Properties

Label 1008.2.bf.i.31.14
Level $1008$
Weight $2$
Character 1008.31
Analytic conductor $8.049$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(31,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.14
Character \(\chi\) \(=\) 1008.31
Dual form 1008.2.bf.i.943.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33729 - 1.10075i) q^{3} +1.09736i q^{5} +(-1.10288 - 2.40492i) q^{7} +(0.576701 - 2.94405i) q^{9} -0.100798i q^{11} +(4.27107 + 2.46590i) q^{13} +(1.20792 + 1.46750i) q^{15} +(3.23648 + 1.86858i) q^{17} +(2.54669 + 4.41100i) q^{19} +(-4.12209 - 2.00210i) q^{21} -9.20757i q^{23} +3.79579 q^{25} +(-2.46944 - 4.57186i) q^{27} +(-3.96297 - 6.86407i) q^{29} +(-2.41787 - 4.18787i) q^{31} +(-0.110953 - 0.134796i) q^{33} +(2.63908 - 1.21026i) q^{35} +(-2.77437 - 4.80534i) q^{37} +(8.42601 - 1.40374i) q^{39} +(-3.91138 - 2.25823i) q^{41} +(1.73626 - 1.00243i) q^{43} +(3.23069 + 0.632852i) q^{45} +(3.17534 - 5.49984i) q^{47} +(-4.56733 + 5.30467i) q^{49} +(6.38495 - 1.06371i) q^{51} +(-6.53502 + 11.3190i) q^{53} +0.110612 q^{55} +(8.26109 + 3.09553i) q^{57} +(1.44382 + 2.50077i) q^{59} +(8.21186 + 4.74112i) q^{61} +(-7.71624 + 1.86000i) q^{63} +(-2.70599 + 4.68692i) q^{65} +(10.8779 - 6.28036i) q^{67} +(-10.1352 - 12.3132i) q^{69} +14.5863i q^{71} +(5.92115 + 3.41858i) q^{73} +(5.07608 - 4.17822i) q^{75} +(-0.242411 + 0.111167i) q^{77} +(-2.31531 - 1.33675i) q^{79} +(-8.33483 - 3.39567i) q^{81} +(0.112583 + 0.195000i) q^{83} +(-2.05051 + 3.55159i) q^{85} +(-12.8553 - 4.81703i) q^{87} +(-4.90756 + 2.83338i) q^{89} +(1.21985 - 12.9912i) q^{91} +(-7.84319 - 2.93894i) q^{93} +(-4.84048 + 2.79465i) q^{95} +(6.47632 - 3.73911i) q^{97} +(-0.296753 - 0.0581302i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{9} - 6 q^{13} - 18 q^{17} - 8 q^{21} - 32 q^{25} - 12 q^{29} + 30 q^{33} + 2 q^{37} + 36 q^{41} + 30 q^{45} + 2 q^{49} - 12 q^{53} - 46 q^{57} + 42 q^{61} + 18 q^{65} - 42 q^{69} - 66 q^{77}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.33729 1.10075i 0.772086 0.635518i
\(4\) 0 0
\(5\) 1.09736i 0.490756i 0.969427 + 0.245378i \(0.0789121\pi\)
−0.969427 + 0.245378i \(0.921088\pi\)
\(6\) 0 0
\(7\) −1.10288 2.40492i −0.416848 0.908976i
\(8\) 0 0
\(9\) 0.576701 2.94405i 0.192234 0.981349i
\(10\) 0 0
\(11\) 0.100798i 0.0303917i −0.999885 0.0151958i \(-0.995163\pi\)
0.999885 0.0151958i \(-0.00483717\pi\)
\(12\) 0 0
\(13\) 4.27107 + 2.46590i 1.18458 + 0.683918i 0.957070 0.289857i \(-0.0936078\pi\)
0.227511 + 0.973775i \(0.426941\pi\)
\(14\) 0 0
\(15\) 1.20792 + 1.46750i 0.311884 + 0.378906i
\(16\) 0 0
\(17\) 3.23648 + 1.86858i 0.784961 + 0.453197i 0.838185 0.545385i \(-0.183617\pi\)
−0.0532247 + 0.998583i \(0.516950\pi\)
\(18\) 0 0
\(19\) 2.54669 + 4.41100i 0.584252 + 1.01195i 0.994968 + 0.100191i \(0.0319453\pi\)
−0.410716 + 0.911763i \(0.634721\pi\)
\(20\) 0 0
\(21\) −4.12209 2.00210i −0.899513 0.436893i
\(22\) 0 0
\(23\) 9.20757i 1.91991i −0.280151 0.959956i \(-0.590385\pi\)
0.280151 0.959956i \(-0.409615\pi\)
\(24\) 0 0
\(25\) 3.79579 0.759158
\(26\) 0 0
\(27\) −2.46944 4.57186i −0.475244 0.879854i
\(28\) 0 0
\(29\) −3.96297 6.86407i −0.735905 1.27463i −0.954325 0.298770i \(-0.903424\pi\)
0.218420 0.975855i \(-0.429910\pi\)
\(30\) 0 0
\(31\) −2.41787 4.18787i −0.434262 0.752164i 0.562973 0.826475i \(-0.309657\pi\)
−0.997235 + 0.0743115i \(0.976324\pi\)
\(32\) 0 0
\(33\) −0.110953 0.134796i −0.0193145 0.0234650i
\(34\) 0 0
\(35\) 2.63908 1.21026i 0.446086 0.204571i
\(36\) 0 0
\(37\) −2.77437 4.80534i −0.456103 0.789993i 0.542648 0.839960i \(-0.317422\pi\)
−0.998751 + 0.0499669i \(0.984088\pi\)
\(38\) 0 0
\(39\) 8.42601 1.40374i 1.34924 0.224779i
\(40\) 0 0
\(41\) −3.91138 2.25823i −0.610854 0.352677i 0.162446 0.986718i \(-0.448062\pi\)
−0.773300 + 0.634041i \(0.781395\pi\)
\(42\) 0 0
\(43\) 1.73626 1.00243i 0.264777 0.152869i −0.361735 0.932281i \(-0.617815\pi\)
0.626512 + 0.779412i \(0.284482\pi\)
\(44\) 0 0
\(45\) 3.23069 + 0.632852i 0.481603 + 0.0943399i
\(46\) 0 0
\(47\) 3.17534 5.49984i 0.463170 0.802235i −0.535947 0.844252i \(-0.680045\pi\)
0.999117 + 0.0420174i \(0.0133785\pi\)
\(48\) 0 0
\(49\) −4.56733 + 5.30467i −0.652475 + 0.757810i
\(50\) 0 0
\(51\) 6.38495 1.06371i 0.894072 0.148949i
\(52\) 0 0
\(53\) −6.53502 + 11.3190i −0.897655 + 1.55478i −0.0671703 + 0.997742i \(0.521397\pi\)
−0.830484 + 0.557042i \(0.811936\pi\)
\(54\) 0 0
\(55\) 0.110612 0.0149149
\(56\) 0 0
\(57\) 8.26109 + 3.09553i 1.09421 + 0.410013i
\(58\) 0 0
\(59\) 1.44382 + 2.50077i 0.187969 + 0.325572i 0.944573 0.328301i \(-0.106476\pi\)
−0.756604 + 0.653874i \(0.773143\pi\)
\(60\) 0 0
\(61\) 8.21186 + 4.74112i 1.05142 + 0.607038i 0.923047 0.384687i \(-0.125691\pi\)
0.128374 + 0.991726i \(0.459024\pi\)
\(62\) 0 0
\(63\) −7.71624 + 1.86000i −0.972155 + 0.234337i
\(64\) 0 0
\(65\) −2.70599 + 4.68692i −0.335637 + 0.581341i
\(66\) 0 0
\(67\) 10.8779 6.28036i 1.32895 0.767268i 0.343810 0.939039i \(-0.388282\pi\)
0.985137 + 0.171771i \(0.0549489\pi\)
\(68\) 0 0
\(69\) −10.1352 12.3132i −1.22014 1.48234i
\(70\) 0 0
\(71\) 14.5863i 1.73107i 0.500848 + 0.865535i \(0.333022\pi\)
−0.500848 + 0.865535i \(0.666978\pi\)
\(72\) 0 0
\(73\) 5.92115 + 3.41858i 0.693018 + 0.400114i 0.804742 0.593625i \(-0.202304\pi\)
−0.111724 + 0.993739i \(0.535637\pi\)
\(74\) 0 0
\(75\) 5.07608 4.17822i 0.586135 0.482459i
\(76\) 0 0
\(77\) −0.242411 + 0.111167i −0.0276253 + 0.0126687i
\(78\) 0 0
\(79\) −2.31531 1.33675i −0.260493 0.150396i 0.364066 0.931373i \(-0.381388\pi\)
−0.624559 + 0.780977i \(0.714721\pi\)
\(80\) 0 0
\(81\) −8.33483 3.39567i −0.926092 0.377297i
\(82\) 0 0
\(83\) 0.112583 + 0.195000i 0.0123576 + 0.0214040i 0.872138 0.489260i \(-0.162733\pi\)
−0.859780 + 0.510664i \(0.829400\pi\)
\(84\) 0 0
\(85\) −2.05051 + 3.55159i −0.222409 + 0.385224i
\(86\) 0 0
\(87\) −12.8553 4.81703i −1.37823 0.516439i
\(88\) 0 0
\(89\) −4.90756 + 2.83338i −0.520200 + 0.300338i −0.737016 0.675875i \(-0.763766\pi\)
0.216817 + 0.976212i \(0.430433\pi\)
\(90\) 0 0
\(91\) 1.21985 12.9912i 0.127875 1.36185i
\(92\) 0 0
\(93\) −7.84319 2.93894i −0.813301 0.304754i
\(94\) 0 0
\(95\) −4.84048 + 2.79465i −0.496623 + 0.286725i
\(96\) 0 0
\(97\) 6.47632 3.73911i 0.657571 0.379649i −0.133780 0.991011i \(-0.542712\pi\)
0.791351 + 0.611362i \(0.209378\pi\)
\(98\) 0 0
\(99\) −0.296753 0.0581302i −0.0298248 0.00584231i
\(100\) 0 0
\(101\) 1.69404i 0.168564i 0.996442 + 0.0842818i \(0.0268596\pi\)
−0.996442 + 0.0842818i \(0.973140\pi\)
\(102\) 0 0
\(103\) −5.92861 −0.584164 −0.292082 0.956393i \(-0.594348\pi\)
−0.292082 + 0.956393i \(0.594348\pi\)
\(104\) 0 0
\(105\) 2.19703 4.52343i 0.214408 0.441442i
\(106\) 0 0
\(107\) 4.25250 2.45518i 0.411104 0.237351i −0.280160 0.959953i \(-0.590387\pi\)
0.691264 + 0.722602i \(0.257054\pi\)
\(108\) 0 0
\(109\) −5.22573 + 9.05124i −0.500535 + 0.866951i 0.499465 + 0.866334i \(0.333530\pi\)
−1.00000 0.000617375i \(0.999803\pi\)
\(110\) 0 0
\(111\) −8.99961 3.37227i −0.854206 0.320081i
\(112\) 0 0
\(113\) −5.15634 + 8.93104i −0.485068 + 0.840162i −0.999853 0.0171575i \(-0.994538\pi\)
0.514785 + 0.857319i \(0.327872\pi\)
\(114\) 0 0
\(115\) 10.1041 0.942209
\(116\) 0 0
\(117\) 9.72287 11.1521i 0.898879 1.03102i
\(118\) 0 0
\(119\) 0.924363 9.84430i 0.0847362 0.902425i
\(120\) 0 0
\(121\) 10.9898 0.999076
\(122\) 0 0
\(123\) −7.71640 + 1.28553i −0.695764 + 0.115912i
\(124\) 0 0
\(125\) 9.65219i 0.863318i
\(126\) 0 0
\(127\) 8.87104i 0.787177i 0.919287 + 0.393589i \(0.128767\pi\)
−0.919287 + 0.393589i \(0.871233\pi\)
\(128\) 0 0
\(129\) 1.21846 3.25172i 0.107279 0.286298i
\(130\) 0 0
\(131\) −5.89886 −0.515386 −0.257693 0.966227i \(-0.582962\pi\)
−0.257693 + 0.966227i \(0.582962\pi\)
\(132\) 0 0
\(133\) 7.79945 10.9894i 0.676298 0.952902i
\(134\) 0 0
\(135\) 5.01699 2.70988i 0.431794 0.233229i
\(136\) 0 0
\(137\) −17.4326 −1.48937 −0.744683 0.667418i \(-0.767400\pi\)
−0.744683 + 0.667418i \(0.767400\pi\)
\(138\) 0 0
\(139\) −8.09773 + 14.0257i −0.686840 + 1.18964i 0.286014 + 0.958225i \(0.407669\pi\)
−0.972855 + 0.231417i \(0.925664\pi\)
\(140\) 0 0
\(141\) −1.80760 10.8501i −0.152227 0.913747i
\(142\) 0 0
\(143\) 0.248558 0.430514i 0.0207854 0.0360014i
\(144\) 0 0
\(145\) 7.53238 4.34882i 0.625530 0.361150i
\(146\) 0 0
\(147\) −0.268742 + 12.1214i −0.0221655 + 0.999754i
\(148\) 0 0
\(149\) 10.4411 0.855370 0.427685 0.903928i \(-0.359329\pi\)
0.427685 + 0.903928i \(0.359329\pi\)
\(150\) 0 0
\(151\) 8.91419i 0.725427i 0.931901 + 0.362713i \(0.118150\pi\)
−0.931901 + 0.362713i \(0.881850\pi\)
\(152\) 0 0
\(153\) 7.36767 8.45073i 0.595641 0.683201i
\(154\) 0 0
\(155\) 4.59562 2.65328i 0.369129 0.213117i
\(156\) 0 0
\(157\) 5.54621 3.20210i 0.442635 0.255556i −0.262079 0.965046i \(-0.584408\pi\)
0.704715 + 0.709491i \(0.251075\pi\)
\(158\) 0 0
\(159\) 3.72014 + 22.3302i 0.295026 + 1.77090i
\(160\) 0 0
\(161\) −22.1435 + 10.1548i −1.74515 + 0.800311i
\(162\) 0 0
\(163\) −7.19404 + 4.15348i −0.563481 + 0.325326i −0.754541 0.656253i \(-0.772141\pi\)
0.191061 + 0.981578i \(0.438807\pi\)
\(164\) 0 0
\(165\) 0.147920 0.121756i 0.0115156 0.00947869i
\(166\) 0 0
\(167\) −7.92799 + 13.7317i −0.613487 + 1.06259i 0.377161 + 0.926148i \(0.376900\pi\)
−0.990648 + 0.136442i \(0.956433\pi\)
\(168\) 0 0
\(169\) 5.66135 + 9.80575i 0.435488 + 0.754288i
\(170\) 0 0
\(171\) 14.4549 4.95376i 1.10539 0.378823i
\(172\) 0 0
\(173\) −3.20209 1.84873i −0.243450 0.140556i 0.373311 0.927706i \(-0.378222\pi\)
−0.616762 + 0.787150i \(0.711556\pi\)
\(174\) 0 0
\(175\) −4.18629 9.12859i −0.316454 0.690057i
\(176\) 0 0
\(177\) 4.68352 + 1.75497i 0.352035 + 0.131912i
\(178\) 0 0
\(179\) 7.20657 + 4.16072i 0.538645 + 0.310987i 0.744529 0.667590i \(-0.232674\pi\)
−0.205885 + 0.978576i \(0.566007\pi\)
\(180\) 0 0
\(181\) 25.2442i 1.87638i −0.346115 0.938192i \(-0.612499\pi\)
0.346115 0.938192i \(-0.387501\pi\)
\(182\) 0 0
\(183\) 16.2004 2.69894i 1.19757 0.199511i
\(184\) 0 0
\(185\) 5.27321 3.04449i 0.387694 0.223835i
\(186\) 0 0
\(187\) 0.188349 0.326230i 0.0137734 0.0238563i
\(188\) 0 0
\(189\) −8.27148 + 10.9810i −0.601662 + 0.798751i
\(190\) 0 0
\(191\) −3.65606 2.11082i −0.264543 0.152734i 0.361862 0.932232i \(-0.382141\pi\)
−0.626405 + 0.779498i \(0.715474\pi\)
\(192\) 0 0
\(193\) 11.6625 + 20.2001i 0.839487 + 1.45403i 0.890324 + 0.455327i \(0.150478\pi\)
−0.0508376 + 0.998707i \(0.516189\pi\)
\(194\) 0 0
\(195\) 1.54042 + 9.24640i 0.110312 + 0.662149i
\(196\) 0 0
\(197\) 14.9348 1.06406 0.532030 0.846725i \(-0.321429\pi\)
0.532030 + 0.846725i \(0.321429\pi\)
\(198\) 0 0
\(199\) −6.05559 + 10.4886i −0.429269 + 0.743516i −0.996808 0.0798303i \(-0.974562\pi\)
0.567539 + 0.823346i \(0.307895\pi\)
\(200\) 0 0
\(201\) 7.63383 20.3725i 0.538449 1.43697i
\(202\) 0 0
\(203\) −12.1369 + 17.1009i −0.851843 + 1.20025i
\(204\) 0 0
\(205\) 2.47811 4.29220i 0.173078 0.299781i
\(206\) 0 0
\(207\) −27.1075 5.31002i −1.88410 0.369072i
\(208\) 0 0
\(209\) 0.444619 0.256701i 0.0307550 0.0177564i
\(210\) 0 0
\(211\) −0.912360 0.526751i −0.0628095 0.0362631i 0.468266 0.883587i \(-0.344879\pi\)
−0.531076 + 0.847324i \(0.678212\pi\)
\(212\) 0 0
\(213\) 16.0558 + 19.5061i 1.10013 + 1.33654i
\(214\) 0 0
\(215\) 1.10003 + 1.90531i 0.0750213 + 0.129941i
\(216\) 0 0
\(217\) −7.40490 + 10.4335i −0.502678 + 0.708272i
\(218\) 0 0
\(219\) 11.6813 1.94607i 0.789350 0.131503i
\(220\) 0 0
\(221\) 9.21547 + 15.9617i 0.619900 + 1.07370i
\(222\) 0 0
\(223\) −5.36823 9.29804i −0.359483 0.622643i 0.628392 0.777897i \(-0.283714\pi\)
−0.987875 + 0.155254i \(0.950380\pi\)
\(224\) 0 0
\(225\) 2.18904 11.1750i 0.145936 0.744999i
\(226\) 0 0
\(227\) 1.51369 0.100467 0.0502334 0.998738i \(-0.484003\pi\)
0.0502334 + 0.998738i \(0.484003\pi\)
\(228\) 0 0
\(229\) 14.4501i 0.954893i 0.878661 + 0.477446i \(0.158438\pi\)
−0.878661 + 0.477446i \(0.841562\pi\)
\(230\) 0 0
\(231\) −0.201807 + 0.415497i −0.0132779 + 0.0273377i
\(232\) 0 0
\(233\) −9.37435 16.2368i −0.614134 1.06371i −0.990536 0.137254i \(-0.956172\pi\)
0.376402 0.926456i \(-0.377161\pi\)
\(234\) 0 0
\(235\) 6.03533 + 3.48450i 0.393702 + 0.227304i
\(236\) 0 0
\(237\) −4.56767 + 0.760958i −0.296702 + 0.0494296i
\(238\) 0 0
\(239\) −20.4105 11.7840i −1.32025 0.762244i −0.336478 0.941691i \(-0.609236\pi\)
−0.983768 + 0.179447i \(0.942569\pi\)
\(240\) 0 0
\(241\) 14.8848i 0.958815i 0.877592 + 0.479407i \(0.159148\pi\)
−0.877592 + 0.479407i \(0.840852\pi\)
\(242\) 0 0
\(243\) −14.8839 + 4.63355i −0.954802 + 0.297243i
\(244\) 0 0
\(245\) −5.82116 5.01202i −0.371900 0.320206i
\(246\) 0 0
\(247\) 25.1196i 1.59832i
\(248\) 0 0
\(249\) 0.365203 + 0.136846i 0.0231438 + 0.00867226i
\(250\) 0 0
\(251\) 6.87937 0.434222 0.217111 0.976147i \(-0.430337\pi\)
0.217111 + 0.976147i \(0.430337\pi\)
\(252\) 0 0
\(253\) −0.928103 −0.0583493
\(254\) 0 0
\(255\) 1.16728 + 7.00662i 0.0730978 + 0.438772i
\(256\) 0 0
\(257\) 17.9963i 1.12258i −0.827619 0.561290i \(-0.810305\pi\)
0.827619 0.561290i \(-0.189695\pi\)
\(258\) 0 0
\(259\) −8.49670 + 11.9718i −0.527960 + 0.743894i
\(260\) 0 0
\(261\) −22.4936 + 7.70866i −1.39232 + 0.477154i
\(262\) 0 0
\(263\) 8.87717i 0.547390i 0.961817 + 0.273695i \(0.0882458\pi\)
−0.961817 + 0.273695i \(0.911754\pi\)
\(264\) 0 0
\(265\) −12.4211 7.17130i −0.763020 0.440530i
\(266\) 0 0
\(267\) −3.44400 + 9.19105i −0.210769 + 0.562483i
\(268\) 0 0
\(269\) 9.95646 + 5.74836i 0.607056 + 0.350484i 0.771812 0.635850i \(-0.219350\pi\)
−0.164756 + 0.986334i \(0.552684\pi\)
\(270\) 0 0
\(271\) −12.3583 21.4052i −0.750713 1.30027i −0.947478 0.319822i \(-0.896377\pi\)
0.196765 0.980451i \(-0.436956\pi\)
\(272\) 0 0
\(273\) −12.6687 18.7158i −0.766747 1.13273i
\(274\) 0 0
\(275\) 0.382607i 0.0230721i
\(276\) 0 0
\(277\) 1.03433 0.0621466 0.0310733 0.999517i \(-0.490107\pi\)
0.0310733 + 0.999517i \(0.490107\pi\)
\(278\) 0 0
\(279\) −13.7237 + 4.70317i −0.821615 + 0.281571i
\(280\) 0 0
\(281\) −1.51917 2.63128i −0.0906262 0.156969i 0.817149 0.576427i \(-0.195554\pi\)
−0.907775 + 0.419458i \(0.862220\pi\)
\(282\) 0 0
\(283\) 7.02389 + 12.1657i 0.417527 + 0.723177i 0.995690 0.0927436i \(-0.0295637\pi\)
−0.578163 + 0.815921i \(0.696230\pi\)
\(284\) 0 0
\(285\) −3.39692 + 9.06542i −0.201216 + 0.536989i
\(286\) 0 0
\(287\) −1.11712 + 11.8971i −0.0659415 + 0.702265i
\(288\) 0 0
\(289\) −1.51681 2.62720i −0.0892244 0.154541i
\(290\) 0 0
\(291\) 4.54492 12.1291i 0.266428 0.711020i
\(292\) 0 0
\(293\) −0.747160 0.431373i −0.0436496 0.0252011i 0.478016 0.878351i \(-0.341356\pi\)
−0.521666 + 0.853150i \(0.674689\pi\)
\(294\) 0 0
\(295\) −2.74425 + 1.58440i −0.159777 + 0.0922470i
\(296\) 0 0
\(297\) −0.460833 + 0.248914i −0.0267402 + 0.0144435i
\(298\) 0 0
\(299\) 22.7050 39.3262i 1.31306 2.27429i
\(300\) 0 0
\(301\) −4.32564 3.07001i −0.249326 0.176953i
\(302\) 0 0
\(303\) 1.86472 + 2.26543i 0.107125 + 0.130146i
\(304\) 0 0
\(305\) −5.20274 + 9.01141i −0.297908 + 0.515992i
\(306\) 0 0
\(307\) −0.799801 −0.0456471 −0.0228235 0.999740i \(-0.507266\pi\)
−0.0228235 + 0.999740i \(0.507266\pi\)
\(308\) 0 0
\(309\) −7.92829 + 6.52592i −0.451025 + 0.371246i
\(310\) 0 0
\(311\) −13.1501 22.7767i −0.745674 1.29155i −0.949879 0.312618i \(-0.898794\pi\)
0.204205 0.978928i \(-0.434539\pi\)
\(312\) 0 0
\(313\) −6.76366 3.90500i −0.382305 0.220724i 0.296516 0.955028i \(-0.404175\pi\)
−0.678821 + 0.734304i \(0.737509\pi\)
\(314\) 0 0
\(315\) −2.04109 8.46753i −0.115003 0.477091i
\(316\) 0 0
\(317\) −6.66835 + 11.5499i −0.374532 + 0.648708i −0.990257 0.139253i \(-0.955530\pi\)
0.615725 + 0.787961i \(0.288863\pi\)
\(318\) 0 0
\(319\) −0.691883 + 0.399459i −0.0387380 + 0.0223654i
\(320\) 0 0
\(321\) 2.98429 7.96423i 0.166567 0.444520i
\(322\) 0 0
\(323\) 19.0348i 1.05913i
\(324\) 0 0
\(325\) 16.2121 + 9.36005i 0.899285 + 0.519202i
\(326\) 0 0
\(327\) 2.97481 + 17.8564i 0.164507 + 0.987460i
\(328\) 0 0
\(329\) −16.7287 1.57080i −0.922284 0.0866009i
\(330\) 0 0
\(331\) 12.6057 + 7.27788i 0.692870 + 0.400029i 0.804686 0.593700i \(-0.202334\pi\)
−0.111816 + 0.993729i \(0.535667\pi\)
\(332\) 0 0
\(333\) −15.7471 + 5.39662i −0.862938 + 0.295733i
\(334\) 0 0
\(335\) 6.89184 + 11.9370i 0.376542 + 0.652189i
\(336\) 0 0
\(337\) 7.67592 13.2951i 0.418134 0.724229i −0.577618 0.816307i \(-0.696018\pi\)
0.995752 + 0.0920783i \(0.0293510\pi\)
\(338\) 0 0
\(339\) 2.93531 + 17.6193i 0.159424 + 0.956946i
\(340\) 0 0
\(341\) −0.422128 + 0.243716i −0.0228595 + 0.0131979i
\(342\) 0 0
\(343\) 17.7945 + 5.13369i 0.960814 + 0.277193i
\(344\) 0 0
\(345\) 13.5121 11.1220i 0.727466 0.598791i
\(346\) 0 0
\(347\) −20.1653 + 11.6424i −1.08253 + 0.624999i −0.931578 0.363542i \(-0.881567\pi\)
−0.150952 + 0.988541i \(0.548234\pi\)
\(348\) 0 0
\(349\) 12.0364 6.94922i 0.644294 0.371983i −0.141973 0.989871i \(-0.545345\pi\)
0.786267 + 0.617887i \(0.212011\pi\)
\(350\) 0 0
\(351\) 0.726602 25.6161i 0.0387831 1.36729i
\(352\) 0 0
\(353\) 26.6932i 1.42074i 0.703830 + 0.710368i \(0.251471\pi\)
−0.703830 + 0.710368i \(0.748529\pi\)
\(354\) 0 0
\(355\) −16.0064 −0.849534
\(356\) 0 0
\(357\) −9.59996 14.1822i −0.508084 0.750601i
\(358\) 0 0
\(359\) −27.9838 + 16.1564i −1.47693 + 0.852705i −0.999661 0.0260534i \(-0.991706\pi\)
−0.477267 + 0.878758i \(0.658373\pi\)
\(360\) 0 0
\(361\) −3.47131 + 6.01248i −0.182700 + 0.316446i
\(362\) 0 0
\(363\) 14.6966 12.0971i 0.771373 0.634931i
\(364\) 0 0
\(365\) −3.75143 + 6.49766i −0.196359 + 0.340103i
\(366\) 0 0
\(367\) −7.83398 −0.408931 −0.204465 0.978874i \(-0.565546\pi\)
−0.204465 + 0.978874i \(0.565546\pi\)
\(368\) 0 0
\(369\) −8.90404 + 10.2129i −0.463526 + 0.531665i
\(370\) 0 0
\(371\) 34.4287 + 3.23279i 1.78745 + 0.167838i
\(372\) 0 0
\(373\) −19.2030 −0.994293 −0.497146 0.867667i \(-0.665619\pi\)
−0.497146 + 0.867667i \(0.665619\pi\)
\(374\) 0 0
\(375\) 10.6246 + 12.9078i 0.548654 + 0.666556i
\(376\) 0 0
\(377\) 39.0892i 2.01320i
\(378\) 0 0
\(379\) 17.4093i 0.894254i −0.894470 0.447127i \(-0.852447\pi\)
0.894470 0.447127i \(-0.147553\pi\)
\(380\) 0 0
\(381\) 9.76479 + 11.8632i 0.500265 + 0.607769i
\(382\) 0 0
\(383\) 18.3013 0.935151 0.467575 0.883953i \(-0.345128\pi\)
0.467575 + 0.883953i \(0.345128\pi\)
\(384\) 0 0
\(385\) −0.121991 0.266013i −0.00621725 0.0135573i
\(386\) 0 0
\(387\) −1.94989 5.68972i −0.0991187 0.289225i
\(388\) 0 0
\(389\) −2.17302 −0.110176 −0.0550882 0.998481i \(-0.517544\pi\)
−0.0550882 + 0.998481i \(0.517544\pi\)
\(390\) 0 0
\(391\) 17.2051 29.8001i 0.870099 1.50706i
\(392\) 0 0
\(393\) −7.88850 + 6.49317i −0.397922 + 0.327537i
\(394\) 0 0
\(395\) 1.46690 2.54074i 0.0738076 0.127839i
\(396\) 0 0
\(397\) 5.63167 3.25144i 0.282645 0.163185i −0.351975 0.936009i \(-0.614490\pi\)
0.634620 + 0.772824i \(0.281156\pi\)
\(398\) 0 0
\(399\) −1.66644 23.2813i −0.0834262 1.16552i
\(400\) 0 0
\(401\) −4.97927 −0.248653 −0.124326 0.992241i \(-0.539677\pi\)
−0.124326 + 0.992241i \(0.539677\pi\)
\(402\) 0 0
\(403\) 23.8489i 1.18800i
\(404\) 0 0
\(405\) 3.72629 9.14635i 0.185161 0.454486i
\(406\) 0 0
\(407\) −0.484368 + 0.279650i −0.0240092 + 0.0138617i
\(408\) 0 0
\(409\) −0.175666 + 0.101421i −0.00868614 + 0.00501494i −0.504337 0.863507i \(-0.668263\pi\)
0.495651 + 0.868522i \(0.334930\pi\)
\(410\) 0 0
\(411\) −23.3125 + 19.1889i −1.14992 + 0.946519i
\(412\) 0 0
\(413\) 4.42180 6.23031i 0.217583 0.306574i
\(414\) 0 0
\(415\) −0.213986 + 0.123545i −0.0105042 + 0.00606458i
\(416\) 0 0
\(417\) 4.60973 + 27.6700i 0.225739 + 1.35501i
\(418\) 0 0
\(419\) 5.38038 9.31910i 0.262849 0.455268i −0.704149 0.710052i \(-0.748671\pi\)
0.966998 + 0.254785i \(0.0820046\pi\)
\(420\) 0 0
\(421\) 0.428103 + 0.741496i 0.0208645 + 0.0361383i 0.876269 0.481822i \(-0.160025\pi\)
−0.855405 + 0.517960i \(0.826691\pi\)
\(422\) 0 0
\(423\) −14.3606 12.5201i −0.698235 0.608748i
\(424\) 0 0
\(425\) 12.2850 + 7.09274i 0.595909 + 0.344048i
\(426\) 0 0
\(427\) 2.34537 24.9778i 0.113501 1.20876i
\(428\) 0 0
\(429\) −0.141494 0.849323i −0.00683141 0.0410057i
\(430\) 0 0
\(431\) 9.19956 + 5.31137i 0.443127 + 0.255840i 0.704923 0.709284i \(-0.250981\pi\)
−0.261796 + 0.965123i \(0.584315\pi\)
\(432\) 0 0
\(433\) 27.8825i 1.33995i 0.742384 + 0.669974i \(0.233695\pi\)
−0.742384 + 0.669974i \(0.766305\pi\)
\(434\) 0 0
\(435\) 5.28603 14.1069i 0.253446 0.676375i
\(436\) 0 0
\(437\) 40.6146 23.4489i 1.94286 1.12171i
\(438\) 0 0
\(439\) −1.71469 + 2.96993i −0.0818377 + 0.141747i −0.904039 0.427449i \(-0.859412\pi\)
0.822202 + 0.569196i \(0.192746\pi\)
\(440\) 0 0
\(441\) 12.9832 + 16.5056i 0.618248 + 0.785983i
\(442\) 0 0
\(443\) −35.8001 20.6692i −1.70092 0.982025i −0.944835 0.327547i \(-0.893778\pi\)
−0.756082 0.654477i \(-0.772889\pi\)
\(444\) 0 0
\(445\) −3.10925 5.38538i −0.147393 0.255291i
\(446\) 0 0
\(447\) 13.9628 11.4931i 0.660419 0.543603i
\(448\) 0 0
\(449\) 7.99114 0.377125 0.188563 0.982061i \(-0.439617\pi\)
0.188563 + 0.982061i \(0.439617\pi\)
\(450\) 0 0
\(451\) −0.227625 + 0.394258i −0.0107184 + 0.0185649i
\(452\) 0 0
\(453\) 9.81229 + 11.9209i 0.461022 + 0.560092i
\(454\) 0 0
\(455\) 14.2561 + 1.33862i 0.668335 + 0.0627555i
\(456\) 0 0
\(457\) −9.99811 + 17.3172i −0.467692 + 0.810066i −0.999318 0.0369130i \(-0.988248\pi\)
0.531627 + 0.846979i \(0.321581\pi\)
\(458\) 0 0
\(459\) 0.550595 19.4110i 0.0256996 0.906030i
\(460\) 0 0
\(461\) 21.1665 12.2205i 0.985824 0.569166i 0.0818005 0.996649i \(-0.473933\pi\)
0.904023 + 0.427483i \(0.140600\pi\)
\(462\) 0 0
\(463\) 19.5574 + 11.2915i 0.908909 + 0.524759i 0.880080 0.474826i \(-0.157489\pi\)
0.0288289 + 0.999584i \(0.490822\pi\)
\(464\) 0 0
\(465\) 3.22509 8.60684i 0.149560 0.399133i
\(466\) 0 0
\(467\) 19.8560 + 34.3915i 0.918824 + 1.59145i 0.801204 + 0.598391i \(0.204193\pi\)
0.117620 + 0.993059i \(0.462474\pi\)
\(468\) 0 0
\(469\) −27.1008 19.2341i −1.25140 0.888147i
\(470\) 0 0
\(471\) 3.89218 10.3871i 0.179342 0.478614i
\(472\) 0 0
\(473\) −0.101043 0.175011i −0.00464594 0.00804700i
\(474\) 0 0
\(475\) 9.66672 + 16.7433i 0.443540 + 0.768233i
\(476\) 0 0
\(477\) 29.5549 + 25.7671i 1.35323 + 1.17979i
\(478\) 0 0
\(479\) 2.44014 0.111493 0.0557465 0.998445i \(-0.482246\pi\)
0.0557465 + 0.998445i \(0.482246\pi\)
\(480\) 0 0
\(481\) 27.3653i 1.24775i
\(482\) 0 0
\(483\) −18.4345 + 37.9544i −0.838797 + 1.72699i
\(484\) 0 0
\(485\) 4.10316 + 7.10689i 0.186315 + 0.322707i
\(486\) 0 0
\(487\) 19.1445 + 11.0531i 0.867519 + 0.500862i 0.866523 0.499137i \(-0.166350\pi\)
0.000996023 1.00000i \(0.499683\pi\)
\(488\) 0 0
\(489\) −5.04859 + 13.4732i −0.228305 + 0.609281i
\(490\) 0 0
\(491\) −24.5750 14.1884i −1.10906 0.640314i −0.170472 0.985363i \(-0.554529\pi\)
−0.938585 + 0.345049i \(0.887862\pi\)
\(492\) 0 0
\(493\) 29.6205i 1.33404i
\(494\) 0 0
\(495\) 0.0637900 0.325647i 0.00286715 0.0146367i
\(496\) 0 0
\(497\) 35.0789 16.0868i 1.57350 0.721593i
\(498\) 0 0
\(499\) 9.08596i 0.406743i 0.979102 + 0.203372i \(0.0651900\pi\)
−0.979102 + 0.203372i \(0.934810\pi\)
\(500\) 0 0
\(501\) 4.51310 + 27.0900i 0.201631 + 1.21029i
\(502\) 0 0
\(503\) 35.9302 1.60205 0.801025 0.598631i \(-0.204288\pi\)
0.801025 + 0.598631i \(0.204288\pi\)
\(504\) 0 0
\(505\) −1.85898 −0.0827236
\(506\) 0 0
\(507\) 18.3645 + 6.88142i 0.815598 + 0.305615i
\(508\) 0 0
\(509\) 15.0086i 0.665243i 0.943060 + 0.332621i \(0.107933\pi\)
−0.943060 + 0.332621i \(0.892067\pi\)
\(510\) 0 0
\(511\) 1.69113 18.0102i 0.0748111 0.796724i
\(512\) 0 0
\(513\) 13.8776 22.5358i 0.612709 0.994981i
\(514\) 0 0
\(515\) 6.50585i 0.286682i
\(516\) 0 0
\(517\) −0.554372 0.320067i −0.0243813 0.0140765i
\(518\) 0 0
\(519\) −6.31711 + 1.05241i −0.277291 + 0.0461956i
\(520\) 0 0
\(521\) −9.05431 5.22751i −0.396677 0.229021i 0.288372 0.957518i \(-0.406886\pi\)
−0.685049 + 0.728497i \(0.740219\pi\)
\(522\) 0 0
\(523\) −13.6688 23.6751i −0.597697 1.03524i −0.993160 0.116759i \(-0.962749\pi\)
0.395463 0.918482i \(-0.370584\pi\)
\(524\) 0 0
\(525\) −15.6466 7.59954i −0.682873 0.331671i
\(526\) 0 0
\(527\) 18.0719i 0.787225i
\(528\) 0 0
\(529\) −61.7794 −2.68606
\(530\) 0 0
\(531\) 8.19503 2.80847i 0.355634 0.121877i
\(532\) 0 0
\(533\) −11.1372 19.2901i −0.482404 0.835549i
\(534\) 0 0
\(535\) 2.69423 + 4.66654i 0.116482 + 0.201752i
\(536\) 0 0
\(537\) 14.2172 2.36854i 0.613518 0.102210i
\(538\) 0 0
\(539\) 0.534699 + 0.460377i 0.0230311 + 0.0198298i
\(540\) 0 0
\(541\) −11.1507 19.3135i −0.479405 0.830354i 0.520316 0.853974i \(-0.325814\pi\)
−0.999721 + 0.0236197i \(0.992481\pi\)
\(542\) 0 0
\(543\) −27.7875 33.7588i −1.19248 1.44873i
\(544\) 0 0
\(545\) −9.93251 5.73454i −0.425462 0.245640i
\(546\) 0 0
\(547\) −5.02929 + 2.90366i −0.215037 + 0.124152i −0.603650 0.797249i \(-0.706288\pi\)
0.388613 + 0.921401i \(0.372954\pi\)
\(548\) 0 0
\(549\) 18.6939 21.4419i 0.797835 0.915118i
\(550\) 0 0
\(551\) 20.1849 34.9614i 0.859908 1.48940i
\(552\) 0 0
\(553\) −0.661272 + 7.04242i −0.0281201 + 0.299474i
\(554\) 0 0
\(555\) 3.70060 9.87586i 0.157082 0.419207i
\(556\) 0 0
\(557\) −1.23031 + 2.13096i −0.0521300 + 0.0902919i −0.890913 0.454174i \(-0.849934\pi\)
0.838783 + 0.544466i \(0.183268\pi\)
\(558\) 0 0
\(559\) 9.88756 0.418199
\(560\) 0 0
\(561\) −0.107220 0.643589i −0.00452682 0.0271724i
\(562\) 0 0
\(563\) 2.01921 + 3.49737i 0.0850995 + 0.147397i 0.905434 0.424488i \(-0.139546\pi\)
−0.820334 + 0.571885i \(0.806213\pi\)
\(564\) 0 0
\(565\) −9.80061 5.65838i −0.412315 0.238050i
\(566\) 0 0
\(567\) 1.02595 + 23.7896i 0.0430858 + 0.999071i
\(568\) 0 0
\(569\) 12.6809 21.9640i 0.531612 0.920780i −0.467707 0.883884i \(-0.654920\pi\)
0.999319 0.0368960i \(-0.0117470\pi\)
\(570\) 0 0
\(571\) 26.2507 15.1558i 1.09856 0.634252i 0.162716 0.986673i \(-0.447975\pi\)
0.935842 + 0.352421i \(0.114641\pi\)
\(572\) 0 0
\(573\) −7.21270 + 1.20161i −0.301315 + 0.0501980i
\(574\) 0 0
\(575\) 34.9500i 1.45752i
\(576\) 0 0
\(577\) 25.7567 + 14.8707i 1.07227 + 0.619073i 0.928800 0.370582i \(-0.120842\pi\)
0.143467 + 0.989655i \(0.454175\pi\)
\(578\) 0 0
\(579\) 37.8314 + 14.1759i 1.57222 + 0.589130i
\(580\) 0 0
\(581\) 0.344795 0.485815i 0.0143045 0.0201550i
\(582\) 0 0
\(583\) 1.14093 + 0.658716i 0.0472525 + 0.0272812i
\(584\) 0 0
\(585\) 12.2380 + 10.6695i 0.505977 + 0.441131i
\(586\) 0 0
\(587\) −18.1453 31.4286i −0.748938 1.29720i −0.948332 0.317280i \(-0.897231\pi\)
0.199394 0.979919i \(-0.436103\pi\)
\(588\) 0 0
\(589\) 12.3151 21.3304i 0.507437 0.878906i
\(590\) 0 0
\(591\) 19.9722 16.4395i 0.821546 0.676230i
\(592\) 0 0
\(593\) 28.4608 16.4319i 1.16875 0.674776i 0.215362 0.976534i \(-0.430907\pi\)
0.953384 + 0.301758i \(0.0975735\pi\)
\(594\) 0 0
\(595\) 10.8028 + 1.01436i 0.442871 + 0.0415848i
\(596\) 0 0
\(597\) 3.44721 + 20.6920i 0.141085 + 0.846867i
\(598\) 0 0
\(599\) −29.9350 + 17.2830i −1.22311 + 0.706164i −0.965580 0.260105i \(-0.916243\pi\)
−0.257532 + 0.966270i \(0.582909\pi\)
\(600\) 0 0
\(601\) −18.6933 + 10.7926i −0.762514 + 0.440238i −0.830198 0.557469i \(-0.811772\pi\)
0.0676837 + 0.997707i \(0.478439\pi\)
\(602\) 0 0
\(603\) −12.2164 35.6470i −0.497489 1.45166i
\(604\) 0 0
\(605\) 12.0599i 0.490303i
\(606\) 0 0
\(607\) −26.7002 −1.08373 −0.541864 0.840466i \(-0.682281\pi\)
−0.541864 + 0.840466i \(0.682281\pi\)
\(608\) 0 0
\(609\) 2.59318 + 36.2285i 0.105081 + 1.46805i
\(610\) 0 0
\(611\) 27.1242 15.6601i 1.09733 0.633541i
\(612\) 0 0
\(613\) 1.36963 2.37228i 0.0553190 0.0958153i −0.837040 0.547142i \(-0.815716\pi\)
0.892359 + 0.451327i \(0.149049\pi\)
\(614\) 0 0
\(615\) −1.41069 8.46770i −0.0568845 0.341451i
\(616\) 0 0
\(617\) −3.00455 + 5.20403i −0.120959 + 0.209506i −0.920146 0.391576i \(-0.871930\pi\)
0.799187 + 0.601082i \(0.205263\pi\)
\(618\) 0 0
\(619\) −45.7252 −1.83785 −0.918925 0.394432i \(-0.870941\pi\)
−0.918925 + 0.394432i \(0.870941\pi\)
\(620\) 0 0
\(621\) −42.0957 + 22.7376i −1.68924 + 0.912427i
\(622\) 0 0
\(623\) 12.2265 + 8.67744i 0.489844 + 0.347654i
\(624\) 0 0
\(625\) 8.38699 0.335479
\(626\) 0 0
\(627\) 0.312023 0.832699i 0.0124610 0.0332548i
\(628\) 0 0
\(629\) 20.7365i 0.826818i
\(630\) 0 0
\(631\) 16.5841i 0.660204i 0.943945 + 0.330102i \(0.107083\pi\)
−0.943945 + 0.330102i \(0.892917\pi\)
\(632\) 0 0
\(633\) −1.79991 + 0.299859i −0.0715401 + 0.0119183i
\(634\) 0 0
\(635\) −9.73476 −0.386312
\(636\) 0 0
\(637\) −32.5882 + 11.3940i −1.29119 + 0.451447i
\(638\) 0 0
\(639\) 42.9426 + 8.41192i 1.69878 + 0.332770i
\(640\) 0 0
\(641\) 33.5325 1.32446 0.662228 0.749303i \(-0.269611\pi\)
0.662228 + 0.749303i \(0.269611\pi\)
\(642\) 0 0
\(643\) 15.7710 27.3162i 0.621949 1.07725i −0.367174 0.930152i \(-0.619675\pi\)
0.989122 0.147094i \(-0.0469921\pi\)
\(644\) 0 0
\(645\) 3.56832 + 1.33709i 0.140503 + 0.0526481i
\(646\) 0 0
\(647\) −19.1055 + 33.0917i −0.751114 + 1.30097i 0.196169 + 0.980570i \(0.437150\pi\)
−0.947283 + 0.320398i \(0.896183\pi\)
\(648\) 0 0
\(649\) 0.252072 0.145534i 0.00989468 0.00571270i
\(650\) 0 0
\(651\) 1.58214 + 22.1036i 0.0620089 + 0.866307i
\(652\) 0 0
\(653\) −23.6928 −0.927171 −0.463586 0.886052i \(-0.653437\pi\)
−0.463586 + 0.886052i \(0.653437\pi\)
\(654\) 0 0
\(655\) 6.47320i 0.252929i
\(656\) 0 0
\(657\) 13.4792 15.4606i 0.525873 0.603177i
\(658\) 0 0
\(659\) −17.6819 + 10.2086i −0.688788 + 0.397672i −0.803158 0.595766i \(-0.796849\pi\)
0.114370 + 0.993438i \(0.463515\pi\)
\(660\) 0 0
\(661\) −17.3778 + 10.0331i −0.675919 + 0.390242i −0.798315 0.602239i \(-0.794275\pi\)
0.122397 + 0.992481i \(0.460942\pi\)
\(662\) 0 0
\(663\) 29.8936 + 11.2015i 1.16097 + 0.435030i
\(664\) 0 0
\(665\) 12.0594 + 8.55883i 0.467643 + 0.331897i
\(666\) 0 0
\(667\) −63.2014 + 36.4893i −2.44717 + 1.41287i
\(668\) 0 0
\(669\) −17.4137 6.52513i −0.673252 0.252276i
\(670\) 0 0
\(671\) 0.477895 0.827738i 0.0184489 0.0319545i
\(672\) 0 0
\(673\) −0.955003 1.65411i −0.0368127 0.0637614i 0.847032 0.531542i \(-0.178387\pi\)
−0.883845 + 0.467780i \(0.845054\pi\)
\(674\) 0 0
\(675\) −9.37348 17.3538i −0.360785 0.667948i
\(676\) 0 0
\(677\) 37.3961 + 21.5907i 1.43725 + 0.829796i 0.997658 0.0684014i \(-0.0217898\pi\)
0.439592 + 0.898198i \(0.355123\pi\)
\(678\) 0 0
\(679\) −16.1349 11.4513i −0.619199 0.439460i
\(680\) 0 0
\(681\) 2.02424 1.66619i 0.0775690 0.0638485i
\(682\) 0 0
\(683\) 21.2100 + 12.2456i 0.811579 + 0.468565i 0.847504 0.530789i \(-0.178104\pi\)
−0.0359249 + 0.999354i \(0.511438\pi\)
\(684\) 0 0
\(685\) 19.1299i 0.730916i
\(686\) 0 0
\(687\) 15.9060 + 19.3241i 0.606851 + 0.737259i
\(688\) 0 0
\(689\) −55.8231 + 32.2295i −2.12669 + 1.22784i
\(690\) 0 0
\(691\) −5.83616 + 10.1085i −0.222018 + 0.384547i −0.955421 0.295248i \(-0.904598\pi\)
0.733403 + 0.679795i \(0.237931\pi\)
\(692\) 0 0
\(693\) 0.187484 + 0.777780i 0.00712191 + 0.0295454i
\(694\) 0 0
\(695\) −15.3913 8.88616i −0.583824 0.337071i
\(696\) 0 0
\(697\) −8.43938 14.6174i −0.319664 0.553675i
\(698\) 0 0
\(699\) −30.4089 11.3946i −1.15017 0.430983i
\(700\) 0 0
\(701\) 32.0967 1.21227 0.606137 0.795360i \(-0.292718\pi\)
0.606137 + 0.795360i \(0.292718\pi\)
\(702\) 0 0
\(703\) 14.1309 24.4755i 0.532958 0.923110i
\(704\) 0 0
\(705\) 11.9066 1.98359i 0.448427 0.0747064i
\(706\) 0 0
\(707\) 4.07405 1.86832i 0.153220 0.0702654i
\(708\) 0 0
\(709\) 6.81367 11.8016i 0.255893 0.443220i −0.709245 0.704962i \(-0.750964\pi\)
0.965138 + 0.261743i \(0.0842972\pi\)
\(710\) 0 0
\(711\) −5.27069 + 6.04549i −0.197666 + 0.226723i
\(712\) 0 0
\(713\) −38.5601 + 22.2627i −1.44409 + 0.833744i
\(714\) 0 0
\(715\) 0.472431 + 0.272758i 0.0176679 + 0.0102006i
\(716\) 0 0
\(717\) −40.2661 + 6.70819i −1.50376 + 0.250522i
\(718\) 0 0
\(719\) −17.9410 31.0748i −0.669088 1.15889i −0.978160 0.207855i \(-0.933352\pi\)
0.309072 0.951039i \(-0.399982\pi\)
\(720\) 0 0
\(721\) 6.53853 + 14.2579i 0.243507 + 0.530991i
\(722\) 0 0
\(723\) 16.3844 + 19.9053i 0.609344 + 0.740288i
\(724\) 0 0
\(725\) −15.0426 26.0546i −0.558668 0.967642i
\(726\) 0 0
\(727\) 1.54920 + 2.68329i 0.0574565 + 0.0995176i 0.893323 0.449415i \(-0.148368\pi\)
−0.835866 + 0.548933i \(0.815034\pi\)
\(728\) 0 0
\(729\) −14.8037 + 22.5798i −0.548286 + 0.836291i
\(730\) 0 0
\(731\) 7.49247 0.277119
\(732\) 0 0
\(733\) 38.4588i 1.42051i −0.703946 0.710254i \(-0.748580\pi\)
0.703946 0.710254i \(-0.251420\pi\)
\(734\) 0 0
\(735\) −13.3016 0.294908i −0.490636 0.0108778i
\(736\) 0 0
\(737\) −0.633046 1.09647i −0.0233186 0.0403889i
\(738\) 0 0
\(739\) 28.0000 + 16.1658i 1.03000 + 0.594668i 0.916983 0.398926i \(-0.130617\pi\)
0.113012 + 0.993594i \(0.463950\pi\)
\(740\) 0 0
\(741\) 27.6504 + 33.5922i 1.01576 + 1.23404i
\(742\) 0 0
\(743\) 14.1763 + 8.18468i 0.520077 + 0.300267i 0.736966 0.675930i \(-0.236258\pi\)
−0.216889 + 0.976196i \(0.569591\pi\)
\(744\) 0 0
\(745\) 11.4577i 0.419778i
\(746\) 0 0
\(747\) 0.639016 0.218994i 0.0233804 0.00801257i
\(748\) 0 0
\(749\) −10.5945 7.51917i −0.387115 0.274745i
\(750\) 0 0
\(751\) 47.7607i 1.74281i 0.490562 + 0.871406i \(0.336791\pi\)
−0.490562 + 0.871406i \(0.663209\pi\)
\(752\) 0 0
\(753\) 9.19973 7.57247i 0.335257 0.275956i
\(754\) 0 0
\(755\) −9.78212 −0.356008
\(756\) 0 0
\(757\) −32.5248 −1.18213 −0.591066 0.806623i \(-0.701293\pi\)
−0.591066 + 0.806623i \(0.701293\pi\)
\(758\) 0 0
\(759\) −1.24115 + 1.02161i −0.0450507 + 0.0370821i
\(760\) 0 0
\(761\) 31.1794i 1.13025i −0.825004 0.565127i \(-0.808827\pi\)
0.825004 0.565127i \(-0.191173\pi\)
\(762\) 0 0
\(763\) 27.5309 + 2.58511i 0.996685 + 0.0935871i
\(764\) 0 0
\(765\) 9.27353 + 8.08502i 0.335285 + 0.292314i
\(766\) 0 0
\(767\) 14.2413i 0.514222i
\(768\) 0 0
\(769\) −24.4724 14.1292i −0.882498 0.509510i −0.0110165 0.999939i \(-0.503507\pi\)
−0.871481 + 0.490429i \(0.836840\pi\)
\(770\) 0 0
\(771\) −19.8094 24.0664i −0.713420 0.866728i
\(772\) 0 0
\(773\) 11.2626 + 6.50244i 0.405086 + 0.233876i 0.688676 0.725069i \(-0.258192\pi\)
−0.283590 + 0.958946i \(0.591526\pi\)
\(774\) 0 0
\(775\) −9.17772 15.8963i −0.329673 0.571011i
\(776\) 0 0
\(777\) 1.81541 + 25.3626i 0.0651276 + 0.909878i
\(778\) 0 0
\(779\) 23.0041i 0.824208i
\(780\) 0 0
\(781\) 1.47026 0.0526101
\(782\) 0 0
\(783\) −21.5952 + 35.0685i −0.771749 + 1.25325i
\(784\) 0 0
\(785\) 3.51387 + 6.08621i 0.125416 + 0.217226i
\(786\) 0 0
\(787\) 12.1694 + 21.0780i 0.433791 + 0.751348i 0.997196 0.0748328i \(-0.0238423\pi\)
−0.563405 + 0.826181i \(0.690509\pi\)
\(788\) 0 0
\(789\) 9.77154 + 11.8714i 0.347876 + 0.422632i
\(790\) 0 0
\(791\) 27.1653 + 2.55078i 0.965886 + 0.0906952i
\(792\) 0 0
\(793\) 23.3823 + 40.4993i 0.830329 + 1.43817i
\(794\) 0 0
\(795\) −24.5044 + 4.08235i −0.869081 + 0.144786i
\(796\) 0 0
\(797\) 38.8453 + 22.4273i 1.37597 + 0.794416i 0.991672 0.128793i \(-0.0411102\pi\)
0.384298 + 0.923209i \(0.374444\pi\)
\(798\) 0 0
\(799\) 20.5538 11.8667i 0.727141 0.419815i
\(800\) 0 0
\(801\) 5.51141 + 16.0821i 0.194736 + 0.568233i
\(802\) 0 0
\(803\) 0.344585 0.596839i 0.0121601 0.0210620i
\(804\) 0 0
\(805\) −11.1435 24.2995i −0.392758 0.856445i
\(806\) 0 0
\(807\) 19.6422 3.27232i 0.691438 0.115191i
\(808\) 0 0
\(809\) 16.1308 27.9394i 0.567130 0.982297i −0.429719 0.902963i \(-0.641387\pi\)
0.996848 0.0793342i \(-0.0252794\pi\)
\(810\) 0 0
\(811\) 34.7632 1.22070 0.610350 0.792132i \(-0.291029\pi\)
0.610350 + 0.792132i \(0.291029\pi\)
\(812\) 0 0
\(813\) −40.0884 15.0216i −1.40596 0.526831i
\(814\) 0 0
\(815\) −4.55788 7.89448i −0.159656 0.276532i
\(816\) 0 0
\(817\) 8.84343 + 5.10576i 0.309392 + 0.178628i
\(818\) 0 0
\(819\) −37.5432 11.0833i −1.31186 0.387283i
\(820\) 0 0
\(821\) 20.0987 34.8119i 0.701448 1.21494i −0.266510 0.963832i \(-0.585870\pi\)
0.967958 0.251112i \(-0.0807963\pi\)
\(822\) 0 0
\(823\) 2.85246 1.64687i 0.0994305 0.0574062i −0.449460 0.893300i \(-0.648384\pi\)
0.548891 + 0.835894i \(0.315050\pi\)
\(824\) 0 0
\(825\) −0.421155 0.511658i −0.0146627 0.0178136i
\(826\) 0 0
\(827\) 21.5704i 0.750075i 0.927010 + 0.375038i \(0.122370\pi\)
−0.927010 + 0.375038i \(0.877630\pi\)
\(828\) 0 0
\(829\) −6.97609 4.02765i −0.242290 0.139886i 0.373939 0.927453i \(-0.378007\pi\)
−0.616229 + 0.787567i \(0.711340\pi\)
\(830\) 0 0
\(831\) 1.38320 1.13853i 0.0479826 0.0394953i
\(832\) 0 0
\(833\) −24.6942 + 8.63401i −0.855605 + 0.299151i
\(834\) 0 0
\(835\) −15.0687 8.69990i −0.521473 0.301072i
\(836\) 0 0
\(837\) −13.1756 + 21.3958i −0.455414 + 0.739548i
\(838\) 0 0
\(839\) 23.8904 + 41.3793i 0.824787 + 1.42857i 0.902082 + 0.431564i \(0.142038\pi\)
−0.0772954 + 0.997008i \(0.524628\pi\)
\(840\) 0 0
\(841\) −16.9103 + 29.2894i −0.583113 + 1.00998i
\(842\) 0 0
\(843\) −4.92796 1.84657i −0.169728 0.0635991i
\(844\) 0 0
\(845\) −10.7605 + 6.21256i −0.370172 + 0.213719i
\(846\) 0 0
\(847\) −12.1204 26.4297i −0.416463 0.908137i
\(848\) 0 0
\(849\) 22.7844 + 8.53760i 0.781959 + 0.293010i
\(850\) 0 0
\(851\) −44.2455 + 25.5452i −1.51672 + 0.875677i
\(852\) 0 0
\(853\) −23.5845 + 13.6165i −0.807518 + 0.466221i −0.846093 0.533035i \(-0.821051\pi\)
0.0385754 + 0.999256i \(0.487718\pi\)
\(854\) 0 0
\(855\) 5.43608 + 15.8623i 0.185910 + 0.542479i
\(856\) 0 0
\(857\) 40.4731i 1.38253i −0.722599 0.691267i \(-0.757053\pi\)
0.722599 0.691267i \(-0.242947\pi\)
\(858\) 0 0
\(859\) −53.7041 −1.83236 −0.916180 0.400766i \(-0.868744\pi\)
−0.916180 + 0.400766i \(0.868744\pi\)
\(860\) 0 0
\(861\) 11.6018 + 17.1396i 0.395389 + 0.584116i
\(862\) 0 0
\(863\) −16.5769 + 9.57068i −0.564285 + 0.325790i −0.754863 0.655882i \(-0.772297\pi\)
0.190579 + 0.981672i \(0.438964\pi\)
\(864\) 0 0
\(865\) 2.02873 3.51386i 0.0689788 0.119475i
\(866\) 0 0
\(867\) −4.92031 1.84370i −0.167103 0.0626154i
\(868\) 0 0
\(869\) −0.134741 + 0.233378i −0.00457078 + 0.00791682i
\(870\) 0 0
\(871\) 61.9470 2.09899
\(872\) 0 0
\(873\) −7.27320 21.2229i −0.246161 0.718288i
\(874\) 0 0
\(875\) 23.2128 10.6452i 0.784736 0.359872i
\(876\) 0 0
\(877\) −12.0902 −0.408258 −0.204129 0.978944i \(-0.565436\pi\)
−0.204129 + 0.978944i \(0.565436\pi\)
\(878\) 0 0
\(879\) −1.47401 + 0.245564i −0.0497170 + 0.00828268i
\(880\) 0 0
\(881\) 41.0338i 1.38246i −0.722633 0.691232i \(-0.757068\pi\)
0.722633 0.691232i \(-0.242932\pi\)
\(882\) 0 0
\(883\) 39.1631i 1.31794i 0.752168 + 0.658971i \(0.229008\pi\)
−0.752168 + 0.658971i \(0.770992\pi\)
\(884\) 0 0
\(885\) −1.92585 + 5.13953i −0.0647366 + 0.172764i
\(886\) 0 0
\(887\) 33.1869 1.11431 0.557154 0.830409i \(-0.311893\pi\)
0.557154 + 0.830409i \(0.311893\pi\)
\(888\) 0 0
\(889\) 21.3342 9.78366i 0.715525 0.328133i
\(890\) 0 0
\(891\) −0.342276 + 0.840133i −0.0114667 + 0.0281455i
\(892\) 0 0
\(893\) 32.3464 1.08243
\(894\) 0 0
\(895\) −4.56582 + 7.90824i −0.152619 + 0.264343i
\(896\) 0 0
\(897\) −12.9251 77.5831i −0.431556 2.59042i
\(898\) 0 0
\(899\) −19.1639 + 33.1928i −0.639151 + 1.10704i
\(900\) 0 0
\(901\) −42.3009 + 24.4224i −1.40925 + 0.813629i
\(902\) 0 0
\(903\) −9.16396 + 0.655942i −0.304957 + 0.0218284i
\(904\) 0 0
\(905\) 27.7020 0.920847
\(906\) 0 0
\(907\) 17.5768i 0.583628i −0.956475 0.291814i \(-0.905741\pi\)
0.956475 0.291814i \(-0.0942589\pi\)
\(908\) 0 0
\(909\) 4.98734 + 0.976957i 0.165420 + 0.0324036i
\(910\) 0 0
\(911\) 28.9644 16.7226i 0.959635 0.554045i 0.0635741 0.997977i \(-0.479750\pi\)
0.896061 + 0.443932i \(0.146417\pi\)
\(912\) 0 0
\(913\) 0.0196556 0.0113482i 0.000650505 0.000375569i
\(914\) 0 0
\(915\) 2.96172 + 17.7778i 0.0979114 + 0.587716i
\(916\) 0 0
\(917\) 6.50571 + 14.1863i 0.214838 + 0.468473i
\(918\) 0 0
\(919\) −17.9607 + 10.3696i −0.592470 + 0.342062i −0.766073 0.642753i \(-0.777792\pi\)
0.173604 + 0.984816i \(0.444459\pi\)
\(920\) 0 0
\(921\) −1.06957 + 0.880381i −0.0352435 + 0.0290095i
\(922\) 0 0
\(923\) −35.9683 + 62.2989i −1.18391 + 2.05059i
\(924\) 0 0
\(925\) −10.5309 18.2401i −0.346254 0.599730i
\(926\) 0 0
\(927\) −3.41904 + 17.4541i −0.112296 + 0.573268i
\(928\) 0 0
\(929\) −2.35262 1.35829i −0.0771870 0.0445639i 0.460910 0.887447i \(-0.347523\pi\)
−0.538097 + 0.842883i \(0.680857\pi\)
\(930\) 0 0
\(931\) −35.0305 6.63713i −1.14808 0.217523i
\(932\) 0 0
\(933\) −42.6569 15.9841i −1.39653 0.523295i
\(934\) 0 0
\(935\) 0.357993 + 0.206687i 0.0117076 + 0.00675940i
\(936\) 0 0
\(937\) 20.7924i 0.679258i −0.940559 0.339629i \(-0.889698\pi\)
0.940559 0.339629i \(-0.110302\pi\)
\(938\) 0 0
\(939\) −13.3434 + 2.22297i −0.435446 + 0.0725438i
\(940\) 0 0
\(941\) 44.3702 25.6172i 1.44643 0.835096i 0.448162 0.893953i \(-0.352079\pi\)
0.998266 + 0.0588569i \(0.0187456\pi\)
\(942\) 0 0
\(943\) −20.7929 + 36.0143i −0.677108 + 1.17279i
\(944\) 0 0
\(945\) −12.0502 9.07683i −0.391992 0.295269i
\(946\) 0 0
\(947\) −37.0086 21.3669i −1.20262 0.694332i −0.241481 0.970406i \(-0.577633\pi\)
−0.961136 + 0.276074i \(0.910967\pi\)
\(948\) 0 0
\(949\) 16.8598 + 29.2020i 0.547291 + 0.947936i
\(950\) 0 0
\(951\) 3.79604 + 22.7858i 0.123095 + 0.738880i
\(952\) 0 0
\(953\) 5.14510 0.166666 0.0833331 0.996522i \(-0.473443\pi\)
0.0833331 + 0.996522i \(0.473443\pi\)
\(954\) 0 0
\(955\) 2.31634 4.01203i 0.0749551 0.129826i
\(956\) 0 0
\(957\) −0.485545 + 1.29578i −0.0156955 + 0.0418867i
\(958\) 0 0
\(959\) 19.2260 + 41.9241i 0.620840 + 1.35380i
\(960\) 0 0
\(961\) 3.80783 6.59536i 0.122833 0.212753i
\(962\) 0 0
\(963\) −4.77575 13.9355i −0.153896 0.449064i
\(964\) 0 0
\(965\) −22.1669 + 12.7980i −0.713576 + 0.411983i
\(966\) 0 0
\(967\) −8.18515 4.72570i −0.263217 0.151968i 0.362584 0.931951i \(-0.381894\pi\)
−0.625801 + 0.779983i \(0.715228\pi\)
\(968\) 0 0
\(969\) 20.9526 + 25.4551i 0.673093 + 0.817736i
\(970\) 0 0
\(971\) −7.24445 12.5478i −0.232485 0.402677i 0.726053 0.687638i \(-0.241352\pi\)
−0.958539 + 0.284962i \(0.908019\pi\)
\(972\) 0 0
\(973\) 42.6615 + 4.00584i 1.36766 + 0.128421i
\(974\) 0 0
\(975\) 31.9834 5.32832i 1.02429 0.170643i
\(976\) 0 0
\(977\) −9.99130 17.3054i −0.319650 0.553650i 0.660765 0.750593i \(-0.270232\pi\)
−0.980415 + 0.196943i \(0.936899\pi\)
\(978\) 0 0
\(979\) 0.285598 + 0.494671i 0.00912776 + 0.0158097i
\(980\) 0 0
\(981\) 23.6336 + 20.6047i 0.754562 + 0.657857i
\(982\) 0 0
\(983\) 6.64389 0.211907 0.105954 0.994371i \(-0.466211\pi\)
0.105954 + 0.994371i \(0.466211\pi\)
\(984\) 0 0
\(985\) 16.3889i 0.522194i
\(986\) 0 0
\(987\) −24.1002 + 16.3135i −0.767119 + 0.519264i
\(988\) 0 0
\(989\) −9.22993 15.9867i −0.293495 0.508348i
\(990\) 0 0
\(991\) −0.701316 0.404905i −0.0222780 0.0128622i 0.488820 0.872385i \(-0.337428\pi\)
−0.511098 + 0.859523i \(0.670761\pi\)
\(992\) 0 0
\(993\) 24.8686 4.14302i 0.789181 0.131475i
\(994\) 0 0
\(995\) −11.5098 6.64519i −0.364885 0.210667i
\(996\) 0 0
\(997\) 15.2446i 0.482802i −0.970425 0.241401i \(-0.922393\pi\)
0.970425 0.241401i \(-0.0776069\pi\)
\(998\) 0 0
\(999\) −15.1182 + 24.5505i −0.478319 + 0.776743i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.bf.i.31.14 yes 32
3.2 odd 2 3024.2.bf.i.1711.6 32
4.3 odd 2 inner 1008.2.bf.i.31.3 32
7.5 odd 6 1008.2.cz.i.607.8 yes 32
9.2 odd 6 3024.2.cz.i.2719.12 32
9.7 even 3 1008.2.cz.i.367.9 yes 32
12.11 even 2 3024.2.bf.i.1711.5 32
21.5 even 6 3024.2.cz.i.1279.11 32
28.19 even 6 1008.2.cz.i.607.9 yes 32
36.7 odd 6 1008.2.cz.i.367.8 yes 32
36.11 even 6 3024.2.cz.i.2719.11 32
63.47 even 6 3024.2.bf.i.2287.12 32
63.61 odd 6 inner 1008.2.bf.i.943.3 yes 32
84.47 odd 6 3024.2.cz.i.1279.12 32
252.47 odd 6 3024.2.bf.i.2287.11 32
252.187 even 6 inner 1008.2.bf.i.943.14 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.i.31.3 32 4.3 odd 2 inner
1008.2.bf.i.31.14 yes 32 1.1 even 1 trivial
1008.2.bf.i.943.3 yes 32 63.61 odd 6 inner
1008.2.bf.i.943.14 yes 32 252.187 even 6 inner
1008.2.cz.i.367.8 yes 32 36.7 odd 6
1008.2.cz.i.367.9 yes 32 9.7 even 3
1008.2.cz.i.607.8 yes 32 7.5 odd 6
1008.2.cz.i.607.9 yes 32 28.19 even 6
3024.2.bf.i.1711.5 32 12.11 even 2
3024.2.bf.i.1711.6 32 3.2 odd 2
3024.2.bf.i.2287.11 32 252.47 odd 6
3024.2.bf.i.2287.12 32 63.47 even 6
3024.2.cz.i.1279.11 32 21.5 even 6
3024.2.cz.i.1279.12 32 84.47 odd 6
3024.2.cz.i.2719.11 32 36.11 even 6
3024.2.cz.i.2719.12 32 9.2 odd 6