L(s) = 1 | + (0.823 + 1.52i)3-s − 0.280i·5-s + (−0.164 + 2.64i)7-s + (−1.64 + 2.50i)9-s − 2.82i·11-s + (−4.06 + 2.34i)13-s + (0.427 − 0.231i)15-s + (−7.00 + 4.04i)17-s + (0.474 − 0.821i)19-s + (−4.15 + 1.92i)21-s + 0.392i·23-s + 4.92·25-s + (−5.17 − 0.440i)27-s + (1.51 − 2.61i)29-s + (−1.06 + 1.84i)31-s + ⋯ |
L(s) = 1 | + (0.475 + 0.879i)3-s − 0.125i·5-s + (−0.0622 + 0.998i)7-s + (−0.548 + 0.836i)9-s − 0.850i·11-s + (−1.12 + 0.651i)13-s + (0.110 − 0.0596i)15-s + (−1.69 + 0.980i)17-s + (0.108 − 0.188i)19-s + (−0.907 + 0.419i)21-s + 0.0818i·23-s + 0.984·25-s + (−0.996 − 0.0848i)27-s + (0.280 − 0.486i)29-s + (−0.191 + 0.330i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.913 - 0.407i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.913 - 0.407i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.143710494\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.143710494\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.823 - 1.52i)T \) |
| 7 | \( 1 + (0.164 - 2.64i)T \) |
good | 5 | \( 1 + 0.280iT - 5T^{2} \) |
| 11 | \( 1 + 2.82iT - 11T^{2} \) |
| 13 | \( 1 + (4.06 - 2.34i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (7.00 - 4.04i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.474 + 0.821i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 0.392iT - 23T^{2} \) |
| 29 | \( 1 + (-1.51 + 2.61i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.06 - 1.84i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.43 - 4.21i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.478 - 0.276i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.28 - 2.47i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.39 + 2.41i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.21 - 10.7i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.70 + 9.87i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (9.67 - 5.58i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.85 - 4.53i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.54iT - 71T^{2} \) |
| 73 | \( 1 + (0.542 - 0.313i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (13.3 - 7.71i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.30 + 9.19i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-9.90 - 5.71i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (13.6 + 7.86i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25990739918754343300961432822, −9.288763940445966706005419828480, −8.807614051324470311194157300857, −8.209100798560681145869861694683, −6.90569234826560076378698027846, −5.93858070469547845256699739168, −4.96885953275434085624671162186, −4.23175544537621428479093006528, −2.97678618660488023101509437714, −2.15113533336543258098411421368,
0.45612249546286201693347563506, 2.04737258711704877507771211739, 2.97355434096868084867834534816, 4.25316937292689274114977657550, 5.18278349669840327113927606719, 6.63853200684531952759718594571, 7.12160443740919121616771817813, 7.67242414357011934236697735786, 8.763990533419376228410845241171, 9.532793809074053729089846244465