Properties

Label 2-1008-252.187-c1-0-9
Degree $2$
Conductor $1008$
Sign $-0.913 - 0.407i$
Analytic cond. $8.04892$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.823 + 1.52i)3-s − 0.280i·5-s + (−0.164 + 2.64i)7-s + (−1.64 + 2.50i)9-s − 2.82i·11-s + (−4.06 + 2.34i)13-s + (0.427 − 0.231i)15-s + (−7.00 + 4.04i)17-s + (0.474 − 0.821i)19-s + (−4.15 + 1.92i)21-s + 0.392i·23-s + 4.92·25-s + (−5.17 − 0.440i)27-s + (1.51 − 2.61i)29-s + (−1.06 + 1.84i)31-s + ⋯
L(s)  = 1  + (0.475 + 0.879i)3-s − 0.125i·5-s + (−0.0622 + 0.998i)7-s + (−0.548 + 0.836i)9-s − 0.850i·11-s + (−1.12 + 0.651i)13-s + (0.110 − 0.0596i)15-s + (−1.69 + 0.980i)17-s + (0.108 − 0.188i)19-s + (−0.907 + 0.419i)21-s + 0.0818i·23-s + 0.984·25-s + (−0.996 − 0.0848i)27-s + (0.280 − 0.486i)29-s + (−0.191 + 0.330i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.913 - 0.407i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.913 - 0.407i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.913 - 0.407i$
Analytic conductor: \(8.04892\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (943, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ -0.913 - 0.407i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.143710494\)
\(L(\frac12)\) \(\approx\) \(1.143710494\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.823 - 1.52i)T \)
7 \( 1 + (0.164 - 2.64i)T \)
good5 \( 1 + 0.280iT - 5T^{2} \)
11 \( 1 + 2.82iT - 11T^{2} \)
13 \( 1 + (4.06 - 2.34i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + (7.00 - 4.04i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.474 + 0.821i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 - 0.392iT - 23T^{2} \)
29 \( 1 + (-1.51 + 2.61i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (1.06 - 1.84i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (2.43 - 4.21i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (0.478 - 0.276i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-4.28 - 2.47i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (1.39 + 2.41i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-6.21 - 10.7i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-5.70 + 9.87i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (9.67 - 5.58i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-7.85 - 4.53i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 1.54iT - 71T^{2} \)
73 \( 1 + (0.542 - 0.313i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (13.3 - 7.71i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + (-5.30 + 9.19i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-9.90 - 5.71i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (13.6 + 7.86i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25990739918754343300961432822, −9.288763940445966706005419828480, −8.807614051324470311194157300857, −8.209100798560681145869861694683, −6.90569234826560076378698027846, −5.93858070469547845256699739168, −4.96885953275434085624671162186, −4.23175544537621428479093006528, −2.97678618660488023101509437714, −2.15113533336543258098411421368, 0.45612249546286201693347563506, 2.04737258711704877507771211739, 2.97355434096868084867834534816, 4.25316937292689274114977657550, 5.18278349669840327113927606719, 6.63853200684531952759718594571, 7.12160443740919121616771817813, 7.67242414357011934236697735786, 8.763990533419376228410845241171, 9.532793809074053729089846244465

Graph of the $Z$-function along the critical line