L(s) = 1 | + (0.823 − 1.52i)3-s + 0.280i·5-s + (−0.164 − 2.64i)7-s + (−1.64 − 2.50i)9-s + 2.82i·11-s + (−4.06 − 2.34i)13-s + (0.427 + 0.231i)15-s + (−7.00 − 4.04i)17-s + (0.474 + 0.821i)19-s + (−4.15 − 1.92i)21-s − 0.392i·23-s + 4.92·25-s + (−5.17 + 0.440i)27-s + (1.51 + 2.61i)29-s + (−1.06 − 1.84i)31-s + ⋯ |
L(s) = 1 | + (0.475 − 0.879i)3-s + 0.125i·5-s + (−0.0622 − 0.998i)7-s + (−0.548 − 0.836i)9-s + 0.850i·11-s + (−1.12 − 0.651i)13-s + (0.110 + 0.0596i)15-s + (−1.69 − 0.980i)17-s + (0.108 + 0.188i)19-s + (−0.907 − 0.419i)21-s − 0.0818i·23-s + 0.984·25-s + (−0.996 + 0.0848i)27-s + (0.280 + 0.486i)29-s + (−0.191 − 0.330i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.913 + 0.407i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.913 + 0.407i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.143710494\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.143710494\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.823 + 1.52i)T \) |
| 7 | \( 1 + (0.164 + 2.64i)T \) |
good | 5 | \( 1 - 0.280iT - 5T^{2} \) |
| 11 | \( 1 - 2.82iT - 11T^{2} \) |
| 13 | \( 1 + (4.06 + 2.34i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (7.00 + 4.04i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.474 - 0.821i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 0.392iT - 23T^{2} \) |
| 29 | \( 1 + (-1.51 - 2.61i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.06 + 1.84i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.43 + 4.21i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.478 + 0.276i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.28 + 2.47i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.39 - 2.41i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.21 + 10.7i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.70 - 9.87i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (9.67 + 5.58i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.85 + 4.53i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.54iT - 71T^{2} \) |
| 73 | \( 1 + (0.542 + 0.313i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (13.3 + 7.71i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.30 - 9.19i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-9.90 + 5.71i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (13.6 - 7.86i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.532793809074053729089846244465, −8.763990533419376228410845241171, −7.67242414357011934236697735786, −7.12160443740919121616771817813, −6.63853200684531952759718594571, −5.18278349669840327113927606719, −4.25316937292689274114977657550, −2.97355434096868084867834534816, −2.04737258711704877507771211739, −0.45612249546286201693347563506,
2.15113533336543258098411421368, 2.97678618660488023101509437714, 4.23175544537621428479093006528, 4.96885953275434085624671162186, 5.93858070469547845256699739168, 6.90569234826560076378698027846, 8.209100798560681145869861694683, 8.807614051324470311194157300857, 9.288763940445966706005419828480, 10.25990739918754343300961432822