Properties

Label 1008.2.bf.g.943.9
Level $1008$
Weight $2$
Character 1008.943
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(31,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-3,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 943.9
Character \(\chi\) \(=\) 1008.943
Dual form 1008.2.bf.g.31.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.823206 + 1.52392i) q^{3} -0.280665i q^{5} +(-0.164674 + 2.64062i) q^{7} +(-1.64466 + 2.50900i) q^{9} -2.82201i q^{11} +(-4.06955 + 2.34956i) q^{13} +(0.427710 - 0.231045i) q^{15} +(-7.00051 + 4.04175i) q^{17} +(0.474304 - 0.821518i) q^{19} +(-4.15966 + 1.92282i) q^{21} +0.392466i q^{23} +4.92123 q^{25} +(-5.17741 - 0.440916i) q^{27} +(1.51148 - 2.61795i) q^{29} +(-1.06355 + 1.84211i) q^{31} +(4.30052 - 2.32310i) q^{33} +(0.741129 + 0.0462181i) q^{35} +(-2.43458 + 4.21681i) q^{37} +(-6.93061 - 4.26750i) q^{39} +(-0.478990 + 0.276545i) q^{41} +(4.28515 + 2.47404i) q^{43} +(0.704187 + 0.461599i) q^{45} +(-1.39435 - 2.41508i) q^{47} +(-6.94577 - 0.869682i) q^{49} +(-11.9222 - 7.34103i) q^{51} +(6.21935 + 10.7722i) q^{53} -0.792039 q^{55} +(1.64238 + 0.0465226i) q^{57} +(5.70053 - 9.87361i) q^{59} +(-9.67619 + 5.58655i) q^{61} +(-6.35448 - 4.75610i) q^{63} +(0.659437 + 1.14218i) q^{65} +(7.85871 + 4.53723i) q^{67} +(-0.598086 + 0.323080i) q^{69} +1.54594i q^{71} +(-0.542172 + 0.313023i) q^{73} +(4.05118 + 7.49956i) q^{75} +(7.45187 + 0.464711i) q^{77} +(-13.3691 + 7.71866i) q^{79} +(-3.59015 - 8.25293i) q^{81} +(5.30821 - 9.19409i) q^{83} +(1.13438 + 1.96480i) q^{85} +(5.23381 + 0.148255i) q^{87} +(9.90157 + 5.71667i) q^{89} +(-5.53414 - 11.1331i) q^{91} +(-3.68275 - 0.104319i) q^{93} +(-0.230571 - 0.133120i) q^{95} +(-13.6260 - 7.86698i) q^{97} +(7.08043 + 4.64126i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 3 q^{3} + 8 q^{7} - q^{9} + 3 q^{13} - 6 q^{15} - 3 q^{17} + 4 q^{19} - 20 q^{21} - 30 q^{25} - 9 q^{27} + 18 q^{29} + 17 q^{31} - 12 q^{33} + 42 q^{35} - 3 q^{37} - 42 q^{39} - 36 q^{41} + 24 q^{43}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.823206 + 1.52392i 0.475278 + 0.879836i
\(4\) 0 0
\(5\) 0.280665i 0.125517i −0.998029 0.0627585i \(-0.980010\pi\)
0.998029 0.0627585i \(-0.0199898\pi\)
\(6\) 0 0
\(7\) −0.164674 + 2.64062i −0.0622408 + 0.998061i
\(8\) 0 0
\(9\) −1.64466 + 2.50900i −0.548222 + 0.836333i
\(10\) 0 0
\(11\) 2.82201i 0.850869i −0.904989 0.425434i \(-0.860121\pi\)
0.904989 0.425434i \(-0.139879\pi\)
\(12\) 0 0
\(13\) −4.06955 + 2.34956i −1.12869 + 0.651650i −0.943605 0.331073i \(-0.892589\pi\)
−0.185085 + 0.982722i \(0.559256\pi\)
\(14\) 0 0
\(15\) 0.427710 0.231045i 0.110434 0.0596555i
\(16\) 0 0
\(17\) −7.00051 + 4.04175i −1.69787 + 0.980268i −0.750100 + 0.661324i \(0.769995\pi\)
−0.947774 + 0.318944i \(0.896672\pi\)
\(18\) 0 0
\(19\) 0.474304 0.821518i 0.108813 0.188469i −0.806477 0.591266i \(-0.798628\pi\)
0.915290 + 0.402797i \(0.131962\pi\)
\(20\) 0 0
\(21\) −4.15966 + 1.92282i −0.907712 + 0.419595i
\(22\) 0 0
\(23\) 0.392466i 0.0818348i 0.999163 + 0.0409174i \(0.0130280\pi\)
−0.999163 + 0.0409174i \(0.986972\pi\)
\(24\) 0 0
\(25\) 4.92123 0.984245
\(26\) 0 0
\(27\) −5.17741 0.440916i −0.996393 0.0848543i
\(28\) 0 0
\(29\) 1.51148 2.61795i 0.280674 0.486142i −0.690877 0.722973i \(-0.742775\pi\)
0.971551 + 0.236831i \(0.0761086\pi\)
\(30\) 0 0
\(31\) −1.06355 + 1.84211i −0.191018 + 0.330854i −0.945588 0.325366i \(-0.894512\pi\)
0.754570 + 0.656220i \(0.227846\pi\)
\(32\) 0 0
\(33\) 4.30052 2.32310i 0.748625 0.404399i
\(34\) 0 0
\(35\) 0.741129 + 0.0462181i 0.125274 + 0.00781229i
\(36\) 0 0
\(37\) −2.43458 + 4.21681i −0.400242 + 0.693240i −0.993755 0.111585i \(-0.964407\pi\)
0.593513 + 0.804825i \(0.297741\pi\)
\(38\) 0 0
\(39\) −6.93061 4.26750i −1.10979 0.683347i
\(40\) 0 0
\(41\) −0.478990 + 0.276545i −0.0748057 + 0.0431891i −0.536936 0.843623i \(-0.680418\pi\)
0.462131 + 0.886812i \(0.347085\pi\)
\(42\) 0 0
\(43\) 4.28515 + 2.47404i 0.653480 + 0.377287i 0.789788 0.613380i \(-0.210190\pi\)
−0.136308 + 0.990666i \(0.543524\pi\)
\(44\) 0 0
\(45\) 0.704187 + 0.461599i 0.104974 + 0.0688112i
\(46\) 0 0
\(47\) −1.39435 2.41508i −0.203387 0.352276i 0.746231 0.665687i \(-0.231862\pi\)
−0.949618 + 0.313411i \(0.898528\pi\)
\(48\) 0 0
\(49\) −6.94577 0.869682i −0.992252 0.124240i
\(50\) 0 0
\(51\) −11.9222 7.34103i −1.66944 1.02795i
\(52\) 0 0
\(53\) 6.21935 + 10.7722i 0.854293 + 1.47968i 0.877300 + 0.479943i \(0.159343\pi\)
−0.0230067 + 0.999735i \(0.507324\pi\)
\(54\) 0 0
\(55\) −0.792039 −0.106799
\(56\) 0 0
\(57\) 1.64238 + 0.0465226i 0.217538 + 0.00616207i
\(58\) 0 0
\(59\) 5.70053 9.87361i 0.742146 1.28543i −0.209371 0.977836i \(-0.567141\pi\)
0.951516 0.307598i \(-0.0995252\pi\)
\(60\) 0 0
\(61\) −9.67619 + 5.58655i −1.23891 + 0.715284i −0.968871 0.247565i \(-0.920370\pi\)
−0.270038 + 0.962850i \(0.587036\pi\)
\(62\) 0 0
\(63\) −6.35448 4.75610i −0.800590 0.599213i
\(64\) 0 0
\(65\) 0.659437 + 1.14218i 0.0817932 + 0.141670i
\(66\) 0 0
\(67\) 7.85871 + 4.53723i 0.960095 + 0.554311i 0.896202 0.443646i \(-0.146315\pi\)
0.0638926 + 0.997957i \(0.479648\pi\)
\(68\) 0 0
\(69\) −0.598086 + 0.323080i −0.0720011 + 0.0388943i
\(70\) 0 0
\(71\) 1.54594i 0.183469i 0.995784 + 0.0917344i \(0.0292411\pi\)
−0.995784 + 0.0917344i \(0.970759\pi\)
\(72\) 0 0
\(73\) −0.542172 + 0.313023i −0.0634564 + 0.0366366i −0.531393 0.847126i \(-0.678331\pi\)
0.467936 + 0.883762i \(0.344998\pi\)
\(74\) 0 0
\(75\) 4.05118 + 7.49956i 0.467790 + 0.865974i
\(76\) 0 0
\(77\) 7.45187 + 0.464711i 0.849219 + 0.0529588i
\(78\) 0 0
\(79\) −13.3691 + 7.71866i −1.50414 + 0.868417i −0.504153 + 0.863614i \(0.668195\pi\)
−0.999988 + 0.00480263i \(0.998471\pi\)
\(80\) 0 0
\(81\) −3.59015 8.25293i −0.398906 0.916992i
\(82\) 0 0
\(83\) 5.30821 9.19409i 0.582652 1.00918i −0.412512 0.910952i \(-0.635348\pi\)
0.995164 0.0982303i \(-0.0313182\pi\)
\(84\) 0 0
\(85\) 1.13438 + 1.96480i 0.123040 + 0.213112i
\(86\) 0 0
\(87\) 5.23381 + 0.148255i 0.561123 + 0.0158946i
\(88\) 0 0
\(89\) 9.90157 + 5.71667i 1.04956 + 0.605966i 0.922527 0.385932i \(-0.126120\pi\)
0.127037 + 0.991898i \(0.459453\pi\)
\(90\) 0 0
\(91\) −5.53414 11.1331i −0.580136 1.16706i
\(92\) 0 0
\(93\) −3.68275 0.104319i −0.381884 0.0108174i
\(94\) 0 0
\(95\) −0.230571 0.133120i −0.0236561 0.0136579i
\(96\) 0 0
\(97\) −13.6260 7.86698i −1.38351 0.798770i −0.390937 0.920417i \(-0.627849\pi\)
−0.992573 + 0.121647i \(0.961182\pi\)
\(98\) 0 0
\(99\) 7.08043 + 4.64126i 0.711610 + 0.466465i
\(100\) 0 0
\(101\) 7.01091i 0.697611i 0.937195 + 0.348806i \(0.113413\pi\)
−0.937195 + 0.348806i \(0.886587\pi\)
\(102\) 0 0
\(103\) 5.63248 0.554985 0.277493 0.960728i \(-0.410497\pi\)
0.277493 + 0.960728i \(0.410497\pi\)
\(104\) 0 0
\(105\) 0.539669 + 1.16747i 0.0526663 + 0.113933i
\(106\) 0 0
\(107\) 5.00552 + 2.88994i 0.483902 + 0.279381i 0.722041 0.691850i \(-0.243204\pi\)
−0.238139 + 0.971231i \(0.576537\pi\)
\(108\) 0 0
\(109\) 4.12859 + 7.15092i 0.395447 + 0.684934i 0.993158 0.116777i \(-0.0372564\pi\)
−0.597711 + 0.801712i \(0.703923\pi\)
\(110\) 0 0
\(111\) −8.43025 0.238798i −0.800164 0.0226657i
\(112\) 0 0
\(113\) −6.47539 11.2157i −0.609154 1.05508i −0.991380 0.131016i \(-0.958176\pi\)
0.382227 0.924069i \(-0.375157\pi\)
\(114\) 0 0
\(115\) 0.110151 0.0102717
\(116\) 0 0
\(117\) 0.798013 14.0747i 0.0737763 1.30121i
\(118\) 0 0
\(119\) −9.51993 19.1513i −0.872690 1.75559i
\(120\) 0 0
\(121\) 3.03625 0.276023
\(122\) 0 0
\(123\) −0.815740 0.502289i −0.0735528 0.0452899i
\(124\) 0 0
\(125\) 2.78454i 0.249057i
\(126\) 0 0
\(127\) 7.77236i 0.689685i 0.938660 + 0.344843i \(0.112068\pi\)
−0.938660 + 0.344843i \(0.887932\pi\)
\(128\) 0 0
\(129\) −0.242668 + 8.56687i −0.0213658 + 0.754271i
\(130\) 0 0
\(131\) −7.98542 −0.697690 −0.348845 0.937180i \(-0.613426\pi\)
−0.348845 + 0.937180i \(0.613426\pi\)
\(132\) 0 0
\(133\) 2.09121 + 1.38774i 0.181331 + 0.120332i
\(134\) 0 0
\(135\) −0.123749 + 1.45312i −0.0106507 + 0.125064i
\(136\) 0 0
\(137\) 8.64941 0.738969 0.369484 0.929237i \(-0.379534\pi\)
0.369484 + 0.929237i \(0.379534\pi\)
\(138\) 0 0
\(139\) 7.19469 + 12.4616i 0.610246 + 1.05698i 0.991199 + 0.132383i \(0.0422627\pi\)
−0.380953 + 0.924595i \(0.624404\pi\)
\(140\) 0 0
\(141\) 2.53256 4.11299i 0.213280 0.346376i
\(142\) 0 0
\(143\) 6.63048 + 11.4843i 0.554468 + 0.960367i
\(144\) 0 0
\(145\) −0.734767 0.424218i −0.0610191 0.0352294i
\(146\) 0 0
\(147\) −4.39247 11.3007i −0.362285 0.932068i
\(148\) 0 0
\(149\) −1.06764 −0.0874644 −0.0437322 0.999043i \(-0.513925\pi\)
−0.0437322 + 0.999043i \(0.513925\pi\)
\(150\) 0 0
\(151\) 12.9439i 1.05336i −0.850064 0.526679i \(-0.823437\pi\)
0.850064 0.526679i \(-0.176563\pi\)
\(152\) 0 0
\(153\) 1.37276 24.2116i 0.110981 1.95739i
\(154\) 0 0
\(155\) 0.517016 + 0.298500i 0.0415278 + 0.0239761i
\(156\) 0 0
\(157\) 7.01702 + 4.05128i 0.560019 + 0.323327i 0.753153 0.657845i \(-0.228532\pi\)
−0.193134 + 0.981172i \(0.561865\pi\)
\(158\) 0 0
\(159\) −11.2962 + 18.3455i −0.895847 + 1.45490i
\(160\) 0 0
\(161\) −1.03635 0.0646288i −0.0816761 0.00509346i
\(162\) 0 0
\(163\) 15.8164 + 9.13162i 1.23884 + 0.715244i 0.968857 0.247621i \(-0.0796489\pi\)
0.269982 + 0.962865i \(0.412982\pi\)
\(164\) 0 0
\(165\) −0.652011 1.20700i −0.0507590 0.0939651i
\(166\) 0 0
\(167\) 8.41991 + 14.5837i 0.651553 + 1.12852i 0.982746 + 0.184959i \(0.0592153\pi\)
−0.331194 + 0.943563i \(0.607451\pi\)
\(168\) 0 0
\(169\) 4.54083 7.86496i 0.349295 0.604997i
\(170\) 0 0
\(171\) 1.28112 + 2.54115i 0.0979695 + 0.194327i
\(172\) 0 0
\(173\) −17.1823 + 9.92020i −1.30635 + 0.754219i −0.981484 0.191543i \(-0.938651\pi\)
−0.324861 + 0.945762i \(0.605318\pi\)
\(174\) 0 0
\(175\) −0.810397 + 12.9951i −0.0612603 + 0.982337i
\(176\) 0 0
\(177\) 19.7393 + 0.559143i 1.48370 + 0.0420278i
\(178\) 0 0
\(179\) 21.5488 12.4412i 1.61063 0.929899i 0.621409 0.783486i \(-0.286561\pi\)
0.989224 0.146413i \(-0.0467728\pi\)
\(180\) 0 0
\(181\) 7.30569i 0.543027i −0.962435 0.271514i \(-0.912476\pi\)
0.962435 0.271514i \(-0.0875242\pi\)
\(182\) 0 0
\(183\) −16.4789 10.1469i −1.21816 0.750077i
\(184\) 0 0
\(185\) 1.18351 + 0.683300i 0.0870134 + 0.0502372i
\(186\) 0 0
\(187\) 11.4059 + 19.7555i 0.834079 + 1.44467i
\(188\) 0 0
\(189\) 2.01688 13.5990i 0.146706 0.989180i
\(190\) 0 0
\(191\) 7.11844 4.10983i 0.515072 0.297377i −0.219844 0.975535i \(-0.570555\pi\)
0.734916 + 0.678158i \(0.237222\pi\)
\(192\) 0 0
\(193\) −9.78487 + 16.9479i −0.704331 + 1.21994i 0.262602 + 0.964904i \(0.415419\pi\)
−0.966933 + 0.255032i \(0.917914\pi\)
\(194\) 0 0
\(195\) −1.19774 + 1.94518i −0.0857717 + 0.139297i
\(196\) 0 0
\(197\) 16.3933 1.16797 0.583987 0.811763i \(-0.301492\pi\)
0.583987 + 0.811763i \(0.301492\pi\)
\(198\) 0 0
\(199\) 7.86905 + 13.6296i 0.557822 + 0.966176i 0.997678 + 0.0681077i \(0.0216961\pi\)
−0.439856 + 0.898068i \(0.644971\pi\)
\(200\) 0 0
\(201\) −0.445039 + 15.7111i −0.0313907 + 1.10818i
\(202\) 0 0
\(203\) 6.66413 + 4.42235i 0.467730 + 0.310388i
\(204\) 0 0
\(205\) 0.0776164 + 0.134436i 0.00542097 + 0.00938939i
\(206\) 0 0
\(207\) −0.984696 0.645475i −0.0684411 0.0448636i
\(208\) 0 0
\(209\) −2.31833 1.33849i −0.160363 0.0925854i
\(210\) 0 0
\(211\) 7.41442 4.28072i 0.510430 0.294697i −0.222581 0.974914i \(-0.571448\pi\)
0.733010 + 0.680218i \(0.238115\pi\)
\(212\) 0 0
\(213\) −2.35588 + 1.27262i −0.161422 + 0.0871987i
\(214\) 0 0
\(215\) 0.694374 1.20269i 0.0473559 0.0820229i
\(216\) 0 0
\(217\) −4.68919 3.11177i −0.318323 0.211241i
\(218\) 0 0
\(219\) −0.923341 0.568544i −0.0623936 0.0384187i
\(220\) 0 0
\(221\) 18.9926 32.8962i 1.27758 2.21284i
\(222\) 0 0
\(223\) −9.63167 + 16.6825i −0.644984 + 1.11715i 0.339321 + 0.940671i \(0.389803\pi\)
−0.984305 + 0.176475i \(0.943531\pi\)
\(224\) 0 0
\(225\) −8.09377 + 12.3474i −0.539585 + 0.823157i
\(226\) 0 0
\(227\) 20.6399 1.36992 0.684960 0.728581i \(-0.259820\pi\)
0.684960 + 0.728581i \(0.259820\pi\)
\(228\) 0 0
\(229\) 21.1950i 1.40060i −0.713848 0.700301i \(-0.753049\pi\)
0.713848 0.700301i \(-0.246951\pi\)
\(230\) 0 0
\(231\) 5.42624 + 11.7386i 0.357020 + 0.772343i
\(232\) 0 0
\(233\) −7.78510 + 13.4842i −0.510019 + 0.883378i 0.489914 + 0.871771i \(0.337028\pi\)
−0.999933 + 0.0116076i \(0.996305\pi\)
\(234\) 0 0
\(235\) −0.677828 + 0.391344i −0.0442167 + 0.0255285i
\(236\) 0 0
\(237\) −22.7681 14.0194i −1.47895 0.910658i
\(238\) 0 0
\(239\) 6.36686 3.67591i 0.411838 0.237775i −0.279741 0.960075i \(-0.590249\pi\)
0.691579 + 0.722301i \(0.256915\pi\)
\(240\) 0 0
\(241\) 5.75441i 0.370674i −0.982675 0.185337i \(-0.940662\pi\)
0.982675 0.185337i \(-0.0593376\pi\)
\(242\) 0 0
\(243\) 9.62136 12.2650i 0.617211 0.786798i
\(244\) 0 0
\(245\) −0.244089 + 1.94943i −0.0155943 + 0.124545i
\(246\) 0 0
\(247\) 4.45762i 0.283631i
\(248\) 0 0
\(249\) 18.3808 + 0.520662i 1.16484 + 0.0329956i
\(250\) 0 0
\(251\) −21.9997 −1.38861 −0.694305 0.719681i \(-0.744288\pi\)
−0.694305 + 0.719681i \(0.744288\pi\)
\(252\) 0 0
\(253\) 1.10754 0.0696306
\(254\) 0 0
\(255\) −2.06037 + 3.34613i −0.129025 + 0.209543i
\(256\) 0 0
\(257\) 1.45564i 0.0908000i −0.998969 0.0454000i \(-0.985544\pi\)
0.998969 0.0454000i \(-0.0144562\pi\)
\(258\) 0 0
\(259\) −10.7341 7.12320i −0.666985 0.442614i
\(260\) 0 0
\(261\) 4.08257 + 8.09795i 0.252705 + 0.501251i
\(262\) 0 0
\(263\) 21.2421i 1.30984i −0.755696 0.654922i \(-0.772701\pi\)
0.755696 0.654922i \(-0.227299\pi\)
\(264\) 0 0
\(265\) 3.02338 1.74555i 0.185725 0.107228i
\(266\) 0 0
\(267\) −0.560726 + 19.7952i −0.0343159 + 1.21145i
\(268\) 0 0
\(269\) 17.4754 10.0894i 1.06549 0.615162i 0.138546 0.990356i \(-0.455757\pi\)
0.926946 + 0.375194i \(0.122424\pi\)
\(270\) 0 0
\(271\) 8.69232 15.0555i 0.528021 0.914559i −0.471445 0.881895i \(-0.656268\pi\)
0.999466 0.0326639i \(-0.0103991\pi\)
\(272\) 0 0
\(273\) 12.4102 17.5984i 0.751097 1.06510i
\(274\) 0 0
\(275\) 13.8878i 0.837464i
\(276\) 0 0
\(277\) 1.13376 0.0681208 0.0340604 0.999420i \(-0.489156\pi\)
0.0340604 + 0.999420i \(0.489156\pi\)
\(278\) 0 0
\(279\) −2.87269 5.69810i −0.171983 0.341136i
\(280\) 0 0
\(281\) −6.37564 + 11.0429i −0.380339 + 0.658766i −0.991111 0.133040i \(-0.957526\pi\)
0.610772 + 0.791807i \(0.290859\pi\)
\(282\) 0 0
\(283\) 3.38500 5.86300i 0.201218 0.348519i −0.747703 0.664033i \(-0.768844\pi\)
0.948921 + 0.315514i \(0.102177\pi\)
\(284\) 0 0
\(285\) 0.0130573 0.460957i 0.000773445 0.0273048i
\(286\) 0 0
\(287\) −0.651374 1.31037i −0.0384494 0.0773488i
\(288\) 0 0
\(289\) 24.1715 41.8662i 1.42185 2.46272i
\(290\) 0 0
\(291\) 0.771641 27.2411i 0.0452344 1.59690i
\(292\) 0 0
\(293\) 10.5242 6.07616i 0.614831 0.354973i −0.160023 0.987113i \(-0.551157\pi\)
0.774854 + 0.632140i \(0.217823\pi\)
\(294\) 0 0
\(295\) −2.77117 1.59994i −0.161344 0.0931519i
\(296\) 0 0
\(297\) −1.24427 + 14.6107i −0.0721998 + 0.847800i
\(298\) 0 0
\(299\) −0.922120 1.59716i −0.0533276 0.0923661i
\(300\) 0 0
\(301\) −7.23864 + 10.9081i −0.417228 + 0.628730i
\(302\) 0 0
\(303\) −10.6841 + 5.77142i −0.613783 + 0.331559i
\(304\) 0 0
\(305\) 1.56795 + 2.71576i 0.0897804 + 0.155504i
\(306\) 0 0
\(307\) −17.3006 −0.987396 −0.493698 0.869634i \(-0.664355\pi\)
−0.493698 + 0.869634i \(0.664355\pi\)
\(308\) 0 0
\(309\) 4.63669 + 8.58346i 0.263772 + 0.488296i
\(310\) 0 0
\(311\) −13.2379 + 22.9288i −0.750655 + 1.30017i 0.196850 + 0.980434i \(0.436929\pi\)
−0.947505 + 0.319739i \(0.896405\pi\)
\(312\) 0 0
\(313\) −3.86883 + 2.23367i −0.218679 + 0.126255i −0.605339 0.795968i \(-0.706962\pi\)
0.386659 + 0.922223i \(0.373629\pi\)
\(314\) 0 0
\(315\) −1.33487 + 1.78348i −0.0752114 + 0.100488i
\(316\) 0 0
\(317\) −14.7017 25.4640i −0.825728 1.43020i −0.901362 0.433067i \(-0.857431\pi\)
0.0756338 0.997136i \(-0.475902\pi\)
\(318\) 0 0
\(319\) −7.38790 4.26541i −0.413643 0.238817i
\(320\) 0 0
\(321\) −0.283463 + 10.0070i −0.0158213 + 0.558538i
\(322\) 0 0
\(323\) 7.66807i 0.426663i
\(324\) 0 0
\(325\) −20.0272 + 11.5627i −1.11091 + 0.641383i
\(326\) 0 0
\(327\) −7.49876 + 12.1783i −0.414682 + 0.673463i
\(328\) 0 0
\(329\) 6.60693 3.28425i 0.364252 0.181066i
\(330\) 0 0
\(331\) −0.850295 + 0.490918i −0.0467364 + 0.0269833i −0.523186 0.852218i \(-0.675257\pi\)
0.476450 + 0.879202i \(0.341923\pi\)
\(332\) 0 0
\(333\) −6.57592 13.0436i −0.360358 0.714785i
\(334\) 0 0
\(335\) 1.27344 2.20566i 0.0695755 0.120508i
\(336\) 0 0
\(337\) 5.58390 + 9.67160i 0.304174 + 0.526846i 0.977077 0.212885i \(-0.0682861\pi\)
−0.672903 + 0.739731i \(0.734953\pi\)
\(338\) 0 0
\(339\) 11.7613 19.1008i 0.638784 1.03741i
\(340\) 0 0
\(341\) 5.19847 + 3.00134i 0.281513 + 0.162532i
\(342\) 0 0
\(343\) 3.44029 18.1979i 0.185758 0.982596i
\(344\) 0 0
\(345\) 0.0906771 + 0.167862i 0.00488189 + 0.00903737i
\(346\) 0 0
\(347\) 7.61089 + 4.39415i 0.408574 + 0.235890i 0.690177 0.723641i \(-0.257533\pi\)
−0.281603 + 0.959531i \(0.590866\pi\)
\(348\) 0 0
\(349\) 18.2265 + 10.5231i 0.975644 + 0.563288i 0.900952 0.433919i \(-0.142869\pi\)
0.0746915 + 0.997207i \(0.476203\pi\)
\(350\) 0 0
\(351\) 22.1057 10.3703i 1.17992 0.553525i
\(352\) 0 0
\(353\) 2.64279i 0.140661i 0.997524 + 0.0703307i \(0.0224055\pi\)
−0.997524 + 0.0703307i \(0.977595\pi\)
\(354\) 0 0
\(355\) 0.433889 0.0230285
\(356\) 0 0
\(357\) 21.3482 30.2730i 1.12986 1.60222i
\(358\) 0 0
\(359\) −20.5571 11.8687i −1.08496 0.626405i −0.152733 0.988267i \(-0.548808\pi\)
−0.932231 + 0.361863i \(0.882141\pi\)
\(360\) 0 0
\(361\) 9.05007 + 15.6752i 0.476320 + 0.825010i
\(362\) 0 0
\(363\) 2.49946 + 4.62700i 0.131187 + 0.242854i
\(364\) 0 0
\(365\) 0.0878545 + 0.152168i 0.00459852 + 0.00796486i
\(366\) 0 0
\(367\) 30.6820 1.60159 0.800793 0.598942i \(-0.204412\pi\)
0.800793 + 0.598942i \(0.204412\pi\)
\(368\) 0 0
\(369\) 0.0939269 1.65661i 0.00488964 0.0862397i
\(370\) 0 0
\(371\) −29.4695 + 14.6490i −1.52998 + 0.760540i
\(372\) 0 0
\(373\) 6.58921 0.341176 0.170588 0.985342i \(-0.445433\pi\)
0.170588 + 0.985342i \(0.445433\pi\)
\(374\) 0 0
\(375\) 4.24341 2.29225i 0.219129 0.118371i
\(376\) 0 0
\(377\) 14.2052i 0.731605i
\(378\) 0 0
\(379\) 0.316910i 0.0162786i −0.999967 0.00813930i \(-0.997409\pi\)
0.999967 0.00813930i \(-0.00259085\pi\)
\(380\) 0 0
\(381\) −11.8445 + 6.39825i −0.606810 + 0.327792i
\(382\) 0 0
\(383\) −3.69711 −0.188913 −0.0944567 0.995529i \(-0.530111\pi\)
−0.0944567 + 0.995529i \(0.530111\pi\)
\(384\) 0 0
\(385\) 0.130428 2.09148i 0.00664723 0.106591i
\(386\) 0 0
\(387\) −13.2550 + 6.68249i −0.673789 + 0.339690i
\(388\) 0 0
\(389\) −8.59629 −0.435849 −0.217925 0.975966i \(-0.569929\pi\)
−0.217925 + 0.975966i \(0.569929\pi\)
\(390\) 0 0
\(391\) −1.58625 2.74746i −0.0802200 0.138945i
\(392\) 0 0
\(393\) −6.57365 12.1691i −0.331597 0.613852i
\(394\) 0 0
\(395\) 2.16635 + 3.75224i 0.109001 + 0.188795i
\(396\) 0 0
\(397\) −10.9255 6.30783i −0.548334 0.316581i 0.200116 0.979772i \(-0.435868\pi\)
−0.748450 + 0.663192i \(0.769201\pi\)
\(398\) 0 0
\(399\) −0.393305 + 4.32924i −0.0196899 + 0.216733i
\(400\) 0 0
\(401\) −26.1292 −1.30483 −0.652414 0.757862i \(-0.726244\pi\)
−0.652414 + 0.757862i \(0.726244\pi\)
\(402\) 0 0
\(403\) 9.99544i 0.497908i
\(404\) 0 0
\(405\) −2.31630 + 1.00763i −0.115098 + 0.0500695i
\(406\) 0 0
\(407\) 11.8999 + 6.87041i 0.589856 + 0.340554i
\(408\) 0 0
\(409\) −0.249796 0.144220i −0.0123516 0.00713121i 0.493811 0.869569i \(-0.335603\pi\)
−0.506163 + 0.862438i \(0.668937\pi\)
\(410\) 0 0
\(411\) 7.12024 + 13.1810i 0.351216 + 0.650171i
\(412\) 0 0
\(413\) 25.1337 + 16.6789i 1.23675 + 0.820713i
\(414\) 0 0
\(415\) −2.58046 1.48983i −0.126670 0.0731327i
\(416\) 0 0
\(417\) −13.0677 + 21.2226i −0.639930 + 1.03927i
\(418\) 0 0
\(419\) 9.56824 + 16.5727i 0.467439 + 0.809629i 0.999308 0.0371983i \(-0.0118433\pi\)
−0.531869 + 0.846827i \(0.678510\pi\)
\(420\) 0 0
\(421\) −11.5319 + 19.9738i −0.562030 + 0.973465i 0.435289 + 0.900291i \(0.356646\pi\)
−0.997319 + 0.0731740i \(0.976687\pi\)
\(422\) 0 0
\(423\) 8.35268 + 0.473582i 0.406121 + 0.0230264i
\(424\) 0 0
\(425\) −34.4511 + 19.8904i −1.67112 + 0.964824i
\(426\) 0 0
\(427\) −13.1585 26.4711i −0.636787 1.28103i
\(428\) 0 0
\(429\) −12.0429 + 19.5583i −0.581439 + 0.944283i
\(430\) 0 0
\(431\) −13.2196 + 7.63235i −0.636766 + 0.367637i −0.783368 0.621558i \(-0.786500\pi\)
0.146601 + 0.989196i \(0.453167\pi\)
\(432\) 0 0
\(433\) 24.5275i 1.17871i 0.807873 + 0.589357i \(0.200619\pi\)
−0.807873 + 0.589357i \(0.799381\pi\)
\(434\) 0 0
\(435\) 0.0416099 1.46895i 0.00199504 0.0704305i
\(436\) 0 0
\(437\) 0.322418 + 0.186148i 0.0154233 + 0.00890467i
\(438\) 0 0
\(439\) −9.14003 15.8310i −0.436230 0.755572i 0.561165 0.827704i \(-0.310353\pi\)
−0.997395 + 0.0721316i \(0.977020\pi\)
\(440\) 0 0
\(441\) 13.6055 15.9966i 0.647880 0.761742i
\(442\) 0 0
\(443\) −4.51333 + 2.60578i −0.214435 + 0.123804i −0.603371 0.797461i \(-0.706176\pi\)
0.388936 + 0.921265i \(0.372843\pi\)
\(444\) 0 0
\(445\) 1.60447 2.77902i 0.0760591 0.131738i
\(446\) 0 0
\(447\) −0.878887 1.62700i −0.0415699 0.0769543i
\(448\) 0 0
\(449\) −9.38031 −0.442684 −0.221342 0.975196i \(-0.571044\pi\)
−0.221342 + 0.975196i \(0.571044\pi\)
\(450\) 0 0
\(451\) 0.780414 + 1.35172i 0.0367482 + 0.0636498i
\(452\) 0 0
\(453\) 19.7254 10.6555i 0.926782 0.500638i
\(454\) 0 0
\(455\) −3.12466 + 1.55324i −0.146486 + 0.0728169i
\(456\) 0 0
\(457\) −14.6810 25.4283i −0.686749 1.18948i −0.972884 0.231295i \(-0.925704\pi\)
0.286134 0.958190i \(-0.407630\pi\)
\(458\) 0 0
\(459\) 38.0266 17.8392i 1.77493 0.832661i
\(460\) 0 0
\(461\) 1.10606 + 0.638584i 0.0515144 + 0.0297418i 0.525536 0.850771i \(-0.323865\pi\)
−0.474022 + 0.880513i \(0.657198\pi\)
\(462\) 0 0
\(463\) −23.8988 + 13.7980i −1.11067 + 0.641247i −0.939004 0.343907i \(-0.888249\pi\)
−0.171669 + 0.985155i \(0.554916\pi\)
\(464\) 0 0
\(465\) −0.0292787 + 1.03362i −0.00135777 + 0.0479329i
\(466\) 0 0
\(467\) −5.00656 + 8.67162i −0.231676 + 0.401275i −0.958301 0.285759i \(-0.907754\pi\)
0.726625 + 0.687034i \(0.241088\pi\)
\(468\) 0 0
\(469\) −13.2752 + 20.0047i −0.612993 + 0.923733i
\(470\) 0 0
\(471\) −0.397374 + 14.0284i −0.0183100 + 0.646395i
\(472\) 0 0
\(473\) 6.98176 12.0928i 0.321022 0.556026i
\(474\) 0 0
\(475\) 2.33416 4.04288i 0.107098 0.185500i
\(476\) 0 0
\(477\) −37.2562 2.11236i −1.70585 0.0967185i
\(478\) 0 0
\(479\) 14.7895 0.675749 0.337874 0.941191i \(-0.390292\pi\)
0.337874 + 0.941191i \(0.390292\pi\)
\(480\) 0 0
\(481\) 22.8807i 1.04327i
\(482\) 0 0
\(483\) −0.754643 1.63252i −0.0343374 0.0742824i
\(484\) 0 0
\(485\) −2.20798 + 3.82434i −0.100259 + 0.173654i
\(486\) 0 0
\(487\) −12.8101 + 7.39589i −0.580479 + 0.335140i −0.761324 0.648372i \(-0.775450\pi\)
0.180845 + 0.983512i \(0.442117\pi\)
\(488\) 0 0
\(489\) −0.895686 + 31.6202i −0.0405043 + 1.42991i
\(490\) 0 0
\(491\) 12.5410 7.24053i 0.565966 0.326760i −0.189571 0.981867i \(-0.560710\pi\)
0.755536 + 0.655107i \(0.227376\pi\)
\(492\) 0 0
\(493\) 24.4360i 1.10054i
\(494\) 0 0
\(495\) 1.30264 1.98723i 0.0585493 0.0893191i
\(496\) 0 0
\(497\) −4.08223 0.254575i −0.183113 0.0114193i
\(498\) 0 0
\(499\) 8.69119i 0.389071i 0.980895 + 0.194536i \(0.0623200\pi\)
−0.980895 + 0.194536i \(0.937680\pi\)
\(500\) 0 0
\(501\) −15.2931 + 24.8367i −0.683245 + 1.10962i
\(502\) 0 0
\(503\) −40.3239 −1.79795 −0.898977 0.437995i \(-0.855689\pi\)
−0.898977 + 0.437995i \(0.855689\pi\)
\(504\) 0 0
\(505\) 1.96771 0.0875621
\(506\) 0 0
\(507\) 15.7236 + 0.445393i 0.698310 + 0.0197806i
\(508\) 0 0
\(509\) 3.37858i 0.149753i 0.997193 + 0.0748764i \(0.0238562\pi\)
−0.997193 + 0.0748764i \(0.976144\pi\)
\(510\) 0 0
\(511\) −0.737294 1.48322i −0.0326160 0.0656137i
\(512\) 0 0
\(513\) −2.81789 + 4.04421i −0.124413 + 0.178556i
\(514\) 0 0
\(515\) 1.58084i 0.0696601i
\(516\) 0 0
\(517\) −6.81539 + 3.93487i −0.299741 + 0.173055i
\(518\) 0 0
\(519\) −29.2621 18.0181i −1.28447 0.790906i
\(520\) 0 0
\(521\) −34.6315 + 19.9945i −1.51723 + 0.875976i −0.517440 + 0.855719i \(0.673115\pi\)
−0.999795 + 0.0202566i \(0.993552\pi\)
\(522\) 0 0
\(523\) −6.43351 + 11.1432i −0.281318 + 0.487257i −0.971710 0.236179i \(-0.924105\pi\)
0.690392 + 0.723436i \(0.257438\pi\)
\(524\) 0 0
\(525\) −20.4706 + 9.46266i −0.893411 + 0.412984i
\(526\) 0 0
\(527\) 17.1943i 0.748997i
\(528\) 0 0
\(529\) 22.8460 0.993303
\(530\) 0 0
\(531\) 15.3974 + 30.5414i 0.668191 + 1.32538i
\(532\) 0 0
\(533\) 1.29952 2.25083i 0.0562883 0.0974942i
\(534\) 0 0
\(535\) 0.811103 1.40487i 0.0350671 0.0607379i
\(536\) 0 0
\(537\) 36.6985 + 22.5970i 1.58366 + 0.975131i
\(538\) 0 0
\(539\) −2.45425 + 19.6010i −0.105712 + 0.844276i
\(540\) 0 0
\(541\) −2.79138 + 4.83481i −0.120011 + 0.207865i −0.919772 0.392454i \(-0.871626\pi\)
0.799761 + 0.600319i \(0.204960\pi\)
\(542\) 0 0
\(543\) 11.1333 6.01408i 0.477775 0.258089i
\(544\) 0 0
\(545\) 2.00701 1.15875i 0.0859709 0.0496353i
\(546\) 0 0
\(547\) −9.37486 5.41258i −0.400840 0.231425i 0.286006 0.958228i \(-0.407672\pi\)
−0.686846 + 0.726803i \(0.741006\pi\)
\(548\) 0 0
\(549\) 1.89744 33.4656i 0.0809807 1.42827i
\(550\) 0 0
\(551\) −1.43380 2.48341i −0.0610819 0.105797i
\(552\) 0 0
\(553\) −18.1805 36.5738i −0.773114 1.55528i
\(554\) 0 0
\(555\) −0.0670223 + 2.36607i −0.00284494 + 0.100434i
\(556\) 0 0
\(557\) 8.38879 + 14.5298i 0.355445 + 0.615648i 0.987194 0.159525i \(-0.0509961\pi\)
−0.631749 + 0.775173i \(0.717663\pi\)
\(558\) 0 0
\(559\) −23.2515 −0.983436
\(560\) 0 0
\(561\) −20.7165 + 33.6445i −0.874651 + 1.42047i
\(562\) 0 0
\(563\) 14.3360 24.8307i 0.604192 1.04649i −0.387987 0.921665i \(-0.626829\pi\)
0.992179 0.124826i \(-0.0398374\pi\)
\(564\) 0 0
\(565\) −3.14785 + 1.81741i −0.132431 + 0.0764592i
\(566\) 0 0
\(567\) 22.3841 8.12120i 0.940042 0.341058i
\(568\) 0 0
\(569\) −16.6286 28.8015i −0.697106 1.20742i −0.969466 0.245227i \(-0.921137\pi\)
0.272360 0.962195i \(-0.412196\pi\)
\(570\) 0 0
\(571\) −28.2309 16.2991i −1.18143 0.682097i −0.225082 0.974340i \(-0.572265\pi\)
−0.956344 + 0.292243i \(0.905598\pi\)
\(572\) 0 0
\(573\) 12.1230 + 7.46469i 0.506445 + 0.311842i
\(574\) 0 0
\(575\) 1.93141i 0.0805455i
\(576\) 0 0
\(577\) 11.6155 6.70622i 0.483560 0.279183i −0.238339 0.971182i \(-0.576603\pi\)
0.721899 + 0.691999i \(0.243270\pi\)
\(578\) 0 0
\(579\) −33.8822 0.959760i −1.40810 0.0398863i
\(580\) 0 0
\(581\) 23.4040 + 15.5310i 0.970961 + 0.644334i
\(582\) 0 0
\(583\) 30.3993 17.5511i 1.25901 0.726891i
\(584\) 0 0
\(585\) −3.95028 0.223974i −0.163324 0.00926019i
\(586\) 0 0
\(587\) −17.2883 + 29.9443i −0.713566 + 1.23593i 0.249943 + 0.968260i \(0.419588\pi\)
−0.963510 + 0.267673i \(0.913745\pi\)
\(588\) 0 0
\(589\) 1.00889 + 1.74744i 0.0415705 + 0.0720022i
\(590\) 0 0
\(591\) 13.4951 + 24.9821i 0.555112 + 1.02763i
\(592\) 0 0
\(593\) 16.9169 + 9.76697i 0.694693 + 0.401081i 0.805368 0.592775i \(-0.201968\pi\)
−0.110675 + 0.993857i \(0.535301\pi\)
\(594\) 0 0
\(595\) −5.37509 + 2.67191i −0.220357 + 0.109538i
\(596\) 0 0
\(597\) −14.2926 + 23.2118i −0.584956 + 0.949994i
\(598\) 0 0
\(599\) 14.5524 + 8.40186i 0.594597 + 0.343291i 0.766913 0.641751i \(-0.221792\pi\)
−0.172316 + 0.985042i \(0.555125\pi\)
\(600\) 0 0
\(601\) −6.18993 3.57376i −0.252492 0.145777i 0.368413 0.929662i \(-0.379901\pi\)
−0.620905 + 0.783886i \(0.713235\pi\)
\(602\) 0 0
\(603\) −24.3089 + 12.2553i −0.989933 + 0.499074i
\(604\) 0 0
\(605\) 0.852167i 0.0346455i
\(606\) 0 0
\(607\) 17.8635 0.725058 0.362529 0.931972i \(-0.381913\pi\)
0.362529 + 0.931972i \(0.381913\pi\)
\(608\) 0 0
\(609\) −1.25336 + 13.7961i −0.0507886 + 0.559046i
\(610\) 0 0
\(611\) 11.3488 + 6.55220i 0.459121 + 0.265074i
\(612\) 0 0
\(613\) 9.85193 + 17.0640i 0.397916 + 0.689210i 0.993469 0.114106i \(-0.0364003\pi\)
−0.595553 + 0.803316i \(0.703067\pi\)
\(614\) 0 0
\(615\) −0.140975 + 0.228949i −0.00568465 + 0.00923213i
\(616\) 0 0
\(617\) −15.2946 26.4910i −0.615738 1.06649i −0.990255 0.139269i \(-0.955525\pi\)
0.374517 0.927220i \(-0.377809\pi\)
\(618\) 0 0
\(619\) 12.8995 0.518475 0.259237 0.965814i \(-0.416529\pi\)
0.259237 + 0.965814i \(0.416529\pi\)
\(620\) 0 0
\(621\) 0.173044 2.03196i 0.00694403 0.0815396i
\(622\) 0 0
\(623\) −16.7261 + 25.2049i −0.670117 + 1.00981i
\(624\) 0 0
\(625\) 23.8246 0.952985
\(626\) 0 0
\(627\) 0.131287 4.63481i 0.00524311 0.185096i
\(628\) 0 0
\(629\) 39.3598i 1.56938i
\(630\) 0 0
\(631\) 16.8826i 0.672085i −0.941847 0.336042i \(-0.890911\pi\)
0.941847 0.336042i \(-0.109089\pi\)
\(632\) 0 0
\(633\) 12.6271 + 7.77507i 0.501881 + 0.309031i
\(634\) 0 0
\(635\) 2.18143 0.0865673
\(636\) 0 0
\(637\) 30.3095 12.7803i 1.20091 0.506372i
\(638\) 0 0
\(639\) −3.87875 2.54255i −0.153441 0.100582i
\(640\) 0 0
\(641\) 12.2901 0.485429 0.242715 0.970098i \(-0.421962\pi\)
0.242715 + 0.970098i \(0.421962\pi\)
\(642\) 0 0
\(643\) −20.2664 35.1024i −0.799228 1.38430i −0.920119 0.391638i \(-0.871909\pi\)
0.120891 0.992666i \(-0.461425\pi\)
\(644\) 0 0
\(645\) 2.40442 + 0.0681085i 0.0946739 + 0.00268177i
\(646\) 0 0
\(647\) −12.3850 21.4515i −0.486905 0.843344i 0.512982 0.858400i \(-0.328541\pi\)
−0.999887 + 0.0150552i \(0.995208\pi\)
\(648\) 0 0
\(649\) −27.8634 16.0870i −1.09374 0.631469i
\(650\) 0 0
\(651\) 0.881920 9.70758i 0.0345652 0.380470i
\(652\) 0 0
\(653\) −18.6715 −0.730671 −0.365335 0.930876i \(-0.619046\pi\)
−0.365335 + 0.930876i \(0.619046\pi\)
\(654\) 0 0
\(655\) 2.24123i 0.0875719i
\(656\) 0 0
\(657\) 0.106316 1.87513i 0.00414780 0.0731557i
\(658\) 0 0
\(659\) −39.5720 22.8469i −1.54150 0.889988i −0.998744 0.0501010i \(-0.984046\pi\)
−0.542761 0.839887i \(-0.682621\pi\)
\(660\) 0 0
\(661\) 25.4400 + 14.6878i 0.989501 + 0.571289i 0.905125 0.425145i \(-0.139777\pi\)
0.0843762 + 0.996434i \(0.473110\pi\)
\(662\) 0 0
\(663\) 65.7660 + 1.86291i 2.55414 + 0.0723496i
\(664\) 0 0
\(665\) 0.389489 0.586930i 0.0151038 0.0227602i
\(666\) 0 0
\(667\) 1.02746 + 0.593203i 0.0397833 + 0.0229689i
\(668\) 0 0
\(669\) −33.3517 0.944733i −1.28945 0.0365255i
\(670\) 0 0
\(671\) 15.7653 + 27.3063i 0.608613 + 1.05415i
\(672\) 0 0
\(673\) 13.3294 23.0872i 0.513810 0.889945i −0.486062 0.873925i \(-0.661567\pi\)
0.999872 0.0160205i \(-0.00509972\pi\)
\(674\) 0 0
\(675\) −25.4792 2.16985i −0.980696 0.0835174i
\(676\) 0 0
\(677\) −40.9678 + 23.6528i −1.57452 + 0.909050i −0.578917 + 0.815387i \(0.696524\pi\)
−0.995604 + 0.0936633i \(0.970142\pi\)
\(678\) 0 0
\(679\) 23.0176 34.6856i 0.883333 1.33111i
\(680\) 0 0
\(681\) 16.9909 + 31.4536i 0.651093 + 1.20530i
\(682\) 0 0
\(683\) −23.6562 + 13.6579i −0.905178 + 0.522605i −0.878877 0.477049i \(-0.841706\pi\)
−0.0263018 + 0.999654i \(0.508373\pi\)
\(684\) 0 0
\(685\) 2.42758i 0.0927532i
\(686\) 0 0
\(687\) 32.2994 17.4478i 1.23230 0.665675i
\(688\) 0 0
\(689\) −50.6199 29.2254i −1.92846 1.11340i
\(690\) 0 0
\(691\) −19.8841 34.4403i −0.756427 1.31017i −0.944662 0.328046i \(-0.893610\pi\)
0.188235 0.982124i \(-0.439723\pi\)
\(692\) 0 0
\(693\) −13.4218 + 17.9324i −0.509851 + 0.681197i
\(694\) 0 0
\(695\) 3.49752 2.01930i 0.132669 0.0765963i
\(696\) 0 0
\(697\) 2.23545 3.87192i 0.0846738 0.146659i
\(698\) 0 0
\(699\) −26.9576 0.763610i −1.01963 0.0288824i
\(700\) 0 0
\(701\) −33.5286 −1.26636 −0.633180 0.774005i \(-0.718251\pi\)
−0.633180 + 0.774005i \(0.718251\pi\)
\(702\) 0 0
\(703\) 2.30946 + 4.00010i 0.0871029 + 0.150867i
\(704\) 0 0
\(705\) −1.15437 0.710799i −0.0434761 0.0267703i
\(706\) 0 0
\(707\) −18.5132 1.15451i −0.696259 0.0434199i
\(708\) 0 0
\(709\) 15.1763 + 26.2860i 0.569956 + 0.987193i 0.996570 + 0.0827589i \(0.0263732\pi\)
−0.426613 + 0.904434i \(0.640294\pi\)
\(710\) 0 0
\(711\) 2.62160 46.2377i 0.0983175 1.73405i
\(712\) 0 0
\(713\) −0.722967 0.417405i −0.0270753 0.0156319i
\(714\) 0 0
\(715\) 3.22324 1.86094i 0.120542 0.0695952i
\(716\) 0 0
\(717\) 10.8430 + 6.67656i 0.404940 + 0.249341i
\(718\) 0 0
\(719\) −17.8512 + 30.9192i −0.665737 + 1.15309i 0.313348 + 0.949638i \(0.398549\pi\)
−0.979085 + 0.203452i \(0.934784\pi\)
\(720\) 0 0
\(721\) −0.927523 + 14.8733i −0.0345427 + 0.553909i
\(722\) 0 0
\(723\) 8.76925 4.73706i 0.326132 0.176173i
\(724\) 0 0
\(725\) 7.43832 12.8835i 0.276252 0.478483i
\(726\) 0 0
\(727\) 4.33546 7.50924i 0.160793 0.278502i −0.774360 0.632745i \(-0.781928\pi\)
0.935153 + 0.354243i \(0.115261\pi\)
\(728\) 0 0
\(729\) 26.6112 + 4.56560i 0.985600 + 0.169096i
\(730\) 0 0
\(731\) −39.9977 −1.47937
\(732\) 0 0
\(733\) 4.04828i 0.149527i 0.997201 + 0.0747633i \(0.0238201\pi\)
−0.997201 + 0.0747633i \(0.976180\pi\)
\(734\) 0 0
\(735\) −3.17171 + 1.23281i −0.116990 + 0.0454729i
\(736\) 0 0
\(737\) 12.8041 22.1774i 0.471646 0.816915i
\(738\) 0 0
\(739\) 18.5401 10.7042i 0.682010 0.393759i −0.118602 0.992942i \(-0.537841\pi\)
0.800612 + 0.599183i \(0.204508\pi\)
\(740\) 0 0
\(741\) −6.79305 + 3.66953i −0.249549 + 0.134804i
\(742\) 0 0
\(743\) 43.3251 25.0137i 1.58944 0.917665i 0.596044 0.802952i \(-0.296738\pi\)
0.993399 0.114714i \(-0.0365951\pi\)
\(744\) 0 0
\(745\) 0.299649i 0.0109783i
\(746\) 0 0
\(747\) 14.3377 + 28.4395i 0.524590 + 1.04055i
\(748\) 0 0
\(749\) −8.45551 + 12.7418i −0.308958 + 0.465575i
\(750\) 0 0
\(751\) 21.3074i 0.777516i −0.921340 0.388758i \(-0.872904\pi\)
0.921340 0.388758i \(-0.127096\pi\)
\(752\) 0 0
\(753\) −18.1103 33.5258i −0.659976 1.22175i
\(754\) 0 0
\(755\) −3.63289 −0.132214
\(756\) 0 0
\(757\) 13.2589 0.481904 0.240952 0.970537i \(-0.422540\pi\)
0.240952 + 0.970537i \(0.422540\pi\)
\(758\) 0 0
\(759\) 0.911736 + 1.68781i 0.0330939 + 0.0612635i
\(760\) 0 0
\(761\) 40.2650i 1.45961i 0.683658 + 0.729803i \(0.260388\pi\)
−0.683658 + 0.729803i \(0.739612\pi\)
\(762\) 0 0
\(763\) −19.5628 + 9.72447i −0.708219 + 0.352049i
\(764\) 0 0
\(765\) −6.79534 0.385284i −0.245686 0.0139300i
\(766\) 0 0
\(767\) 53.5749i 1.93448i
\(768\) 0 0
\(769\) −5.51138 + 3.18199i −0.198745 + 0.114746i −0.596070 0.802932i \(-0.703272\pi\)
0.397325 + 0.917678i \(0.369939\pi\)
\(770\) 0 0
\(771\) 2.21827 1.19829i 0.0798891 0.0431553i
\(772\) 0 0
\(773\) 42.9373 24.7899i 1.54435 0.891629i 0.545790 0.837922i \(-0.316230\pi\)
0.998557 0.0537073i \(-0.0171038\pi\)
\(774\) 0 0
\(775\) −5.23395 + 9.06546i −0.188009 + 0.325641i
\(776\) 0 0
\(777\) 2.01882 22.2218i 0.0724247 0.797202i
\(778\) 0 0
\(779\) 0.524666i 0.0187981i
\(780\) 0 0
\(781\) 4.36265 0.156108
\(782\) 0 0
\(783\) −8.97983 + 12.8878i −0.320913 + 0.460572i
\(784\) 0 0
\(785\) 1.13705 1.96943i 0.0405831 0.0702919i
\(786\) 0 0
\(787\) −14.1133 + 24.4450i −0.503086 + 0.871370i 0.496908 + 0.867803i \(0.334469\pi\)
−0.999994 + 0.00356700i \(0.998865\pi\)
\(788\) 0 0
\(789\) 32.3713 17.4866i 1.15245 0.622540i
\(790\) 0 0
\(791\) 30.6828 15.2521i 1.09095 0.542303i
\(792\) 0 0
\(793\) 26.2518 45.4695i 0.932230 1.61467i
\(794\) 0 0
\(795\) 5.14894 + 3.17045i 0.182614 + 0.112444i
\(796\) 0 0
\(797\) 15.6877 9.05731i 0.555688 0.320826i −0.195725 0.980659i \(-0.562706\pi\)
0.751413 + 0.659832i \(0.229373\pi\)
\(798\) 0 0
\(799\) 19.5223 + 11.2712i 0.690650 + 0.398747i
\(800\) 0 0
\(801\) −30.6279 + 15.4410i −1.08218 + 0.545582i
\(802\) 0 0
\(803\) 0.883355 + 1.53002i 0.0311729 + 0.0539931i
\(804\) 0 0
\(805\) −0.0181390 + 0.290868i −0.000639317 + 0.0102517i
\(806\) 0 0
\(807\) 29.7613 + 18.3254i 1.04765 + 0.645085i
\(808\) 0 0
\(809\) −1.56171 2.70496i −0.0549067 0.0951012i 0.837266 0.546796i \(-0.184153\pi\)
−0.892172 + 0.451695i \(0.850819\pi\)
\(810\) 0 0
\(811\) 9.66660 0.339440 0.169720 0.985492i \(-0.445714\pi\)
0.169720 + 0.985492i \(0.445714\pi\)
\(812\) 0 0
\(813\) 30.0990 + 0.852596i 1.05562 + 0.0299019i
\(814\) 0 0
\(815\) 2.56292 4.43911i 0.0897753 0.155495i
\(816\) 0 0
\(817\) 4.06493 2.34689i 0.142214 0.0821072i
\(818\) 0 0
\(819\) 37.0346 + 4.42499i 1.29410 + 0.154622i
\(820\) 0 0
\(821\) −14.4777 25.0761i −0.505275 0.875162i −0.999981 0.00610201i \(-0.998058\pi\)
0.494706 0.869060i \(-0.335276\pi\)
\(822\) 0 0
\(823\) −34.4646 19.8981i −1.20136 0.693605i −0.240502 0.970649i \(-0.577312\pi\)
−0.960857 + 0.277043i \(0.910645\pi\)
\(824\) 0 0
\(825\) 21.1638 11.4325i 0.736830 0.398028i
\(826\) 0 0
\(827\) 37.9694i 1.32033i 0.751123 + 0.660163i \(0.229513\pi\)
−0.751123 + 0.660163i \(0.770487\pi\)
\(828\) 0 0
\(829\) 38.3383 22.1346i 1.33154 0.768766i 0.346006 0.938232i \(-0.387538\pi\)
0.985536 + 0.169466i \(0.0542042\pi\)
\(830\) 0 0
\(831\) 0.933314 + 1.72775i 0.0323763 + 0.0599351i
\(832\) 0 0
\(833\) 52.1390 21.9848i 1.80651 0.761729i
\(834\) 0 0
\(835\) 4.09313 2.36317i 0.141649 0.0817809i
\(836\) 0 0
\(837\) 6.31863 9.06845i 0.218404 0.313452i
\(838\) 0 0
\(839\) 16.3128 28.2547i 0.563182 0.975460i −0.434034 0.900896i \(-0.642910\pi\)
0.997216 0.0745634i \(-0.0237563\pi\)
\(840\) 0 0
\(841\) 9.93088 + 17.2008i 0.342444 + 0.593130i
\(842\) 0 0
\(843\) −22.0770 0.625362i −0.760373 0.0215386i
\(844\) 0 0
\(845\) −2.20741 1.27445i −0.0759374 0.0438425i
\(846\) 0 0
\(847\) −0.499990 + 8.01758i −0.0171799 + 0.275487i
\(848\) 0 0
\(849\) 11.7213 + 0.332022i 0.402274 + 0.0113950i
\(850\) 0 0
\(851\) −1.65495 0.955489i −0.0567311 0.0327537i
\(852\) 0 0
\(853\) 9.50254 + 5.48629i 0.325361 + 0.187847i 0.653779 0.756685i \(-0.273182\pi\)
−0.328419 + 0.944532i \(0.606516\pi\)
\(854\) 0 0
\(855\) 0.713211 0.359565i 0.0243913 0.0122968i
\(856\) 0 0
\(857\) 3.51579i 0.120097i 0.998195 + 0.0600485i \(0.0191255\pi\)
−0.998195 + 0.0600485i \(0.980874\pi\)
\(858\) 0 0
\(859\) 15.1768 0.517827 0.258913 0.965901i \(-0.416636\pi\)
0.258913 + 0.965901i \(0.416636\pi\)
\(860\) 0 0
\(861\) 1.46069 2.07135i 0.0497801 0.0705913i
\(862\) 0 0
\(863\) −29.7041 17.1496i −1.01114 0.583781i −0.0996133 0.995026i \(-0.531761\pi\)
−0.911525 + 0.411245i \(0.865094\pi\)
\(864\) 0 0
\(865\) 2.78425 + 4.82246i 0.0946673 + 0.163969i
\(866\) 0 0
\(867\) 83.6988 + 2.37088i 2.84256 + 0.0805195i
\(868\) 0 0
\(869\) 21.7821 + 37.7278i 0.738909 + 1.27983i
\(870\) 0 0
\(871\) −42.6419 −1.44487
\(872\) 0 0
\(873\) 42.1484 21.2491i 1.42651 0.719173i
\(874\) 0 0
\(875\) 7.35291 + 0.458540i 0.248574 + 0.0155015i
\(876\) 0 0
\(877\) 21.2826 0.718664 0.359332 0.933210i \(-0.383005\pi\)
0.359332 + 0.933210i \(0.383005\pi\)
\(878\) 0 0
\(879\) 17.9232 + 11.0361i 0.604534 + 0.372240i
\(880\) 0 0
\(881\) 20.5029i 0.690761i 0.938463 + 0.345380i \(0.112250\pi\)
−0.938463 + 0.345380i \(0.887750\pi\)
\(882\) 0 0
\(883\) 39.9687i 1.34506i 0.740072 + 0.672528i \(0.234791\pi\)
−0.740072 + 0.672528i \(0.765209\pi\)
\(884\) 0 0
\(885\) 0.156932 5.54012i 0.00527520 0.186229i
\(886\) 0 0
\(887\) −33.3020 −1.11817 −0.559085 0.829110i \(-0.688848\pi\)
−0.559085 + 0.829110i \(0.688848\pi\)
\(888\) 0 0
\(889\) −20.5239 1.27990i −0.688348 0.0429266i
\(890\) 0 0
\(891\) −23.2899 + 10.1315i −0.780240 + 0.339417i
\(892\) 0 0
\(893\) −2.64538 −0.0885243
\(894\) 0 0
\(895\) −3.49181 6.04798i −0.116718 0.202162i
\(896\) 0 0
\(897\) 1.67485 2.72003i 0.0559216 0.0908191i
\(898\) 0 0
\(899\) 3.21505 + 5.56863i 0.107228 + 0.185724i
\(900\) 0 0
\(901\) −87.0772 50.2741i −2.90096 1.67487i
\(902\) 0 0
\(903\) −22.5819 2.05154i −0.751479 0.0682708i
\(904\) 0 0
\(905\) −2.05045 −0.0681592
\(906\) 0 0
\(907\) 1.71137i 0.0568250i 0.999596 + 0.0284125i \(0.00904519\pi\)
−0.999596 + 0.0284125i \(0.990955\pi\)
\(908\) 0 0
\(909\) −17.5904 11.5306i −0.583435 0.382446i
\(910\) 0 0
\(911\) −7.22479 4.17123i −0.239368 0.138199i 0.375518 0.926815i \(-0.377465\pi\)
−0.614886 + 0.788616i \(0.710798\pi\)
\(912\) 0 0
\(913\) −25.9458 14.9798i −0.858682 0.495760i
\(914\) 0 0
\(915\) −2.84786 + 4.62506i −0.0941475 + 0.152900i
\(916\) 0 0
\(917\) 1.31499 21.0865i 0.0434248 0.696337i
\(918\) 0 0
\(919\) 13.4897 + 7.78828i 0.444984 + 0.256911i 0.705709 0.708501i \(-0.250628\pi\)
−0.260726 + 0.965413i \(0.583962\pi\)
\(920\) 0 0
\(921\) −14.2419 26.3647i −0.469287 0.868746i
\(922\) 0 0
\(923\) −3.63226 6.29126i −0.119557 0.207079i
\(924\) 0 0
\(925\) −11.9811 + 20.7519i −0.393937 + 0.682318i
\(926\) 0 0
\(927\) −9.26355 + 14.1319i −0.304255 + 0.464152i
\(928\) 0 0
\(929\) 2.11736 1.22246i 0.0694684 0.0401076i −0.464863 0.885382i \(-0.653897\pi\)
0.534332 + 0.845275i \(0.320563\pi\)
\(930\) 0 0
\(931\) −4.00886 + 5.29358i −0.131385 + 0.173490i
\(932\) 0 0
\(933\) −45.8392 1.29846i −1.50071 0.0425096i
\(934\) 0 0
\(935\) 5.54468 3.20122i 0.181330 0.104691i
\(936\) 0 0
\(937\) 2.32069i 0.0758137i 0.999281 + 0.0379069i \(0.0120690\pi\)
−0.999281 + 0.0379069i \(0.987931\pi\)
\(938\) 0 0
\(939\) −6.58878 4.05702i −0.215017 0.132396i
\(940\) 0 0
\(941\) 13.7718 + 7.95114i 0.448947 + 0.259200i 0.707386 0.706828i \(-0.249875\pi\)
−0.258438 + 0.966028i \(0.583208\pi\)
\(942\) 0 0
\(943\) −0.108534 0.187987i −0.00353437 0.00612171i
\(944\) 0 0
\(945\) −3.81675 0.566066i −0.124159 0.0184141i
\(946\) 0 0
\(947\) 31.4689 18.1686i 1.02260 0.590400i 0.107746 0.994178i \(-0.465637\pi\)
0.914857 + 0.403778i \(0.132303\pi\)
\(948\) 0 0
\(949\) 1.47093 2.54773i 0.0477484 0.0827027i
\(950\) 0 0
\(951\) 26.7027 43.3663i 0.865893 1.40625i
\(952\) 0 0
\(953\) −10.1790 −0.329730 −0.164865 0.986316i \(-0.552719\pi\)
−0.164865 + 0.986316i \(0.552719\pi\)
\(954\) 0 0
\(955\) −1.15348 1.99789i −0.0373259 0.0646503i
\(956\) 0 0
\(957\) 0.418377 14.7699i 0.0135242 0.477442i
\(958\) 0 0
\(959\) −1.42433 + 22.8398i −0.0459940 + 0.737536i
\(960\) 0 0
\(961\) 13.2377 + 22.9284i 0.427024 + 0.739627i
\(962\) 0 0
\(963\) −15.4833 + 7.80586i −0.498941 + 0.251540i
\(964\) 0 0
\(965\) 4.75668 + 2.74627i 0.153123 + 0.0884055i
\(966\) 0 0
\(967\) −17.1689 + 9.91247i −0.552115 + 0.318764i −0.749974 0.661467i \(-0.769934\pi\)
0.197860 + 0.980230i \(0.436601\pi\)
\(968\) 0 0
\(969\) −11.6855 + 6.31240i −0.375393 + 0.202783i
\(970\) 0 0
\(971\) 12.7738 22.1249i 0.409931 0.710021i −0.584951 0.811069i \(-0.698886\pi\)
0.994882 + 0.101048i \(0.0322196\pi\)
\(972\) 0 0
\(973\) −34.0911 + 16.9464i −1.09291 + 0.543276i
\(974\) 0 0
\(975\) −34.1071 21.0014i −1.09230 0.672582i
\(976\) 0 0
\(977\) 11.3985 19.7428i 0.364671 0.631629i −0.624052 0.781383i \(-0.714515\pi\)
0.988723 + 0.149754i \(0.0478480\pi\)
\(978\) 0 0
\(979\) 16.1325 27.9424i 0.515598 0.893041i
\(980\) 0 0
\(981\) −24.7318 1.40225i −0.789626 0.0447704i
\(982\) 0 0
\(983\) 55.9907 1.78583 0.892914 0.450228i \(-0.148657\pi\)
0.892914 + 0.450228i \(0.148657\pi\)
\(984\) 0 0
\(985\) 4.60102i 0.146601i
\(986\) 0 0
\(987\) 10.4438 + 7.36483i 0.332430 + 0.234425i
\(988\) 0 0
\(989\) −0.970974 + 1.68178i −0.0308752 + 0.0534774i
\(990\) 0 0
\(991\) −21.3062 + 12.3011i −0.676814 + 0.390759i −0.798653 0.601791i \(-0.794454\pi\)
0.121840 + 0.992550i \(0.461121\pi\)
\(992\) 0 0
\(993\) −1.44809 0.891655i −0.0459537 0.0282958i
\(994\) 0 0
\(995\) 3.82534 2.20856i 0.121272 0.0700162i
\(996\) 0 0
\(997\) 40.4343i 1.28057i −0.768139 0.640283i \(-0.778817\pi\)
0.768139 0.640283i \(-0.221183\pi\)
\(998\) 0 0
\(999\) 14.4641 20.7587i 0.457623 0.656777i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.bf.g.943.9 yes 24
3.2 odd 2 3024.2.bf.h.2287.6 24
4.3 odd 2 1008.2.bf.h.943.4 yes 24
7.3 odd 6 1008.2.cz.g.367.5 yes 24
9.4 even 3 1008.2.cz.h.607.8 yes 24
9.5 odd 6 3024.2.cz.g.1279.6 24
12.11 even 2 3024.2.bf.g.2287.6 24
21.17 even 6 3024.2.cz.h.2719.6 24
28.3 even 6 1008.2.cz.h.367.8 yes 24
36.23 even 6 3024.2.cz.h.1279.6 24
36.31 odd 6 1008.2.cz.g.607.5 yes 24
63.31 odd 6 1008.2.bf.h.31.4 yes 24
63.59 even 6 3024.2.bf.g.1711.7 24
84.59 odd 6 3024.2.cz.g.2719.6 24
252.31 even 6 inner 1008.2.bf.g.31.9 24
252.59 odd 6 3024.2.bf.h.1711.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.9 24 252.31 even 6 inner
1008.2.bf.g.943.9 yes 24 1.1 even 1 trivial
1008.2.bf.h.31.4 yes 24 63.31 odd 6
1008.2.bf.h.943.4 yes 24 4.3 odd 2
1008.2.cz.g.367.5 yes 24 7.3 odd 6
1008.2.cz.g.607.5 yes 24 36.31 odd 6
1008.2.cz.h.367.8 yes 24 28.3 even 6
1008.2.cz.h.607.8 yes 24 9.4 even 3
3024.2.bf.g.1711.7 24 63.59 even 6
3024.2.bf.g.2287.6 24 12.11 even 2
3024.2.bf.h.1711.7 24 252.59 odd 6
3024.2.bf.h.2287.6 24 3.2 odd 2
3024.2.cz.g.1279.6 24 9.5 odd 6
3024.2.cz.g.2719.6 24 84.59 odd 6
3024.2.cz.h.1279.6 24 36.23 even 6
3024.2.cz.h.2719.6 24 21.17 even 6