Properties

Label 3024.2.bf.i.1711.5
Level $3024$
Weight $2$
Character 3024.1711
Analytic conductor $24.147$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(1711,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.1711"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.bf (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1711.5
Character \(\chi\) \(=\) 3024.1711
Dual form 3024.2.bf.i.2287.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.09736i q^{5} +(1.10288 + 2.40492i) q^{7} -0.100798i q^{11} +(4.27107 + 2.46590i) q^{13} +(-3.23648 - 1.86858i) q^{17} +(-2.54669 - 4.41100i) q^{19} -9.20757i q^{23} +3.79579 q^{25} +(3.96297 + 6.86407i) q^{29} +(2.41787 + 4.18787i) q^{31} +(2.63908 - 1.21026i) q^{35} +(-2.77437 - 4.80534i) q^{37} +(3.91138 + 2.25823i) q^{41} +(-1.73626 + 1.00243i) q^{43} +(3.17534 - 5.49984i) q^{47} +(-4.56733 + 5.30467i) q^{49} +(6.53502 - 11.3190i) q^{53} -0.110612 q^{55} +(1.44382 + 2.50077i) q^{59} +(8.21186 + 4.74112i) q^{61} +(2.70599 - 4.68692i) q^{65} +(-10.8779 + 6.28036i) q^{67} +14.5863i q^{71} +(5.92115 + 3.41858i) q^{73} +(0.242411 - 0.111167i) q^{77} +(2.31531 + 1.33675i) q^{79} +(0.112583 + 0.195000i) q^{83} +(-2.05051 + 3.55159i) q^{85} +(4.90756 - 2.83338i) q^{89} +(-1.21985 + 12.9912i) q^{91} +(-4.84048 + 2.79465i) q^{95} +(6.47632 - 3.73911i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 6 q^{13} + 18 q^{17} - 32 q^{25} + 12 q^{29} + 2 q^{37} - 36 q^{41} + 2 q^{49} + 12 q^{53} + 42 q^{61} - 18 q^{65} + 66 q^{77} - 12 q^{85} + 18 q^{89} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.09736i 0.490756i −0.969427 0.245378i \(-0.921088\pi\)
0.969427 0.245378i \(-0.0789121\pi\)
\(6\) 0 0
\(7\) 1.10288 + 2.40492i 0.416848 + 0.908976i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.100798i 0.0303917i −0.999885 0.0151958i \(-0.995163\pi\)
0.999885 0.0151958i \(-0.00483717\pi\)
\(12\) 0 0
\(13\) 4.27107 + 2.46590i 1.18458 + 0.683918i 0.957070 0.289857i \(-0.0936078\pi\)
0.227511 + 0.973775i \(0.426941\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.23648 1.86858i −0.784961 0.453197i 0.0532247 0.998583i \(-0.483050\pi\)
−0.838185 + 0.545385i \(0.816383\pi\)
\(18\) 0 0
\(19\) −2.54669 4.41100i −0.584252 1.01195i −0.994968 0.100191i \(-0.968055\pi\)
0.410716 0.911763i \(-0.365279\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 9.20757i 1.91991i −0.280151 0.959956i \(-0.590385\pi\)
0.280151 0.959956i \(-0.409615\pi\)
\(24\) 0 0
\(25\) 3.79579 0.759158
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.96297 + 6.86407i 0.735905 + 1.27463i 0.954325 + 0.298770i \(0.0965764\pi\)
−0.218420 + 0.975855i \(0.570090\pi\)
\(30\) 0 0
\(31\) 2.41787 + 4.18787i 0.434262 + 0.752164i 0.997235 0.0743115i \(-0.0236759\pi\)
−0.562973 + 0.826475i \(0.690343\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.63908 1.21026i 0.446086 0.204571i
\(36\) 0 0
\(37\) −2.77437 4.80534i −0.456103 0.789993i 0.542648 0.839960i \(-0.317422\pi\)
−0.998751 + 0.0499669i \(0.984088\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.91138 + 2.25823i 0.610854 + 0.352677i 0.773300 0.634041i \(-0.218605\pi\)
−0.162446 + 0.986718i \(0.551938\pi\)
\(42\) 0 0
\(43\) −1.73626 + 1.00243i −0.264777 + 0.152869i −0.626512 0.779412i \(-0.715518\pi\)
0.361735 + 0.932281i \(0.382185\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.17534 5.49984i 0.463170 0.802235i −0.535947 0.844252i \(-0.680045\pi\)
0.999117 + 0.0420174i \(0.0133785\pi\)
\(48\) 0 0
\(49\) −4.56733 + 5.30467i −0.652475 + 0.757810i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.53502 11.3190i 0.897655 1.55478i 0.0671703 0.997742i \(-0.478603\pi\)
0.830484 0.557042i \(-0.188064\pi\)
\(54\) 0 0
\(55\) −0.110612 −0.0149149
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.44382 + 2.50077i 0.187969 + 0.325572i 0.944573 0.328301i \(-0.106476\pi\)
−0.756604 + 0.653874i \(0.773143\pi\)
\(60\) 0 0
\(61\) 8.21186 + 4.74112i 1.05142 + 0.607038i 0.923047 0.384687i \(-0.125691\pi\)
0.128374 + 0.991726i \(0.459024\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.70599 4.68692i 0.335637 0.581341i
\(66\) 0 0
\(67\) −10.8779 + 6.28036i −1.32895 + 0.767268i −0.985137 0.171771i \(-0.945051\pi\)
−0.343810 + 0.939039i \(0.611718\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.5863i 1.73107i 0.500848 + 0.865535i \(0.333022\pi\)
−0.500848 + 0.865535i \(0.666978\pi\)
\(72\) 0 0
\(73\) 5.92115 + 3.41858i 0.693018 + 0.400114i 0.804742 0.593625i \(-0.202304\pi\)
−0.111724 + 0.993739i \(0.535637\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.242411 0.111167i 0.0276253 0.0126687i
\(78\) 0 0
\(79\) 2.31531 + 1.33675i 0.260493 + 0.150396i 0.624559 0.780977i \(-0.285279\pi\)
−0.364066 + 0.931373i \(0.618612\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.112583 + 0.195000i 0.0123576 + 0.0214040i 0.872138 0.489260i \(-0.162733\pi\)
−0.859780 + 0.510664i \(0.829400\pi\)
\(84\) 0 0
\(85\) −2.05051 + 3.55159i −0.222409 + 0.385224i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.90756 2.83338i 0.520200 0.300338i −0.216817 0.976212i \(-0.569567\pi\)
0.737016 + 0.675875i \(0.236234\pi\)
\(90\) 0 0
\(91\) −1.21985 + 12.9912i −0.127875 + 1.36185i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.84048 + 2.79465i −0.496623 + 0.286725i
\(96\) 0 0
\(97\) 6.47632 3.73911i 0.657571 0.379649i −0.133780 0.991011i \(-0.542712\pi\)
0.791351 + 0.611362i \(0.209378\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.69404i 0.168564i −0.996442 0.0842818i \(-0.973140\pi\)
0.996442 0.0842818i \(-0.0268596\pi\)
\(102\) 0 0
\(103\) 5.92861 0.584164 0.292082 0.956393i \(-0.405652\pi\)
0.292082 + 0.956393i \(0.405652\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.25250 2.45518i 0.411104 0.237351i −0.280160 0.959953i \(-0.590387\pi\)
0.691264 + 0.722602i \(0.257054\pi\)
\(108\) 0 0
\(109\) −5.22573 + 9.05124i −0.500535 + 0.866951i 0.499465 + 0.866334i \(0.333530\pi\)
−1.00000 0.000617375i \(0.999803\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.15634 8.93104i 0.485068 0.840162i −0.514785 0.857319i \(-0.672128\pi\)
0.999853 + 0.0171575i \(0.00546166\pi\)
\(114\) 0 0
\(115\) −10.1041 −0.942209
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.924363 9.84430i 0.0847362 0.902425i
\(120\) 0 0
\(121\) 10.9898 0.999076
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.65219i 0.863318i
\(126\) 0 0
\(127\) 8.87104i 0.787177i −0.919287 0.393589i \(-0.871233\pi\)
0.919287 0.393589i \(-0.128767\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.89886 −0.515386 −0.257693 0.966227i \(-0.582962\pi\)
−0.257693 + 0.966227i \(0.582962\pi\)
\(132\) 0 0
\(133\) 7.79945 10.9894i 0.676298 0.952902i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.4326 1.48937 0.744683 0.667418i \(-0.232600\pi\)
0.744683 + 0.667418i \(0.232600\pi\)
\(138\) 0 0
\(139\) 8.09773 14.0257i 0.686840 1.18964i −0.286014 0.958225i \(-0.592331\pi\)
0.972855 0.231417i \(-0.0743362\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.248558 0.430514i 0.0207854 0.0360014i
\(144\) 0 0
\(145\) 7.53238 4.34882i 0.625530 0.361150i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.4411 −0.855370 −0.427685 0.903928i \(-0.640671\pi\)
−0.427685 + 0.903928i \(0.640671\pi\)
\(150\) 0 0
\(151\) 8.91419i 0.725427i −0.931901 0.362713i \(-0.881850\pi\)
0.931901 0.362713i \(-0.118150\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.59562 2.65328i 0.369129 0.213117i
\(156\) 0 0
\(157\) 5.54621 3.20210i 0.442635 0.255556i −0.262079 0.965046i \(-0.584408\pi\)
0.704715 + 0.709491i \(0.251075\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.1435 10.1548i 1.74515 0.800311i
\(162\) 0 0
\(163\) 7.19404 4.15348i 0.563481 0.325326i −0.191061 0.981578i \(-0.561193\pi\)
0.754541 + 0.656253i \(0.227859\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.92799 + 13.7317i −0.613487 + 1.06259i 0.377161 + 0.926148i \(0.376900\pi\)
−0.990648 + 0.136442i \(0.956433\pi\)
\(168\) 0 0
\(169\) 5.66135 + 9.80575i 0.435488 + 0.754288i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.20209 + 1.84873i 0.243450 + 0.140556i 0.616762 0.787150i \(-0.288444\pi\)
−0.373311 + 0.927706i \(0.621778\pi\)
\(174\) 0 0
\(175\) 4.18629 + 9.12859i 0.316454 + 0.690057i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.20657 + 4.16072i 0.538645 + 0.310987i 0.744529 0.667590i \(-0.232674\pi\)
−0.205885 + 0.978576i \(0.566007\pi\)
\(180\) 0 0
\(181\) 25.2442i 1.87638i −0.346115 0.938192i \(-0.612499\pi\)
0.346115 0.938192i \(-0.387501\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.27321 + 3.04449i −0.387694 + 0.223835i
\(186\) 0 0
\(187\) −0.188349 + 0.326230i −0.0137734 + 0.0238563i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.65606 2.11082i −0.264543 0.152734i 0.361862 0.932232i \(-0.382141\pi\)
−0.626405 + 0.779498i \(0.715474\pi\)
\(192\) 0 0
\(193\) 11.6625 + 20.2001i 0.839487 + 1.45403i 0.890324 + 0.455327i \(0.150478\pi\)
−0.0508376 + 0.998707i \(0.516189\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.9348 −1.06406 −0.532030 0.846725i \(-0.678571\pi\)
−0.532030 + 0.846725i \(0.678571\pi\)
\(198\) 0 0
\(199\) 6.05559 10.4886i 0.429269 0.743516i −0.567539 0.823346i \(-0.692105\pi\)
0.996808 + 0.0798303i \(0.0254378\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.1369 + 17.1009i −0.851843 + 1.20025i
\(204\) 0 0
\(205\) 2.47811 4.29220i 0.173078 0.299781i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.444619 + 0.256701i −0.0307550 + 0.0177564i
\(210\) 0 0
\(211\) 0.912360 + 0.526751i 0.0628095 + 0.0362631i 0.531076 0.847324i \(-0.321788\pi\)
−0.468266 + 0.883587i \(0.655121\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.10003 + 1.90531i 0.0750213 + 0.129941i
\(216\) 0 0
\(217\) −7.40490 + 10.4335i −0.502678 + 0.708272i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −9.21547 15.9617i −0.619900 1.07370i
\(222\) 0 0
\(223\) 5.36823 + 9.29804i 0.359483 + 0.622643i 0.987875 0.155254i \(-0.0496197\pi\)
−0.628392 + 0.777897i \(0.716286\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.51369 0.100467 0.0502334 0.998738i \(-0.484003\pi\)
0.0502334 + 0.998738i \(0.484003\pi\)
\(228\) 0 0
\(229\) 14.4501i 0.954893i 0.878661 + 0.477446i \(0.158438\pi\)
−0.878661 + 0.477446i \(0.841562\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.37435 + 16.2368i 0.614134 + 1.06371i 0.990536 + 0.137254i \(0.0438278\pi\)
−0.376402 + 0.926456i \(0.622839\pi\)
\(234\) 0 0
\(235\) −6.03533 3.48450i −0.393702 0.227304i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.4105 11.7840i −1.32025 0.762244i −0.336478 0.941691i \(-0.609236\pi\)
−0.983768 + 0.179447i \(0.942569\pi\)
\(240\) 0 0
\(241\) 14.8848i 0.958815i 0.877592 + 0.479407i \(0.159148\pi\)
−0.877592 + 0.479407i \(0.840852\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.82116 + 5.01202i 0.371900 + 0.320206i
\(246\) 0 0
\(247\) 25.1196i 1.59832i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.87937 0.434222 0.217111 0.976147i \(-0.430337\pi\)
0.217111 + 0.976147i \(0.430337\pi\)
\(252\) 0 0
\(253\) −0.928103 −0.0583493
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.9963i 1.12258i 0.827619 + 0.561290i \(0.189695\pi\)
−0.827619 + 0.561290i \(0.810305\pi\)
\(258\) 0 0
\(259\) 8.49670 11.9718i 0.527960 0.743894i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.87717i 0.547390i 0.961817 + 0.273695i \(0.0882458\pi\)
−0.961817 + 0.273695i \(0.911754\pi\)
\(264\) 0 0
\(265\) −12.4211 7.17130i −0.763020 0.440530i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.95646 5.74836i −0.607056 0.350484i 0.164756 0.986334i \(-0.447316\pi\)
−0.771812 + 0.635850i \(0.780650\pi\)
\(270\) 0 0
\(271\) 12.3583 + 21.4052i 0.750713 + 1.30027i 0.947478 + 0.319822i \(0.103623\pi\)
−0.196765 + 0.980451i \(0.563044\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.382607i 0.0230721i
\(276\) 0 0
\(277\) 1.03433 0.0621466 0.0310733 0.999517i \(-0.490107\pi\)
0.0310733 + 0.999517i \(0.490107\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.51917 + 2.63128i 0.0906262 + 0.156969i 0.907775 0.419458i \(-0.137780\pi\)
−0.817149 + 0.576427i \(0.804446\pi\)
\(282\) 0 0
\(283\) −7.02389 12.1657i −0.417527 0.723177i 0.578163 0.815921i \(-0.303770\pi\)
−0.995690 + 0.0927436i \(0.970436\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.11712 + 11.8971i −0.0659415 + 0.702265i
\(288\) 0 0
\(289\) −1.51681 2.62720i −0.0892244 0.154541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.747160 + 0.431373i 0.0436496 + 0.0252011i 0.521666 0.853150i \(-0.325311\pi\)
−0.478016 + 0.878351i \(0.658644\pi\)
\(294\) 0 0
\(295\) 2.74425 1.58440i 0.159777 0.0922470i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.7050 39.3262i 1.31306 2.27429i
\(300\) 0 0
\(301\) −4.32564 3.07001i −0.249326 0.176953i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.20274 9.01141i 0.297908 0.515992i
\(306\) 0 0
\(307\) 0.799801 0.0456471 0.0228235 0.999740i \(-0.492734\pi\)
0.0228235 + 0.999740i \(0.492734\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.1501 22.7767i −0.745674 1.29155i −0.949879 0.312618i \(-0.898794\pi\)
0.204205 0.978928i \(-0.434539\pi\)
\(312\) 0 0
\(313\) −6.76366 3.90500i −0.382305 0.220724i 0.296516 0.955028i \(-0.404175\pi\)
−0.678821 + 0.734304i \(0.737509\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.66835 11.5499i 0.374532 0.648708i −0.615725 0.787961i \(-0.711137\pi\)
0.990257 + 0.139253i \(0.0444701\pi\)
\(318\) 0 0
\(319\) 0.691883 0.399459i 0.0387380 0.0223654i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.0348i 1.05913i
\(324\) 0 0
\(325\) 16.2121 + 9.36005i 0.899285 + 0.519202i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.7287 + 1.57080i 0.922284 + 0.0866009i
\(330\) 0 0
\(331\) −12.6057 7.27788i −0.692870 0.400029i 0.111816 0.993729i \(-0.464333\pi\)
−0.804686 + 0.593700i \(0.797666\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.89184 + 11.9370i 0.376542 + 0.652189i
\(336\) 0 0
\(337\) 7.67592 13.2951i 0.418134 0.724229i −0.577618 0.816307i \(-0.696018\pi\)
0.995752 + 0.0920783i \(0.0293510\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.422128 0.243716i 0.0228595 0.0131979i
\(342\) 0 0
\(343\) −17.7945 5.13369i −0.960814 0.277193i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.1653 + 11.6424i −1.08253 + 0.624999i −0.931578 0.363542i \(-0.881567\pi\)
−0.150952 + 0.988541i \(0.548234\pi\)
\(348\) 0 0
\(349\) 12.0364 6.94922i 0.644294 0.371983i −0.141973 0.989871i \(-0.545345\pi\)
0.786267 + 0.617887i \(0.212011\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.6932i 1.42074i −0.703830 0.710368i \(-0.748529\pi\)
0.703830 0.710368i \(-0.251471\pi\)
\(354\) 0 0
\(355\) 16.0064 0.849534
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.9838 + 16.1564i −1.47693 + 0.852705i −0.999661 0.0260534i \(-0.991706\pi\)
−0.477267 + 0.878758i \(0.658373\pi\)
\(360\) 0 0
\(361\) −3.47131 + 6.01248i −0.182700 + 0.316446i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.75143 6.49766i 0.196359 0.340103i
\(366\) 0 0
\(367\) 7.83398 0.408931 0.204465 0.978874i \(-0.434454\pi\)
0.204465 + 0.978874i \(0.434454\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 34.4287 + 3.23279i 1.78745 + 0.167838i
\(372\) 0 0
\(373\) −19.2030 −0.994293 −0.497146 0.867667i \(-0.665619\pi\)
−0.497146 + 0.867667i \(0.665619\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 39.0892i 2.01320i
\(378\) 0 0
\(379\) 17.4093i 0.894254i 0.894470 + 0.447127i \(0.147553\pi\)
−0.894470 + 0.447127i \(0.852447\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.3013 0.935151 0.467575 0.883953i \(-0.345128\pi\)
0.467575 + 0.883953i \(0.345128\pi\)
\(384\) 0 0
\(385\) −0.121991 0.266013i −0.00621725 0.0135573i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.17302 0.110176 0.0550882 0.998481i \(-0.482456\pi\)
0.0550882 + 0.998481i \(0.482456\pi\)
\(390\) 0 0
\(391\) −17.2051 + 29.8001i −0.870099 + 1.50706i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.46690 2.54074i 0.0738076 0.127839i
\(396\) 0 0
\(397\) 5.63167 3.25144i 0.282645 0.163185i −0.351975 0.936009i \(-0.614490\pi\)
0.634620 + 0.772824i \(0.281156\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.97927 0.248653 0.124326 0.992241i \(-0.460323\pi\)
0.124326 + 0.992241i \(0.460323\pi\)
\(402\) 0 0
\(403\) 23.8489i 1.18800i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.484368 + 0.279650i −0.0240092 + 0.0138617i
\(408\) 0 0
\(409\) −0.175666 + 0.101421i −0.00868614 + 0.00501494i −0.504337 0.863507i \(-0.668263\pi\)
0.495651 + 0.868522i \(0.334930\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.42180 + 6.23031i −0.217583 + 0.306574i
\(414\) 0 0
\(415\) 0.213986 0.123545i 0.0105042 0.00606458i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5.38038 9.31910i 0.262849 0.455268i −0.704149 0.710052i \(-0.748671\pi\)
0.966998 + 0.254785i \(0.0820046\pi\)
\(420\) 0 0
\(421\) 0.428103 + 0.741496i 0.0208645 + 0.0361383i 0.876269 0.481822i \(-0.160025\pi\)
−0.855405 + 0.517960i \(0.826691\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.2850 7.09274i −0.595909 0.344048i
\(426\) 0 0
\(427\) −2.34537 + 24.9778i −0.113501 + 1.20876i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.19956 + 5.31137i 0.443127 + 0.255840i 0.704923 0.709284i \(-0.250981\pi\)
−0.261796 + 0.965123i \(0.584315\pi\)
\(432\) 0 0
\(433\) 27.8825i 1.33995i 0.742384 + 0.669974i \(0.233695\pi\)
−0.742384 + 0.669974i \(0.766305\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −40.6146 + 23.4489i −1.94286 + 1.12171i
\(438\) 0 0
\(439\) 1.71469 2.96993i 0.0818377 0.141747i −0.822202 0.569196i \(-0.807254\pi\)
0.904039 + 0.427449i \(0.140588\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −35.8001 20.6692i −1.70092 0.982025i −0.944835 0.327547i \(-0.893778\pi\)
−0.756082 0.654477i \(-0.772889\pi\)
\(444\) 0 0
\(445\) −3.10925 5.38538i −0.147393 0.255291i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7.99114 −0.377125 −0.188563 0.982061i \(-0.560383\pi\)
−0.188563 + 0.982061i \(0.560383\pi\)
\(450\) 0 0
\(451\) 0.227625 0.394258i 0.0107184 0.0185649i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.2561 + 1.33862i 0.668335 + 0.0627555i
\(456\) 0 0
\(457\) −9.99811 + 17.3172i −0.467692 + 0.810066i −0.999318 0.0369130i \(-0.988248\pi\)
0.531627 + 0.846979i \(0.321581\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −21.1665 + 12.2205i −0.985824 + 0.569166i −0.904023 0.427483i \(-0.859400\pi\)
−0.0818005 + 0.996649i \(0.526067\pi\)
\(462\) 0 0
\(463\) −19.5574 11.2915i −0.908909 0.524759i −0.0288289 0.999584i \(-0.509178\pi\)
−0.880080 + 0.474826i \(0.842511\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.8560 + 34.3915i 0.918824 + 1.59145i 0.801204 + 0.598391i \(0.204193\pi\)
0.117620 + 0.993059i \(0.462474\pi\)
\(468\) 0 0
\(469\) −27.1008 19.2341i −1.25140 0.888147i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.101043 + 0.175011i 0.00464594 + 0.00804700i
\(474\) 0 0
\(475\) −9.66672 16.7433i −0.443540 0.768233i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.44014 0.111493 0.0557465 0.998445i \(-0.482246\pi\)
0.0557465 + 0.998445i \(0.482246\pi\)
\(480\) 0 0
\(481\) 27.3653i 1.24775i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.10316 7.10689i −0.186315 0.322707i
\(486\) 0 0
\(487\) −19.1445 11.0531i −0.867519 0.500862i −0.000996023 1.00000i \(-0.500317\pi\)
−0.866523 + 0.499137i \(0.833650\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −24.5750 14.1884i −1.10906 0.640314i −0.170472 0.985363i \(-0.554529\pi\)
−0.938585 + 0.345049i \(0.887862\pi\)
\(492\) 0 0
\(493\) 29.6205i 1.33404i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −35.0789 + 16.0868i −1.57350 + 0.721593i
\(498\) 0 0
\(499\) 9.08596i 0.406743i −0.979102 0.203372i \(-0.934810\pi\)
0.979102 0.203372i \(-0.0651900\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 35.9302 1.60205 0.801025 0.598631i \(-0.204288\pi\)
0.801025 + 0.598631i \(0.204288\pi\)
\(504\) 0 0
\(505\) −1.85898 −0.0827236
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.0086i 0.665243i −0.943060 0.332621i \(-0.892067\pi\)
0.943060 0.332621i \(-0.107933\pi\)
\(510\) 0 0
\(511\) −1.69113 + 18.0102i −0.0748111 + 0.796724i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.50585i 0.286682i
\(516\) 0 0
\(517\) −0.554372 0.320067i −0.0243813 0.0140765i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.05431 + 5.22751i 0.396677 + 0.229021i 0.685049 0.728497i \(-0.259781\pi\)
−0.288372 + 0.957518i \(0.593114\pi\)
\(522\) 0 0
\(523\) 13.6688 + 23.6751i 0.597697 + 1.03524i 0.993160 + 0.116759i \(0.0372507\pi\)
−0.395463 + 0.918482i \(0.629416\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.0719i 0.787225i
\(528\) 0 0
\(529\) −61.7794 −2.68606
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.1372 + 19.2901i 0.482404 + 0.835549i
\(534\) 0 0
\(535\) −2.69423 4.66654i −0.116482 0.201752i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.534699 + 0.460377i 0.0230311 + 0.0198298i
\(540\) 0 0
\(541\) −11.1507 19.3135i −0.479405 0.830354i 0.520316 0.853974i \(-0.325814\pi\)
−0.999721 + 0.0236197i \(0.992481\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.93251 + 5.73454i 0.425462 + 0.245640i
\(546\) 0 0
\(547\) 5.02929 2.90366i 0.215037 0.124152i −0.388613 0.921401i \(-0.627046\pi\)
0.603650 + 0.797249i \(0.293712\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.1849 34.9614i 0.859908 1.48940i
\(552\) 0 0
\(553\) −0.661272 + 7.04242i −0.0281201 + 0.299474i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.23031 2.13096i 0.0521300 0.0902919i −0.838783 0.544466i \(-0.816732\pi\)
0.890913 + 0.454174i \(0.150066\pi\)
\(558\) 0 0
\(559\) −9.88756 −0.418199
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.01921 + 3.49737i 0.0850995 + 0.147397i 0.905434 0.424488i \(-0.139546\pi\)
−0.820334 + 0.571885i \(0.806213\pi\)
\(564\) 0 0
\(565\) −9.80061 5.65838i −0.412315 0.238050i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.6809 + 21.9640i −0.531612 + 0.920780i 0.467707 + 0.883884i \(0.345080\pi\)
−0.999319 + 0.0368960i \(0.988253\pi\)
\(570\) 0 0
\(571\) −26.2507 + 15.1558i −1.09856 + 0.634252i −0.935842 0.352421i \(-0.885359\pi\)
−0.162716 + 0.986673i \(0.552025\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 34.9500i 1.45752i
\(576\) 0 0
\(577\) 25.7567 + 14.8707i 1.07227 + 0.619073i 0.928800 0.370582i \(-0.120842\pi\)
0.143467 + 0.989655i \(0.454175\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.344795 + 0.485815i −0.0143045 + 0.0201550i
\(582\) 0 0
\(583\) −1.14093 0.658716i −0.0472525 0.0272812i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.1453 31.4286i −0.748938 1.29720i −0.948332 0.317280i \(-0.897231\pi\)
0.199394 0.979919i \(-0.436103\pi\)
\(588\) 0 0
\(589\) 12.3151 21.3304i 0.507437 0.878906i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −28.4608 + 16.4319i −1.16875 + 0.674776i −0.953384 0.301758i \(-0.902426\pi\)
−0.215362 + 0.976534i \(0.569093\pi\)
\(594\) 0 0
\(595\) −10.8028 1.01436i −0.442871 0.0415848i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −29.9350 + 17.2830i −1.22311 + 0.706164i −0.965580 0.260105i \(-0.916243\pi\)
−0.257532 + 0.966270i \(0.582909\pi\)
\(600\) 0 0
\(601\) −18.6933 + 10.7926i −0.762514 + 0.440238i −0.830198 0.557469i \(-0.811772\pi\)
0.0676837 + 0.997707i \(0.478439\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.0599i 0.490303i
\(606\) 0 0
\(607\) 26.7002 1.08373 0.541864 0.840466i \(-0.317719\pi\)
0.541864 + 0.840466i \(0.317719\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.1242 15.6601i 1.09733 0.633541i
\(612\) 0 0
\(613\) 1.36963 2.37228i 0.0553190 0.0958153i −0.837040 0.547142i \(-0.815716\pi\)
0.892359 + 0.451327i \(0.149049\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00455 5.20403i 0.120959 0.209506i −0.799187 0.601082i \(-0.794737\pi\)
0.920146 + 0.391576i \(0.128070\pi\)
\(618\) 0 0
\(619\) 45.7252 1.83785 0.918925 0.394432i \(-0.129059\pi\)
0.918925 + 0.394432i \(0.129059\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.2265 + 8.67744i 0.489844 + 0.347654i
\(624\) 0 0
\(625\) 8.38699 0.335479
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.7365i 0.826818i
\(630\) 0 0
\(631\) 16.5841i 0.660204i −0.943945 0.330102i \(-0.892917\pi\)
0.943945 0.330102i \(-0.107083\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.73476 −0.386312
\(636\) 0 0
\(637\) −32.5882 + 11.3940i −1.29119 + 0.451447i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −33.5325 −1.32446 −0.662228 0.749303i \(-0.730389\pi\)
−0.662228 + 0.749303i \(0.730389\pi\)
\(642\) 0 0
\(643\) −15.7710 + 27.3162i −0.621949 + 1.07725i 0.367174 + 0.930152i \(0.380325\pi\)
−0.989122 + 0.147094i \(0.953008\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.1055 + 33.0917i −0.751114 + 1.30097i 0.196169 + 0.980570i \(0.437150\pi\)
−0.947283 + 0.320398i \(0.896183\pi\)
\(648\) 0 0
\(649\) 0.252072 0.145534i 0.00989468 0.00571270i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23.6928 0.927171 0.463586 0.886052i \(-0.346563\pi\)
0.463586 + 0.886052i \(0.346563\pi\)
\(654\) 0 0
\(655\) 6.47320i 0.252929i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −17.6819 + 10.2086i −0.688788 + 0.397672i −0.803158 0.595766i \(-0.796849\pi\)
0.114370 + 0.993438i \(0.463515\pi\)
\(660\) 0 0
\(661\) −17.3778 + 10.0331i −0.675919 + 0.390242i −0.798315 0.602239i \(-0.794275\pi\)
0.122397 + 0.992481i \(0.460942\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.0594 8.55883i −0.467643 0.331897i
\(666\) 0 0
\(667\) 63.2014 36.4893i 2.44717 1.41287i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.477895 0.827738i 0.0184489 0.0319545i
\(672\) 0 0
\(673\) −0.955003 1.65411i −0.0368127 0.0637614i 0.847032 0.531542i \(-0.178387\pi\)
−0.883845 + 0.467780i \(0.845054\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −37.3961 21.5907i −1.43725 0.829796i −0.439592 0.898198i \(-0.644877\pi\)
−0.997658 + 0.0684014i \(0.978210\pi\)
\(678\) 0 0
\(679\) 16.1349 + 11.4513i 0.619199 + 0.439460i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.2100 + 12.2456i 0.811579 + 0.468565i 0.847504 0.530789i \(-0.178104\pi\)
−0.0359249 + 0.999354i \(0.511438\pi\)
\(684\) 0 0
\(685\) 19.1299i 0.730916i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 55.8231 32.2295i 2.12669 1.22784i
\(690\) 0 0
\(691\) 5.83616 10.1085i 0.222018 0.384547i −0.733403 0.679795i \(-0.762069\pi\)
0.955421 + 0.295248i \(0.0954022\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.3913 8.88616i −0.583824 0.337071i
\(696\) 0 0
\(697\) −8.43938 14.6174i −0.319664 0.553675i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −32.0967 −1.21227 −0.606137 0.795360i \(-0.707282\pi\)
−0.606137 + 0.795360i \(0.707282\pi\)
\(702\) 0 0
\(703\) −14.1309 + 24.4755i −0.532958 + 0.923110i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.07405 1.86832i 0.153220 0.0702654i
\(708\) 0 0
\(709\) 6.81367 11.8016i 0.255893 0.443220i −0.709245 0.704962i \(-0.750964\pi\)
0.965138 + 0.261743i \(0.0842972\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 38.5601 22.2627i 1.44409 0.833744i
\(714\) 0 0
\(715\) −0.472431 0.272758i −0.0176679 0.0102006i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.9410 31.0748i −0.669088 1.15889i −0.978160 0.207855i \(-0.933352\pi\)
0.309072 0.951039i \(-0.399982\pi\)
\(720\) 0 0
\(721\) 6.53853 + 14.2579i 0.243507 + 0.530991i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.0426 + 26.0546i 0.558668 + 0.967642i
\(726\) 0 0
\(727\) −1.54920 2.68329i −0.0574565 0.0995176i 0.835866 0.548933i \(-0.184966\pi\)
−0.893323 + 0.449415i \(0.851632\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.49247 0.277119
\(732\) 0 0
\(733\) 38.4588i 1.42051i −0.703946 0.710254i \(-0.748580\pi\)
0.703946 0.710254i \(-0.251420\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.633046 + 1.09647i 0.0233186 + 0.0403889i
\(738\) 0 0
\(739\) −28.0000 16.1658i −1.03000 0.594668i −0.113012 0.993594i \(-0.536050\pi\)
−0.916983 + 0.398926i \(0.869383\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.1763 + 8.18468i 0.520077 + 0.300267i 0.736966 0.675930i \(-0.236258\pi\)
−0.216889 + 0.976196i \(0.569591\pi\)
\(744\) 0 0
\(745\) 11.4577i 0.419778i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.5945 + 7.51917i 0.387115 + 0.274745i
\(750\) 0 0
\(751\) 47.7607i 1.74281i −0.490562 0.871406i \(-0.663209\pi\)
0.490562 0.871406i \(-0.336791\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.78212 −0.356008
\(756\) 0 0
\(757\) −32.5248 −1.18213 −0.591066 0.806623i \(-0.701293\pi\)
−0.591066 + 0.806623i \(0.701293\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31.1794i 1.13025i 0.825004 + 0.565127i \(0.191173\pi\)
−0.825004 + 0.565127i \(0.808827\pi\)
\(762\) 0 0
\(763\) −27.5309 2.58511i −0.996685 0.0935871i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.2413i 0.514222i
\(768\) 0 0
\(769\) −24.4724 14.1292i −0.882498 0.509510i −0.0110165 0.999939i \(-0.503507\pi\)
−0.871481 + 0.490429i \(0.836840\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11.2626 6.50244i −0.405086 0.233876i 0.283590 0.958946i \(-0.408474\pi\)
−0.688676 + 0.725069i \(0.741808\pi\)
\(774\) 0 0
\(775\) 9.17772 + 15.8963i 0.329673 + 0.571011i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 23.0041i 0.824208i
\(780\) 0 0
\(781\) 1.47026 0.0526101
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.51387 6.08621i −0.125416 0.217226i
\(786\) 0 0
\(787\) −12.1694 21.0780i −0.433791 0.751348i 0.563405 0.826181i \(-0.309491\pi\)
−0.997196 + 0.0748328i \(0.976158\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 27.1653 + 2.55078i 0.965886 + 0.0906952i
\(792\) 0 0
\(793\) 23.3823 + 40.4993i 0.830329 + 1.43817i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −38.8453 22.4273i −1.37597 0.794416i −0.384298 0.923209i \(-0.625556\pi\)
−0.991672 + 0.128793i \(0.958890\pi\)
\(798\) 0 0
\(799\) −20.5538 + 11.8667i −0.727141 + 0.419815i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.344585 0.596839i 0.0121601 0.0210620i
\(804\) 0 0
\(805\) −11.1435 24.2995i −0.392758 0.856445i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.1308 + 27.9394i −0.567130 + 0.982297i 0.429719 + 0.902963i \(0.358613\pi\)
−0.996848 + 0.0793342i \(0.974721\pi\)
\(810\) 0 0
\(811\) −34.7632 −1.22070 −0.610350 0.792132i \(-0.708971\pi\)
−0.610350 + 0.792132i \(0.708971\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.55788 7.89448i −0.159656 0.276532i
\(816\) 0 0
\(817\) 8.84343 + 5.10576i 0.309392 + 0.178628i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −20.0987 + 34.8119i −0.701448 + 1.21494i 0.266510 + 0.963832i \(0.414130\pi\)
−0.967958 + 0.251112i \(0.919204\pi\)
\(822\) 0 0
\(823\) −2.85246 + 1.64687i −0.0994305 + 0.0574062i −0.548891 0.835894i \(-0.684950\pi\)
0.449460 + 0.893300i \(0.351616\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21.5704i 0.750075i 0.927010 + 0.375038i \(0.122370\pi\)
−0.927010 + 0.375038i \(0.877630\pi\)
\(828\) 0 0
\(829\) −6.97609 4.02765i −0.242290 0.139886i 0.373939 0.927453i \(-0.378007\pi\)
−0.616229 + 0.787567i \(0.711340\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 24.6942 8.63401i 0.855605 0.299151i
\(834\) 0 0
\(835\) 15.0687 + 8.69990i 0.521473 + 0.301072i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.8904 + 41.3793i 0.824787 + 1.42857i 0.902082 + 0.431564i \(0.142038\pi\)
−0.0772954 + 0.997008i \(0.524628\pi\)
\(840\) 0 0
\(841\) −16.9103 + 29.2894i −0.583113 + 1.00998i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.7605 6.21256i 0.370172 0.213719i
\(846\) 0 0
\(847\) 12.1204 + 26.4297i 0.416463 + 0.908137i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −44.2455 + 25.5452i −1.51672 + 0.875677i
\(852\) 0 0
\(853\) −23.5845 + 13.6165i −0.807518 + 0.466221i −0.846093 0.533035i \(-0.821051\pi\)
0.0385754 + 0.999256i \(0.487718\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.4731i 1.38253i 0.722599 + 0.691267i \(0.242947\pi\)
−0.722599 + 0.691267i \(0.757053\pi\)
\(858\) 0 0
\(859\) 53.7041 1.83236 0.916180 0.400766i \(-0.131256\pi\)
0.916180 + 0.400766i \(0.131256\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.5769 + 9.57068i −0.564285 + 0.325790i −0.754863 0.655882i \(-0.772297\pi\)
0.190579 + 0.981672i \(0.438964\pi\)
\(864\) 0 0
\(865\) 2.02873 3.51386i 0.0689788 0.119475i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.134741 0.233378i 0.00457078 0.00791682i
\(870\) 0 0
\(871\) −61.9470 −2.09899
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 23.2128 10.6452i 0.784736 0.359872i
\(876\) 0 0
\(877\) −12.0902 −0.408258 −0.204129 0.978944i \(-0.565436\pi\)
−0.204129 + 0.978944i \(0.565436\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.0338i 1.38246i 0.722633 + 0.691232i \(0.242932\pi\)
−0.722633 + 0.691232i \(0.757068\pi\)
\(882\) 0 0
\(883\) 39.1631i 1.31794i −0.752168 0.658971i \(-0.770992\pi\)
0.752168 0.658971i \(-0.229008\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.1869 1.11431 0.557154 0.830409i \(-0.311893\pi\)
0.557154 + 0.830409i \(0.311893\pi\)
\(888\) 0 0
\(889\) 21.3342 9.78366i 0.715525 0.328133i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.3464 −1.08243
\(894\) 0 0
\(895\) 4.56582 7.90824i 0.152619 0.264343i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19.1639 + 33.1928i −0.639151 + 1.10704i
\(900\) 0 0
\(901\) −42.3009 + 24.4224i −1.40925 + 0.813629i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −27.7020 −0.920847
\(906\) 0 0
\(907\) 17.5768i 0.583628i 0.956475 + 0.291814i \(0.0942589\pi\)
−0.956475 + 0.291814i \(0.905741\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 28.9644 16.7226i 0.959635 0.554045i 0.0635741 0.997977i \(-0.479750\pi\)
0.896061 + 0.443932i \(0.146417\pi\)
\(912\) 0 0
\(913\) 0.0196556 0.0113482i 0.000650505 0.000375569i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.50571 14.1863i −0.214838 0.468473i
\(918\) 0 0
\(919\) 17.9607 10.3696i 0.592470 0.342062i −0.173604 0.984816i \(-0.555541\pi\)
0.766073 + 0.642753i \(0.222208\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −35.9683 + 62.2989i −1.18391 + 2.05059i
\(924\) 0 0
\(925\) −10.5309 18.2401i −0.346254 0.599730i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.35262 + 1.35829i 0.0771870 + 0.0445639i 0.538097 0.842883i \(-0.319143\pi\)
−0.460910 + 0.887447i \(0.652477\pi\)
\(930\) 0 0
\(931\) 35.0305 + 6.63713i 1.14808 + 0.217523i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.357993 + 0.206687i 0.0117076 + 0.00675940i
\(936\) 0 0
\(937\) 20.7924i 0.679258i −0.940559 0.339629i \(-0.889698\pi\)
0.940559 0.339629i \(-0.110302\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −44.3702 + 25.6172i −1.44643 + 0.835096i −0.998266 0.0588569i \(-0.981254\pi\)
−0.448162 + 0.893953i \(0.647921\pi\)
\(942\) 0 0
\(943\) 20.7929 36.0143i 0.677108 1.17279i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −37.0086 21.3669i −1.20262 0.694332i −0.241481 0.970406i \(-0.577633\pi\)
−0.961136 + 0.276074i \(0.910967\pi\)
\(948\) 0 0
\(949\) 16.8598 + 29.2020i 0.547291 + 0.947936i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.14510 −0.166666 −0.0833331 0.996522i \(-0.526557\pi\)
−0.0833331 + 0.996522i \(0.526557\pi\)
\(954\) 0 0
\(955\) −2.31634 + 4.01203i −0.0749551 + 0.129826i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19.2260 + 41.9241i 0.620840 + 1.35380i
\(960\) 0 0
\(961\) 3.80783 6.59536i 0.122833 0.212753i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.1669 12.7980i 0.713576 0.411983i
\(966\) 0 0
\(967\) 8.18515 + 4.72570i 0.263217 + 0.151968i 0.625801 0.779983i \(-0.284772\pi\)
−0.362584 + 0.931951i \(0.618106\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.24445 12.5478i −0.232485 0.402677i 0.726053 0.687638i \(-0.241352\pi\)
−0.958539 + 0.284962i \(0.908019\pi\)
\(972\) 0 0
\(973\) 42.6615 + 4.00584i 1.36766 + 0.128421i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.99130 + 17.3054i 0.319650 + 0.553650i 0.980415 0.196943i \(-0.0631013\pi\)
−0.660765 + 0.750593i \(0.729768\pi\)
\(978\) 0 0
\(979\) −0.285598 0.494671i −0.00912776 0.0158097i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.64389 0.211907 0.105954 0.994371i \(-0.466211\pi\)
0.105954 + 0.994371i \(0.466211\pi\)
\(984\) 0 0
\(985\) 16.3889i 0.522194i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.22993 + 15.9867i 0.293495 + 0.508348i
\(990\) 0 0
\(991\) 0.701316 + 0.404905i 0.0222780 + 0.0128622i 0.511098 0.859523i \(-0.329239\pi\)
−0.488820 + 0.872385i \(0.662572\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.5098 6.64519i −0.364885 0.210667i
\(996\) 0 0
\(997\) 15.2446i 0.482802i −0.970425 0.241401i \(-0.922393\pi\)
0.970425 0.241401i \(-0.0776069\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.bf.i.1711.5 32
3.2 odd 2 1008.2.bf.i.31.3 32
4.3 odd 2 inner 3024.2.bf.i.1711.6 32
7.5 odd 6 3024.2.cz.i.1279.12 32
9.2 odd 6 1008.2.cz.i.367.8 yes 32
9.7 even 3 3024.2.cz.i.2719.11 32
12.11 even 2 1008.2.bf.i.31.14 yes 32
21.5 even 6 1008.2.cz.i.607.9 yes 32
28.19 even 6 3024.2.cz.i.1279.11 32
36.7 odd 6 3024.2.cz.i.2719.12 32
36.11 even 6 1008.2.cz.i.367.9 yes 32
63.47 even 6 1008.2.bf.i.943.14 yes 32
63.61 odd 6 inner 3024.2.bf.i.2287.11 32
84.47 odd 6 1008.2.cz.i.607.8 yes 32
252.47 odd 6 1008.2.bf.i.943.3 yes 32
252.187 even 6 inner 3024.2.bf.i.2287.12 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.i.31.3 32 3.2 odd 2
1008.2.bf.i.31.14 yes 32 12.11 even 2
1008.2.bf.i.943.3 yes 32 252.47 odd 6
1008.2.bf.i.943.14 yes 32 63.47 even 6
1008.2.cz.i.367.8 yes 32 9.2 odd 6
1008.2.cz.i.367.9 yes 32 36.11 even 6
1008.2.cz.i.607.8 yes 32 84.47 odd 6
1008.2.cz.i.607.9 yes 32 21.5 even 6
3024.2.bf.i.1711.5 32 1.1 even 1 trivial
3024.2.bf.i.1711.6 32 4.3 odd 2 inner
3024.2.bf.i.2287.11 32 63.61 odd 6 inner
3024.2.bf.i.2287.12 32 252.187 even 6 inner
3024.2.cz.i.1279.11 32 28.19 even 6
3024.2.cz.i.1279.12 32 7.5 odd 6
3024.2.cz.i.2719.11 32 9.7 even 3
3024.2.cz.i.2719.12 32 36.7 odd 6