.820794\pi\)
0.0393839 + 0.999224i \(0.487460\pi\)
\(492\) 0 0
\(493\) 0.763828i 0.0344011i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 29.8440 3.79840i 1.33869 0.170381i
\(498\) 0 0
\(499\) 34.4187i 1.54079i 0.637565 + 0.770397i \(0.279942\pi\)
−0.637565 + 0.770397i \(0.720058\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −25.7268 −1.14710 −0.573552 0.819169i \(-0.694435\pi\)
−0.573552 + 0.819169i \(0.694435\pi\)
\(504\) 0 0
\(505\) −38.6752 −1.72103
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.1729i 1.07144i −0.844395 0.535722i \(-0.820040\pi\)
0.844395 0.535722i \(-0.179960\pi\)
\(510\) 0 0
\(511\) 7.48172 + 9.83777i 0.330972 + 0.435198i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 39.9294i 1.75950i
\(516\) 0 0
\(517\) 23.1339 13.3563i 1.01743 0.587411i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.1079 + 17.9602i −1.36286 + 0.786849i −0.990004 0.141040i \(-0.954955\pi\)
−0.372858 + 0.927888i \(0.621622\pi\)
\(522\) 0 0
\(523\) 7.02897 12.1745i 0.307355 0.532355i −0.670428 0.741975i \(-0.733889\pi\)
0.977783 + 0.209620i \(0.0672226\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.51817i 0.414618i
\(528\) 0 0
\(529\) 13.1111 0.570049
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.5536 21.7435i 0.543758 0.941816i
\(534\) 0 0
\(535\) −11.4664 + 19.8603i −0.495735 + 0.858638i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.32130 + 24.4310i 0.272278 + 1.05232i
\(540\) 0 0
\(541\) −2.60496 + 4.51193i −0.111996 + 0.193983i −0.916575 0.399863i \(-0.869058\pi\)
0.804579 + 0.593846i \(0.202391\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19.8199 11.4430i 0.848989 0.490164i
\(546\) 0 0
\(547\) −11.1833 6.45666i −0.478162 0.276067i 0.241488 0.970404i \(-0.422365\pi\)
−0.719650 + 0.694337i \(0.755698\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.494572 0.856625i −0.0210695 0.0364934i
\(552\) 0 0
\(553\) −17.9035 23.5415i −0.761336 1.00109i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.6086 + 21.8388i 0.534245 + 0.925339i 0.999199 + 0.0400045i \(0.0127372\pi\)
−0.464955 + 0.885334i \(0.653929\pi\)
\(558\) 0 0
\(559\) −36.5354 −1.54528
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.9925 29.4318i 0.716148 1.24040i −0.246367 0.969176i \(-0.579237\pi\)
0.962515 0.271228i \(-0.0874297\pi\)
\(564\) 0 0
\(565\) 43.4360 25.0778i 1.82737 1.05503i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.3518 + 23.1260i 0.559736 + 0.969490i 0.997518 + 0.0704095i \(0.0224306\pi\)
−0.437783 + 0.899081i \(0.644236\pi\)
\(570\) 0 0
\(571\) −24.4861 14.1371i −1.02471 0.591618i −0.109247 0.994015i \(-0.534844\pi\)
−0.915465 + 0.402397i \(0.868177\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 42.3041i 1.76420i
\(576\) 0 0
\(577\) −8.61528 + 4.97403i −0.358659 + 0.207072i −0.668492 0.743719i \(-0.733060\pi\)
0.309833 + 0.950791i \(0.399727\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 33.6996 + 14.1291i 1.39810 + 0.586175i
\(582\) 0 0
\(583\) 0.465940 0.269011i 0.0192973 0.0111413i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.00256306 + 0.00443935i −0.000105789 + 0.000183231i −0.866078 0.499908i \(-0.833367\pi\)
0.865973 + 0.500092i \(0.166700\pi\)
\(588\) 0 0
\(589\) 6.16294 + 10.6745i 0.253939 + 0.439836i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.34883 5.39755i −0.383910 0.221651i 0.295608 0.955309i \(-0.404478\pi\)
−0.679518 + 0.733659i \(0.737811\pi\)
\(594\) 0 0
\(595\) −9.26206 + 7.04388i −0.379707 + 0.288771i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.2237 9.36674i −0.662881 0.382714i 0.130493 0.991449i \(-0.458344\pi\)
−0.793374 + 0.608735i \(0.791677\pi\)
\(600\) 0 0
\(601\) 37.3269 + 21.5507i 1.52260 + 0.879072i 0.999643 + 0.0267107i \(0.00850329\pi\)
0.522954 + 0.852361i \(0.324830\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.57648i 0.348684i
\(606\) 0 0
\(607\) 30.9609 1.25666 0.628331 0.777946i \(-0.283738\pi\)
0.628331 + 0.777946i \(0.283738\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −33.0380 19.0745i −1.33658 0.771673i
\(612\) 0 0
\(613\) 15.9145 + 27.5646i 0.642779 + 1.11333i 0.984810 + 0.173637i \(0.0555519\pi\)
−0.342031 + 0.939689i \(0.611115\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.34757 + 14.4584i 0.336060 + 0.582074i 0.983688 0.179883i \(-0.0575720\pi\)
−0.647627 + 0.761957i \(0.724239\pi\)
\(618\) 0 0
\(619\) 8.08787 0.325079 0.162539 0.986702i \(-0.448032\pi\)
0.162539 + 0.986702i \(0.448032\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.6229 39.6476i 0.665983 1.58845i
\(624\) 0 0
\(625\) 88.7114 3.54846
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.55914i 0.0621669i
\(630\) 0 0
\(631\) 46.7312i 1.86034i 0.367130 + 0.930170i \(0.380340\pi\)
−0.367130 + 0.930170i \(0.619660\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 57.9427 2.29939
\(636\) 0 0
\(637\) 25.7022 25.2634i 1.01836 1.00097i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.3555 1.27796 0.638982 0.769222i \(-0.279356\pi\)
0.638982 + 0.769222i \(0.279356\pi\)
\(642\) 0 0
\(643\) −7.92549 13.7273i −0.312551 0.541354i 0.666363 0.745627i \(-0.267850\pi\)
−0.978914 + 0.204274i \(0.934517\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.9784 + 39.7997i 0.903373 + 1.56469i 0.823087 + 0.567916i \(0.192250\pi\)
0.0802858 + 0.996772i \(0.474417\pi\)
\(648\) 0 0
\(649\) 6.22527 + 3.59416i 0.244363 + 0.141083i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.4529 −1.11345 −0.556725 0.830697i \(-0.687942\pi\)
−0.556725 + 0.830697i \(0.687942\pi\)
\(654\) 0 0
\(655\) 71.2317i 2.78325i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.8634 + 14.3549i 0.968539 + 0.559186i 0.898791 0.438378i \(-0.144447\pi\)
0.0697486 + 0.997565i \(0.477780\pi\)
\(660\) 0 0
\(661\) 18.2524 + 10.5380i 0.709935 + 0.409881i 0.811037 0.584995i \(-0.198903\pi\)
−0.101102 + 0.994876i \(0.532237\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.82644 + 13.8967i −0.225940 + 0.538892i
\(666\) 0 0
\(667\) −2.03173 1.17302i −0.0786689 0.0454195i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.5203 18.2217i −0.406132 0.703441i
\(672\) 0 0
\(673\) −1.51490 + 2.62388i −0.0583950 + 0.101143i −0.893745 0.448575i \(-0.851932\pi\)
0.835350 + 0.549718i \(0.185265\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.8917 + 17.8353i −1.18726 + 0.685468i −0.957684 0.287822i \(-0.907069\pi\)
−0.229581 + 0.973290i \(0.573736\pi\)
\(678\) 0 0
\(679\) 7.38555 17.6154i 0.283431 0.676017i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.7745 + 8.53004i −0.565329 + 0.326393i −0.755282 0.655400i \(-0.772500\pi\)
0.189952 + 0.981793i \(0.439167\pi\)
\(684\) 0 0
\(685\) 25.6839i 0.981330i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.665421 0.384181i −0.0253505 0.0146361i
\(690\) 0 0
\(691\) 2.03132 + 3.51835i 0.0772750 + 0.133844i 0.902073 0.431583i \(-0.142045\pi\)
−0.824798 + 0.565427i \(0.808711\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −65.1120 + 37.5924i −2.46984 + 1.42596i
\(696\) 0 0
\(697\) −2.49645 + 4.32397i −0.0945597 + 0.163782i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −40.4912 −1.52933 −0.764666 0.644427i \(-0.777096\pi\)
−0.764666 + 0.644427i \(0.777096\pi\)
\(702\) 0 0
\(703\) 1.00953 + 1.74855i 0.0380751 + 0.0659480i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −23.6299 + 3.00750i −0.888696 + 0.113109i
\(708\) 0 0
\(709\) 8.81206 + 15.2629i 0.330944 + 0.573212i 0.982697 0.185219i \(-0.0592996\pi\)
−0.651753 + 0.758431i \(0.725966\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 25.3177 + 14.6172i 0.948155 + 0.547417i
\(714\) 0 0
\(715\) −69.0486 + 39.8652i −2.58227 + 1.49087i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.7748 35.9829i 0.774768 1.34194i −0.160157 0.987092i \(-0.551200\pi\)
0.934925 0.354846i \(-0.115467\pi\)
\(720\) 0 0
\(721\) −3.10503 24.3963i −0.115637 0.908564i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.01812 + 8.69164i −0.186368 + 0.322799i
\(726\) 0 0
\(727\) 19.2047 33.2636i 0.712264 1.23368i −0.251741 0.967795i \(-0.581003\pi\)
0.964005 0.265884i \(-0.0856637\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.26553 0.268726
\(732\) 0 0
\(733\) 35.1602i 1.29867i −0.760501 0.649336i \(-0.775047\pi\)
0.760501 0.649336i \(-0.224953\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.3626 + 28.3408i −0.602722 + 1.04395i
\(738\) 0 0
\(739\) 14.6816 8.47640i 0.540070 0.311809i −0.205037 0.978754i \(-0.565732\pi\)
0.745107 + 0.666945i \(0.232398\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.2333 + 13.4138i −0.852349 + 0.492104i −0.861443 0.507855i \(-0.830439\pi\)
0.00909404 + 0.999959i \(0.497105\pi\)
\(744\) 0 0
\(745\) 65.1976i 2.38866i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.46137 + 13.0260i −0.199554 + 0.475960i
\(750\) 0 0
\(751\) 22.4872i 0.820569i 0.911958 + 0.410285i \(0.134571\pi\)
−0.911958 + 0.410285i \(0.865429\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −30.2465 −1.10078
\(756\) 0 0
\(757\) 27.2088 0.988921 0.494460 0.869200i \(-0.335366\pi\)
0.494460 + 0.869200i \(0.335366\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.76386i 0.100190i 0.998744 + 0.0500949i \(0.0159524\pi\)
−0.998744 + 0.0500949i \(0.984048\pi\)
\(762\) 0 0
\(763\) 11.2198 8.53274i 0.406183 0.308906i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.2658i 0.370678i
\(768\) 0 0
\(769\) −13.4636 + 7.77321i −0.485510 + 0.280309i −0.722710 0.691152i \(-0.757104\pi\)
0.237200 + 0.971461i \(0.423770\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.21399 1.27825i 0.0796317 0.0459754i −0.459655 0.888097i \(-0.652027\pi\)
0.539287 + 0.842122i \(0.318694\pi\)
\(774\) 0 0
\(775\) 62.5315 108.308i 2.24620 3.89053i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.46571i 0.231658i
\(780\) 0 0
\(781\) −40.9932 −1.46685
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 33.9932 58.8779i 1.21327 2.10144i
\(786\) 0 0
\(787\) 25.4781 44.1294i 0.908196 1.57304i 0.0916280 0.995793i \(-0.470793\pi\)
0.816568 0.577249i \(-0.195874\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.5886 18.6999i 0.874270 0.664890i
\(792\) 0 0
\(793\) −15.0243 + 26.0229i −0.533529 + 0.924100i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.2946 + 7.09827i −0.435496 + 0.251434i −0.701685 0.712487i \(-0.747569\pi\)
0.266189 + 0.963921i \(0.414235\pi\)
\(798\) 0 0
\(799\) 6.57003 + 3.79321i 0.232431 + 0.134194i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −8.42048 14.5847i −0.297152 0.514683i
\(804\) 0 0
\(805\) 4.51238 + 35.4538i 0.159041 + 1.24958i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8.76155 + 15.1755i 0.308040 + 0.533541i 0.977933 0.208916i \(-0.0669937\pi\)
−0.669894 + 0.742457i \(0.733660\pi\)
\(810\) 0 0
\(811\) −21.5806 −0.757796 −0.378898 0.925438i \(-0.623697\pi\)
−0.378898 + 0.925438i \(0.623697\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.7564 + 42.8794i −0.867179 + 1.50200i
\(816\) 0 0
\(817\) 8.14821 4.70437i 0.285070 0.164585i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.69769 + 6.40458i 0.129050 + 0.223522i 0.923309 0.384058i \(-0.125474\pi\)
−0.794259 + 0.607580i \(0.792140\pi\)
\(822\) 0 0
\(823\) 7.58110 + 4.37695i 0.264261 + 0.152571i 0.626277 0.779601i \(-0.284578\pi\)
−0.362016 + 0.932172i \(0.617911\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.9322i 0.380150i −0.981770 0.190075i \(-0.939127\pi\)
0.981770 0.190075i \(-0.0608732\pi\)
\(828\) 0 0
\(829\) 2.09152 1.20754i 0.0726415 0.0419396i −0.463239 0.886233i \(-0.653313\pi\)
0.535881 + 0.844294i \(0.319980\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.11122 + 5.02394i −0.177093 + 0.174069i
\(834\) 0 0
\(835\) −23.3826 + 13.4999i −0.809187 + 0.467185i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.1615 + 29.7246i −0.592481 + 1.02621i 0.401416 + 0.915896i \(0.368518\pi\)
−0.993897 + 0.110311i \(0.964815\pi\)
\(840\) 0 0
\(841\) 14.2217 + 24.6327i 0.490404 + 0.849404i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 50.2481 + 29.0108i 1.72859 + 0.998001i
\(846\) 0 0
\(847\) −0.666933 5.24009i −0.0229161 0.180052i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.14720 + 2.39438i 0.142164 + 0.0820784i
\(852\) 0 0
\(853\) −35.5925 20.5493i −1.21866 0.703596i −0.254032 0.967196i \(-0.581757\pi\)
−0.964632 + 0.263600i \(0.915090\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.9248i 0.714779i 0.933955 + 0.357390i \(0.116333\pi\)
−0.933955 + 0.357390i \(0.883667\pi\)
\(858\) 0 0
\(859\) 16.5702 0.565366 0.282683 0.959213i \(-0.408775\pi\)
0.282683 + 0.959213i \(0.408775\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.89280 + 4.55691i 0.268674 + 0.155119i 0.628285 0.777983i \(-0.283757\pi\)
−0.359611 + 0.933102i \(0.617091\pi\)
\(864\) 0 0
\(865\) −15.4124 26.6950i −0.524036 0.907658i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.1500 + 34.9008i 0.683541 + 1.18393i
\(870\) 0 0
\(871\) 46.7356 1.58357
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 95.2981 12.1291i 3.22166 0.410037i
\(876\) 0 0
\(877\) −23.0860 −0.779558 −0.389779 0.920908i \(-0.627449\pi\)
−0.389779 + 0.920908i \(0.627449\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.9457i 0.604606i 0.953212 + 0.302303i \(0.0977554\pi\)
−0.953212 + 0.302303i \(0.902245\pi\)
\(882\) 0 0
\(883\) 12.6165i 0.424580i 0.977207 + 0.212290i \(0.0680922\pi\)
−0.977207 + 0.212290i \(0.931908\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28.5632 0.959059 0.479530 0.877526i \(-0.340807\pi\)
0.479530 + 0.877526i \(0.340807\pi\)
\(888\) 0 0
\(889\) 35.4021 4.50580i 1.18735 0.151120i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.82429 0.328757
\(894\) 0 0
\(895\) −44.6039 77.2563i −1.49094 2.58239i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.46778 + 6.00638i 0.115657 + 0.200324i
\(900\) 0 0
\(901\) 0.132327 + 0.0763993i 0.00440846 + 0.00254523i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −59.0642 −1.96336
\(906\) 0 0
\(907\) 14.8918i 0.494474i −0.968955 0.247237i \(-0.920477\pi\)
0.968955 0.247237i \(-0.0795226\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.3355 9.43130i −0.541219 0.312473i 0.204354 0.978897i \(-0.434491\pi\)
−0.745573 + 0.666424i \(0.767824\pi\)
\(912\) 0 0
\(913\) −43.1206 24.8957i −1.42708 0.823927i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.53919 + 43.5214i 0.182920 + 1.43720i
\(918\) 0 0
\(919\) −23.9314 13.8168i −0.789424 0.455774i 0.0503355 0.998732i \(-0.483971\pi\)
−0.839760 + 0.542958i \(0.817304\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 29.2717 + 50.7001i 0.963490 + 1.66881i
\(924\) 0 0
\(925\) 10.2431 17.7415i 0.336790 0.583337i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.1178 8.72825i 0.495998 0.286365i −0.231061 0.972939i \(-0.574220\pi\)
0.727059 + 0.686575i \(0.240886\pi\)
\(930\) 0 0
\(931\) −2.47921 + 8.94376i −0.0812528 + 0.293120i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 13.7312 7.92770i 0.449058 0.259264i
\(936\) 0 0
\(937\) 6.00080i 0.196038i 0.995185 + 0.0980189i \(0.0312505\pi\)
−0.995185 + 0.0980189i \(0.968749\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 15.0847 + 8.70913i 0.491746 + 0.283909i 0.725298 0.688435i \(-0.241702\pi\)
−0.233553 + 0.972344i \(0.575035\pi\)
\(942\) 0 0
\(943\) 7.66764 + 13.2808i 0.249693 + 0.432481i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.7264 + 6.77021i −0.381055 + 0.220002i −0.678277 0.734806i \(-0.737273\pi\)
0.297222 + 0.954808i \(0.403940\pi\)
\(948\) 0 0
\(949\) −12.0255 + 20.8288i −0.390364 + 0.676131i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.27802 0.138579 0.0692893 0.997597i \(-0.477927\pi\)
0.0692893 + 0.997597i \(0.477927\pi\)
\(954\) 0 0
\(955\) −12.5598 21.7541i −0.406424 0.703948i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.99725 15.6924i −0.0644947 0.506735i
\(960\) 0 0
\(961\) −27.7126 47.9996i −0.893954 1.54837i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.44947 + 4.87830i 0.271998 + 0.157038i
\(966\) 0 0
\(967\) −40.6804 + 23.4868i −1.30819 + 0.755285i −0.981794 0.189947i \(-0.939168\pi\)
−0.326398 + 0.945232i \(0.605835\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.9103 50.0741i 0.927776 1.60695i 0.140740 0.990047i \(-0.455052\pi\)
0.787035 0.616908i \(-0.211615\pi\)
\(972\) 0 0
\(973\) −36.8591 + 28.0317i −1.18165 + 0.898654i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.53978 + 9.59517i −0.177233 + 0.306977i −0.940932 0.338596i \(-0.890048\pi\)
0.763699 + 0.645573i \(0.223381\pi\)
\(978\) 0 0
\(979\) −29.2897 + 50.7313i −0.936104 + 1.62138i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.1053 −0.705050 −0.352525 0.935802i \(-0.614677\pi\)
−0.352525 + 0.935802i \(0.614677\pi\)
\(984\) 0 0
\(985\) 40.1297i 1.27864i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.1578 19.3258i 0.354796 0.614525i
\(990\) 0 0
\(991\) −0.396571 + 0.228961i −0.0125975 + 0.00727317i −0.506286 0.862366i \(-0.668982\pi\)
0.493688 + 0.869639i \(0.335648\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.81817 4.51382i 0.247853 0.143098i
\(996\) 0 0
\(997\) 34.3499i 1.08787i 0.839127 + 0.543936i \(0.183066\pi\)
−0.839127 + 0.543936i \(0.816934\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.bf.i.2287.15 32
3.2 odd 2 1008.2.bf.i.943.4 yes 32
4.3 odd 2 inner 3024.2.bf.i.2287.16 32
7.3 odd 6 3024.2.cz.i.2719.16 32
9.4 even 3 3024.2.cz.i.1279.15 32
9.5 odd 6 1008.2.cz.i.607.7 yes 32
12.11 even 2 1008.2.bf.i.943.13 yes 32
21.17 even 6 1008.2.cz.i.367.10 yes 32
28.3 even 6 3024.2.cz.i.2719.15 32
36.23 even 6 1008.2.cz.i.607.10 yes 32
36.31 odd 6 3024.2.cz.i.1279.16 32
63.31 odd 6 inner 3024.2.bf.i.1711.1 32
63.59 even 6 1008.2.bf.i.31.13 yes 32
84.59 odd 6 1008.2.cz.i.367.7 yes 32
252.31 even 6 inner 3024.2.bf.i.1711.2 32
252.59 odd 6 1008.2.bf.i.31.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.i.31.4 32 252.59 odd 6
1008.2.bf.i.31.13 yes 32 63.59 even 6
1008.2.bf.i.943.4 yes 32 3.2 odd 2
1008.2.bf.i.943.13 yes 32 12.11 even 2
1008.2.cz.i.367.7 yes 32 84.59 odd 6
1008.2.cz.i.367.10 yes 32 21.17 even 6
1008.2.cz.i.607.7 yes 32 9.5 odd 6
1008.2.cz.i.607.10 yes 32 36.23 even 6
3024.2.bf.i.1711.1 32 63.31 odd 6 inner
3024.2.bf.i.1711.2 32 252.31 even 6 inner
3024.2.bf.i.2287.15 32 1.1 even 1 trivial
3024.2.bf.i.2287.16 32 4.3 odd 2 inner
3024.2.cz.i.1279.15 32 9.4 even 3
3024.2.cz.i.1279.16 32 36.31 odd 6
3024.2.cz.i.2719.15 32 28.3 even 6
3024.2.cz.i.2719.16 32 7.3 odd 6