Properties

Label 1008.2.bf.g.31.11
Level $1008$
Weight $2$
Character 1008.31
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(31,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-3,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.11
Character \(\chi\) \(=\) 1008.31
Dual form 1008.2.bf.g.943.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.55599 + 0.760852i) q^{3} -1.99968i q^{5} +(2.18955 - 1.48522i) q^{7} +(1.84221 + 2.36776i) q^{9} -1.36249i q^{11} +(-1.71030 - 0.987444i) q^{13} +(1.52146 - 3.11148i) q^{15} +(0.868852 + 0.501632i) q^{17} +(0.774396 + 1.34129i) q^{19} +(4.53695 - 0.645056i) q^{21} -8.77155i q^{23} +1.00128 q^{25} +(1.06494 + 5.08585i) q^{27} +(0.854529 + 1.48009i) q^{29} +(-0.261122 - 0.452277i) q^{31} +(1.03665 - 2.12002i) q^{33} +(-2.96996 - 4.37840i) q^{35} +(1.53855 + 2.66485i) q^{37} +(-1.90992 - 2.83774i) q^{39} +(0.386794 + 0.223316i) q^{41} +(-5.49888 + 3.17478i) q^{43} +(4.73475 - 3.68383i) q^{45} +(-0.819743 + 1.41984i) q^{47} +(2.58827 - 6.50391i) q^{49} +(0.970257 + 1.44160i) q^{51} +(1.24313 - 2.15316i) q^{53} -2.72454 q^{55} +(0.184426 + 2.67624i) q^{57} +(-6.31421 - 10.9365i) q^{59} +(9.13080 + 5.27167i) q^{61} +(7.55024 + 2.44825i) q^{63} +(-1.97457 + 3.42006i) q^{65} +(-5.63337 + 3.25243i) q^{67} +(6.67385 - 13.6484i) q^{69} -1.57299i q^{71} +(13.6347 + 7.87199i) q^{73} +(1.55799 + 0.761828i) q^{75} +(-2.02359 - 2.98324i) q^{77} +(-5.16095 - 2.97967i) q^{79} +(-2.21254 + 8.72380i) q^{81} +(4.80565 + 8.32363i) q^{83} +(1.00310 - 1.73743i) q^{85} +(0.203511 + 2.95317i) q^{87} +(-1.10887 + 0.640207i) q^{89} +(-5.21136 + 0.378111i) q^{91} +(-0.0621876 - 0.902414i) q^{93} +(2.68215 - 1.54854i) q^{95} +(-8.31781 + 4.80229i) q^{97} +(3.22604 - 2.50999i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 3 q^{3} + 8 q^{7} - q^{9} + 3 q^{13} - 6 q^{15} - 3 q^{17} + 4 q^{19} - 20 q^{21} - 30 q^{25} - 9 q^{27} + 18 q^{29} + 17 q^{31} - 12 q^{33} + 42 q^{35} - 3 q^{37} - 42 q^{39} - 36 q^{41} + 24 q^{43}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.55599 + 0.760852i 0.898351 + 0.439278i
\(4\) 0 0
\(5\) 1.99968i 0.894284i −0.894463 0.447142i \(-0.852442\pi\)
0.894463 0.447142i \(-0.147558\pi\)
\(6\) 0 0
\(7\) 2.18955 1.48522i 0.827572 0.561359i
\(8\) 0 0
\(9\) 1.84221 + 2.36776i 0.614069 + 0.789252i
\(10\) 0 0
\(11\) 1.36249i 0.410805i −0.978678 0.205403i \(-0.934150\pi\)
0.978678 0.205403i \(-0.0658504\pi\)
\(12\) 0 0
\(13\) −1.71030 0.987444i −0.474353 0.273868i 0.243707 0.969849i \(-0.421636\pi\)
−0.718060 + 0.695981i \(0.754970\pi\)
\(14\) 0 0
\(15\) 1.52146 3.11148i 0.392839 0.803381i
\(16\) 0 0
\(17\) 0.868852 + 0.501632i 0.210728 + 0.121664i 0.601649 0.798760i \(-0.294510\pi\)
−0.390922 + 0.920424i \(0.627844\pi\)
\(18\) 0 0
\(19\) 0.774396 + 1.34129i 0.177659 + 0.307714i 0.941078 0.338189i \(-0.109814\pi\)
−0.763420 + 0.645903i \(0.776481\pi\)
\(20\) 0 0
\(21\) 4.53695 0.645056i 0.990043 0.140763i
\(22\) 0 0
\(23\) 8.77155i 1.82900i −0.404592 0.914498i \(-0.632586\pi\)
0.404592 0.914498i \(-0.367414\pi\)
\(24\) 0 0
\(25\) 1.00128 0.200257
\(26\) 0 0
\(27\) 1.06494 + 5.08585i 0.204949 + 0.978773i
\(28\) 0 0
\(29\) 0.854529 + 1.48009i 0.158682 + 0.274846i 0.934394 0.356242i \(-0.115942\pi\)
−0.775712 + 0.631088i \(0.782609\pi\)
\(30\) 0 0
\(31\) −0.261122 0.452277i −0.0468989 0.0812313i 0.841623 0.540065i \(-0.181601\pi\)
−0.888522 + 0.458834i \(0.848267\pi\)
\(32\) 0 0
\(33\) 1.03665 2.12002i 0.180458 0.369047i
\(34\) 0 0
\(35\) −2.96996 4.37840i −0.502014 0.740085i
\(36\) 0 0
\(37\) 1.53855 + 2.66485i 0.252936 + 0.438099i 0.964333 0.264692i \(-0.0852703\pi\)
−0.711397 + 0.702791i \(0.751937\pi\)
\(38\) 0 0
\(39\) −1.90992 2.83774i −0.305831 0.454402i
\(40\) 0 0
\(41\) 0.386794 + 0.223316i 0.0604071 + 0.0348761i 0.529899 0.848061i \(-0.322230\pi\)
−0.469492 + 0.882937i \(0.655563\pi\)
\(42\) 0 0
\(43\) −5.49888 + 3.17478i −0.838572 + 0.484150i −0.856779 0.515685i \(-0.827538\pi\)
0.0182067 + 0.999834i \(0.494204\pi\)
\(44\) 0 0
\(45\) 4.73475 3.68383i 0.705815 0.549152i
\(46\) 0 0
\(47\) −0.819743 + 1.41984i −0.119572 + 0.207104i −0.919598 0.392861i \(-0.871485\pi\)
0.800026 + 0.599965i \(0.204819\pi\)
\(48\) 0 0
\(49\) 2.58827 6.50391i 0.369752 0.929130i
\(50\) 0 0
\(51\) 0.970257 + 1.44160i 0.135863 + 0.201865i
\(52\) 0 0
\(53\) 1.24313 2.15316i 0.170757 0.295760i −0.767928 0.640537i \(-0.778712\pi\)
0.938685 + 0.344777i \(0.112045\pi\)
\(54\) 0 0
\(55\) −2.72454 −0.367377
\(56\) 0 0
\(57\) 0.184426 + 2.67624i 0.0244279 + 0.354476i
\(58\) 0 0
\(59\) −6.31421 10.9365i −0.822040 1.42381i −0.904161 0.427193i \(-0.859503\pi\)
0.0821208 0.996622i \(-0.473831\pi\)
\(60\) 0 0
\(61\) 9.13080 + 5.27167i 1.16908 + 0.674968i 0.953463 0.301510i \(-0.0974907\pi\)
0.215616 + 0.976478i \(0.430824\pi\)
\(62\) 0 0
\(63\) 7.55024 + 2.44825i 0.951241 + 0.308450i
\(64\) 0 0
\(65\) −1.97457 + 3.42006i −0.244915 + 0.424206i
\(66\) 0 0
\(67\) −5.63337 + 3.25243i −0.688226 + 0.397347i −0.802947 0.596050i \(-0.796736\pi\)
0.114721 + 0.993398i \(0.463403\pi\)
\(68\) 0 0
\(69\) 6.67385 13.6484i 0.803438 1.64308i
\(70\) 0 0
\(71\) 1.57299i 0.186679i −0.995634 0.0933396i \(-0.970246\pi\)
0.995634 0.0933396i \(-0.0297542\pi\)
\(72\) 0 0
\(73\) 13.6347 + 7.87199i 1.59582 + 0.921346i 0.992281 + 0.124012i \(0.0395760\pi\)
0.603538 + 0.797334i \(0.293757\pi\)
\(74\) 0 0
\(75\) 1.55799 + 0.761828i 0.179901 + 0.0879684i
\(76\) 0 0
\(77\) −2.02359 2.98324i −0.230609 0.339971i
\(78\) 0 0
\(79\) −5.16095 2.97967i −0.580652 0.335240i 0.180740 0.983531i \(-0.442151\pi\)
−0.761392 + 0.648291i \(0.775484\pi\)
\(80\) 0 0
\(81\) −2.21254 + 8.72380i −0.245838 + 0.969311i
\(82\) 0 0
\(83\) 4.80565 + 8.32363i 0.527489 + 0.913637i 0.999487 + 0.0320377i \(0.0101997\pi\)
−0.471998 + 0.881600i \(0.656467\pi\)
\(84\) 0 0
\(85\) 1.00310 1.73743i 0.108802 0.188450i
\(86\) 0 0
\(87\) 0.203511 + 2.95317i 0.0218186 + 0.316613i
\(88\) 0 0
\(89\) −1.10887 + 0.640207i −0.117540 + 0.0678618i −0.557617 0.830098i \(-0.688284\pi\)
0.440077 + 0.897960i \(0.354951\pi\)
\(90\) 0 0
\(91\) −5.21136 + 0.378111i −0.546299 + 0.0396368i
\(92\) 0 0
\(93\) −0.0621876 0.902414i −0.00644856 0.0935759i
\(94\) 0 0
\(95\) 2.68215 1.54854i 0.275183 0.158877i
\(96\) 0 0
\(97\) −8.31781 + 4.80229i −0.844546 + 0.487599i −0.858807 0.512299i \(-0.828794\pi\)
0.0142608 + 0.999898i \(0.495460\pi\)
\(98\) 0 0
\(99\) 3.22604 2.50999i 0.324229 0.252263i
\(100\) 0 0
\(101\) 11.2707i 1.12147i 0.827994 + 0.560737i \(0.189482\pi\)
−0.827994 + 0.560737i \(0.810518\pi\)
\(102\) 0 0
\(103\) 9.61201 0.947099 0.473550 0.880767i \(-0.342972\pi\)
0.473550 + 0.880767i \(0.342972\pi\)
\(104\) 0 0
\(105\) −1.28991 9.07244i −0.125882 0.885380i
\(106\) 0 0
\(107\) 11.0876 6.40144i 1.07188 0.618850i 0.143186 0.989696i \(-0.454265\pi\)
0.928695 + 0.370845i \(0.120932\pi\)
\(108\) 0 0
\(109\) −7.28182 + 12.6125i −0.697472 + 1.20806i 0.271869 + 0.962334i \(0.412358\pi\)
−0.969340 + 0.245722i \(0.920975\pi\)
\(110\) 0 0
\(111\) 0.366414 + 5.31709i 0.0347785 + 0.504676i
\(112\) 0 0
\(113\) −9.07922 + 15.7257i −0.854101 + 1.47935i 0.0233754 + 0.999727i \(0.492559\pi\)
−0.877476 + 0.479620i \(0.840775\pi\)
\(114\) 0 0
\(115\) −17.5403 −1.63564
\(116\) 0 0
\(117\) −0.812708 5.86866i −0.0751349 0.542558i
\(118\) 0 0
\(119\) 2.64743 0.192084i 0.242689 0.0176083i
\(120\) 0 0
\(121\) 9.14363 0.831239
\(122\) 0 0
\(123\) 0.431938 + 0.641771i 0.0389465 + 0.0578665i
\(124\) 0 0
\(125\) 12.0006i 1.07337i
\(126\) 0 0
\(127\) 13.2304i 1.17401i 0.809585 + 0.587003i \(0.199692\pi\)
−0.809585 + 0.587003i \(0.800308\pi\)
\(128\) 0 0
\(129\) −10.9717 + 0.756091i −0.966008 + 0.0665701i
\(130\) 0 0
\(131\) −8.54252 −0.746364 −0.373182 0.927758i \(-0.621733\pi\)
−0.373182 + 0.927758i \(0.621733\pi\)
\(132\) 0 0
\(133\) 3.68769 + 1.78668i 0.319763 + 0.154925i
\(134\) 0 0
\(135\) 10.1701 2.12955i 0.875300 0.183282i
\(136\) 0 0
\(137\) −3.85512 −0.329365 −0.164683 0.986347i \(-0.552660\pi\)
−0.164683 + 0.986347i \(0.552660\pi\)
\(138\) 0 0
\(139\) −7.59749 + 13.1592i −0.644410 + 1.11615i 0.340027 + 0.940416i \(0.389564\pi\)
−0.984437 + 0.175736i \(0.943770\pi\)
\(140\) 0 0
\(141\) −2.35580 + 1.58555i −0.198394 + 0.133527i
\(142\) 0 0
\(143\) −1.34538 + 2.33027i −0.112506 + 0.194867i
\(144\) 0 0
\(145\) 2.95970 1.70878i 0.245790 0.141907i
\(146\) 0 0
\(147\) 8.97583 8.15073i 0.740314 0.672261i
\(148\) 0 0
\(149\) 11.5550 0.946626 0.473313 0.880894i \(-0.343058\pi\)
0.473313 + 0.880894i \(0.343058\pi\)
\(150\) 0 0
\(151\) 22.6580i 1.84388i −0.387330 0.921941i \(-0.626603\pi\)
0.387330 0.921941i \(-0.373397\pi\)
\(152\) 0 0
\(153\) 0.412864 + 2.98134i 0.0333781 + 0.241027i
\(154\) 0 0
\(155\) −0.904409 + 0.522161i −0.0726439 + 0.0419409i
\(156\) 0 0
\(157\) −12.6679 + 7.31381i −1.01101 + 0.583706i −0.911487 0.411330i \(-0.865064\pi\)
−0.0995213 + 0.995035i \(0.531731\pi\)
\(158\) 0 0
\(159\) 3.57254 2.40446i 0.283321 0.190686i
\(160\) 0 0
\(161\) −13.0276 19.2058i −1.02672 1.51363i
\(162\) 0 0
\(163\) −10.4437 + 6.02970i −0.818017 + 0.472282i −0.849732 0.527215i \(-0.823236\pi\)
0.0317152 + 0.999497i \(0.489903\pi\)
\(164\) 0 0
\(165\) −4.23935 2.07297i −0.330033 0.161380i
\(166\) 0 0
\(167\) 11.0887 19.2062i 0.858069 1.48622i −0.0156998 0.999877i \(-0.504998\pi\)
0.873769 0.486342i \(-0.161669\pi\)
\(168\) 0 0
\(169\) −4.54991 7.88067i −0.349993 0.606206i
\(170\) 0 0
\(171\) −1.74926 + 4.30452i −0.133769 + 0.329175i
\(172\) 0 0
\(173\) −12.9649 7.48531i −0.985706 0.569097i −0.0817177 0.996656i \(-0.526041\pi\)
−0.903988 + 0.427558i \(0.859374\pi\)
\(174\) 0 0
\(175\) 2.19236 1.48712i 0.165727 0.112416i
\(176\) 0 0
\(177\) −1.50376 21.8213i −0.113030 1.64019i
\(178\) 0 0
\(179\) −12.1951 7.04084i −0.911505 0.526257i −0.0305897 0.999532i \(-0.509739\pi\)
−0.880915 + 0.473275i \(0.843072\pi\)
\(180\) 0 0
\(181\) 4.70875i 0.349999i −0.984569 0.174999i \(-0.944008\pi\)
0.984569 0.174999i \(-0.0559924\pi\)
\(182\) 0 0
\(183\) 10.1965 + 15.1499i 0.753745 + 1.11991i
\(184\) 0 0
\(185\) 5.32885 3.07661i 0.391785 0.226197i
\(186\) 0 0
\(187\) 0.683467 1.18380i 0.0499801 0.0865680i
\(188\) 0 0
\(189\) 9.88534 + 9.55406i 0.719053 + 0.694956i
\(190\) 0 0
\(191\) 7.47754 + 4.31716i 0.541056 + 0.312379i 0.745507 0.666498i \(-0.232207\pi\)
−0.204451 + 0.978877i \(0.565541\pi\)
\(192\) 0 0
\(193\) −5.46399 9.46391i −0.393307 0.681227i 0.599577 0.800317i \(-0.295336\pi\)
−0.992883 + 0.119090i \(0.962002\pi\)
\(194\) 0 0
\(195\) −5.67457 + 3.81922i −0.406364 + 0.273500i
\(196\) 0 0
\(197\) −19.7147 −1.40461 −0.702305 0.711876i \(-0.747846\pi\)
−0.702305 + 0.711876i \(0.747846\pi\)
\(198\) 0 0
\(199\) −13.3575 + 23.1359i −0.946889 + 1.64006i −0.194965 + 0.980810i \(0.562459\pi\)
−0.751924 + 0.659249i \(0.770874\pi\)
\(200\) 0 0
\(201\) −11.2401 + 0.774583i −0.792814 + 0.0546349i
\(202\) 0 0
\(203\) 4.06929 + 1.97157i 0.285608 + 0.138377i
\(204\) 0 0
\(205\) 0.446560 0.773465i 0.0311891 0.0540211i
\(206\) 0 0
\(207\) 20.7689 16.1590i 1.44354 1.12313i
\(208\) 0 0
\(209\) 1.82749 1.05510i 0.126410 0.0729831i
\(210\) 0 0
\(211\) 6.27293 + 3.62168i 0.431846 + 0.249327i 0.700133 0.714012i \(-0.253124\pi\)
−0.268286 + 0.963339i \(0.586457\pi\)
\(212\) 0 0
\(213\) 1.19681 2.44755i 0.0820041 0.167704i
\(214\) 0 0
\(215\) 6.34854 + 10.9960i 0.432967 + 0.749921i
\(216\) 0 0
\(217\) −1.24347 0.602460i −0.0844122 0.0408977i
\(218\) 0 0
\(219\) 15.2260 + 22.6227i 1.02888 + 1.52870i
\(220\) 0 0
\(221\) −0.990667 1.71589i −0.0666395 0.115423i
\(222\) 0 0
\(223\) 9.80779 + 16.9876i 0.656778 + 1.13757i 0.981445 + 0.191744i \(0.0614145\pi\)
−0.324667 + 0.945828i \(0.605252\pi\)
\(224\) 0 0
\(225\) 1.84457 + 2.37079i 0.122971 + 0.158053i
\(226\) 0 0
\(227\) −20.7784 −1.37911 −0.689557 0.724231i \(-0.742195\pi\)
−0.689557 + 0.724231i \(0.742195\pi\)
\(228\) 0 0
\(229\) 22.1275i 1.46223i 0.682256 + 0.731113i \(0.260999\pi\)
−0.682256 + 0.731113i \(0.739001\pi\)
\(230\) 0 0
\(231\) −0.878881 6.18153i −0.0578261 0.406715i
\(232\) 0 0
\(233\) −1.95965 3.39421i −0.128381 0.222362i 0.794669 0.607043i \(-0.207645\pi\)
−0.923049 + 0.384681i \(0.874311\pi\)
\(234\) 0 0
\(235\) 2.83922 + 1.63922i 0.185210 + 0.106931i
\(236\) 0 0
\(237\) −5.76329 8.56306i −0.374366 0.556231i
\(238\) 0 0
\(239\) −7.38657 4.26464i −0.477798 0.275857i 0.241701 0.970351i \(-0.422295\pi\)
−0.719498 + 0.694494i \(0.755628\pi\)
\(240\) 0 0
\(241\) 2.42227i 0.156032i 0.996952 + 0.0780161i \(0.0248586\pi\)
−0.996952 + 0.0780161i \(0.975141\pi\)
\(242\) 0 0
\(243\) −10.0802 + 11.8907i −0.646646 + 0.762791i
\(244\) 0 0
\(245\) −13.0057 5.17570i −0.830906 0.330664i
\(246\) 0 0
\(247\) 3.05869i 0.194620i
\(248\) 0 0
\(249\) 1.14449 + 16.6079i 0.0725292 + 1.05248i
\(250\) 0 0
\(251\) 1.09792 0.0693002 0.0346501 0.999400i \(-0.488968\pi\)
0.0346501 + 0.999400i \(0.488968\pi\)
\(252\) 0 0
\(253\) −11.9511 −0.751361
\(254\) 0 0
\(255\) 2.88274 1.94020i 0.180524 0.121500i
\(256\) 0 0
\(257\) 21.0489i 1.31300i 0.754328 + 0.656498i \(0.227963\pi\)
−0.754328 + 0.656498i \(0.772037\pi\)
\(258\) 0 0
\(259\) 7.32662 + 3.54974i 0.455254 + 0.220570i
\(260\) 0 0
\(261\) −1.93027 + 4.74995i −0.119481 + 0.294014i
\(262\) 0 0
\(263\) 24.4623i 1.50841i −0.656638 0.754206i \(-0.728022\pi\)
0.656638 0.754206i \(-0.271978\pi\)
\(264\) 0 0
\(265\) −4.30564 2.48586i −0.264493 0.152705i
\(266\) 0 0
\(267\) −2.21249 + 0.152469i −0.135402 + 0.00933093i
\(268\) 0 0
\(269\) −9.79690 5.65624i −0.597327 0.344867i 0.170662 0.985330i \(-0.445409\pi\)
−0.767989 + 0.640462i \(0.778743\pi\)
\(270\) 0 0
\(271\) −0.480849 0.832856i −0.0292095 0.0505924i 0.851051 0.525083i \(-0.175966\pi\)
−0.880261 + 0.474490i \(0.842632\pi\)
\(272\) 0 0
\(273\) −8.39651 3.37674i −0.508180 0.204370i
\(274\) 0 0
\(275\) 1.36424i 0.0822665i
\(276\) 0 0
\(277\) −25.0498 −1.50510 −0.752549 0.658536i \(-0.771176\pi\)
−0.752549 + 0.658536i \(0.771176\pi\)
\(278\) 0 0
\(279\) 0.589840 1.45146i 0.0353128 0.0868967i
\(280\) 0 0
\(281\) 11.0324 + 19.1087i 0.658139 + 1.13993i 0.981097 + 0.193517i \(0.0619896\pi\)
−0.322958 + 0.946413i \(0.604677\pi\)
\(282\) 0 0
\(283\) −2.63432 4.56278i −0.156594 0.271229i 0.777044 0.629446i \(-0.216718\pi\)
−0.933638 + 0.358217i \(0.883385\pi\)
\(284\) 0 0
\(285\) 5.35162 0.368794i 0.317002 0.0218455i
\(286\) 0 0
\(287\) 1.17858 0.0855118i 0.0695693 0.00504760i
\(288\) 0 0
\(289\) −7.99673 13.8507i −0.470396 0.814750i
\(290\) 0 0
\(291\) −16.5963 + 1.14369i −0.972890 + 0.0670444i
\(292\) 0 0
\(293\) 12.1084 + 6.99080i 0.707381 + 0.408407i 0.810091 0.586305i \(-0.199418\pi\)
−0.102709 + 0.994711i \(0.532751\pi\)
\(294\) 0 0
\(295\) −21.8696 + 12.6264i −1.27329 + 0.735137i
\(296\) 0 0
\(297\) 6.92941 1.45097i 0.402085 0.0841941i
\(298\) 0 0
\(299\) −8.66142 + 15.0020i −0.500903 + 0.867589i
\(300\) 0 0
\(301\) −7.32485 + 15.1184i −0.422197 + 0.871409i
\(302\) 0 0
\(303\) −8.57532 + 17.5371i −0.492639 + 1.00748i
\(304\) 0 0
\(305\) 10.5416 18.2587i 0.603613 1.04549i
\(306\) 0 0
\(307\) 16.2755 0.928893 0.464446 0.885601i \(-0.346253\pi\)
0.464446 + 0.885601i \(0.346253\pi\)
\(308\) 0 0
\(309\) 14.9562 + 7.31332i 0.850828 + 0.416040i
\(310\) 0 0
\(311\) −3.19487 5.53367i −0.181164 0.313786i 0.761113 0.648619i \(-0.224653\pi\)
−0.942277 + 0.334834i \(0.891320\pi\)
\(312\) 0 0
\(313\) 22.2074 + 12.8215i 1.25524 + 0.724711i 0.972145 0.234382i \(-0.0753065\pi\)
0.283092 + 0.959093i \(0.408640\pi\)
\(314\) 0 0
\(315\) 4.89571 15.0981i 0.275842 0.850679i
\(316\) 0 0
\(317\) −14.6521 + 25.3782i −0.822945 + 1.42538i 0.0805354 + 0.996752i \(0.474337\pi\)
−0.903480 + 0.428630i \(0.858996\pi\)
\(318\) 0 0
\(319\) 2.01660 1.16429i 0.112908 0.0651875i
\(320\) 0 0
\(321\) 22.1228 1.52454i 1.23477 0.0850913i
\(322\) 0 0
\(323\) 1.55385i 0.0864583i
\(324\) 0 0
\(325\) −1.71250 0.988711i −0.0949923 0.0548438i
\(326\) 0 0
\(327\) −20.9267 + 14.0845i −1.15725 + 0.778875i
\(328\) 0 0
\(329\) 0.313895 + 4.32630i 0.0173056 + 0.238517i
\(330\) 0 0
\(331\) −0.115780 0.0668456i −0.00636384 0.00367417i 0.496815 0.867857i \(-0.334503\pi\)
−0.503179 + 0.864182i \(0.667836\pi\)
\(332\) 0 0
\(333\) −3.47538 + 8.55213i −0.190450 + 0.468654i
\(334\) 0 0
\(335\) 6.50381 + 11.2649i 0.355341 + 0.615469i
\(336\) 0 0
\(337\) 9.96606 17.2617i 0.542886 0.940306i −0.455851 0.890056i \(-0.650665\pi\)
0.998737 0.0502498i \(-0.0160017\pi\)
\(338\) 0 0
\(339\) −26.0921 + 17.5610i −1.41713 + 0.953785i
\(340\) 0 0
\(341\) −0.616222 + 0.355776i −0.0333703 + 0.0192663i
\(342\) 0 0
\(343\) −3.99257 18.0848i −0.215579 0.976486i
\(344\) 0 0
\(345\) −27.2925 13.3456i −1.46938 0.718501i
\(346\) 0 0
\(347\) 4.81148 2.77791i 0.258294 0.149126i −0.365262 0.930905i \(-0.619021\pi\)
0.623556 + 0.781779i \(0.285687\pi\)
\(348\) 0 0
\(349\) −0.710293 + 0.410088i −0.0380211 + 0.0219515i −0.518890 0.854841i \(-0.673655\pi\)
0.480869 + 0.876792i \(0.340321\pi\)
\(350\) 0 0
\(351\) 3.20062 9.74992i 0.170836 0.520412i
\(352\) 0 0
\(353\) 21.4172i 1.13992i 0.821671 + 0.569962i \(0.193042\pi\)
−0.821671 + 0.569962i \(0.806958\pi\)
\(354\) 0 0
\(355\) −3.14547 −0.166944
\(356\) 0 0
\(357\) 4.26552 + 1.71542i 0.225755 + 0.0907896i
\(358\) 0 0
\(359\) −5.64573 + 3.25956i −0.297970 + 0.172033i −0.641531 0.767097i \(-0.721700\pi\)
0.343560 + 0.939131i \(0.388367\pi\)
\(360\) 0 0
\(361\) 8.30062 14.3771i 0.436875 0.756689i
\(362\) 0 0
\(363\) 14.2274 + 6.95695i 0.746744 + 0.365145i
\(364\) 0 0
\(365\) 15.7414 27.2650i 0.823945 1.42711i
\(366\) 0 0
\(367\) 13.1692 0.687426 0.343713 0.939075i \(-0.388315\pi\)
0.343713 + 0.939075i \(0.388315\pi\)
\(368\) 0 0
\(369\) 0.183798 + 1.32723i 0.00956816 + 0.0690928i
\(370\) 0 0
\(371\) −0.476018 6.56078i −0.0247136 0.340619i
\(372\) 0 0
\(373\) 29.4869 1.52678 0.763388 0.645941i \(-0.223535\pi\)
0.763388 + 0.645941i \(0.223535\pi\)
\(374\) 0 0
\(375\) 9.13071 18.6729i 0.471508 0.964263i
\(376\) 0 0
\(377\) 3.37520i 0.173832i
\(378\) 0 0
\(379\) 25.2566i 1.29735i −0.761067 0.648673i \(-0.775324\pi\)
0.761067 0.648673i \(-0.224676\pi\)
\(380\) 0 0
\(381\) −10.0664 + 20.5863i −0.515715 + 1.05467i
\(382\) 0 0
\(383\) −5.22545 −0.267008 −0.133504 0.991048i \(-0.542623\pi\)
−0.133504 + 0.991048i \(0.542623\pi\)
\(384\) 0 0
\(385\) −5.96551 + 4.04653i −0.304031 + 0.206230i
\(386\) 0 0
\(387\) −17.6472 7.17141i −0.897057 0.364543i
\(388\) 0 0
\(389\) −25.9660 −1.31653 −0.658264 0.752787i \(-0.728709\pi\)
−0.658264 + 0.752787i \(0.728709\pi\)
\(390\) 0 0
\(391\) 4.40009 7.62118i 0.222522 0.385420i
\(392\) 0 0
\(393\) −13.2921 6.49960i −0.670497 0.327861i
\(394\) 0 0
\(395\) −5.95839 + 10.3202i −0.299799 + 0.519268i
\(396\) 0 0
\(397\) 12.5913 7.26961i 0.631941 0.364851i −0.149562 0.988752i \(-0.547786\pi\)
0.781503 + 0.623901i \(0.214453\pi\)
\(398\) 0 0
\(399\) 4.37860 + 5.58585i 0.219204 + 0.279642i
\(400\) 0 0
\(401\) 13.7228 0.685282 0.342641 0.939466i \(-0.388679\pi\)
0.342641 + 0.939466i \(0.388679\pi\)
\(402\) 0 0
\(403\) 1.03137i 0.0513764i
\(404\) 0 0
\(405\) 17.4448 + 4.42437i 0.866839 + 0.219848i
\(406\) 0 0
\(407\) 3.63082 2.09626i 0.179973 0.103908i
\(408\) 0 0
\(409\) 8.66188 5.00094i 0.428303 0.247281i −0.270321 0.962770i \(-0.587130\pi\)
0.698623 + 0.715490i \(0.253796\pi\)
\(410\) 0 0
\(411\) −5.99853 2.93318i −0.295886 0.144683i
\(412\) 0 0
\(413\) −30.0684 14.5681i −1.47957 0.716851i
\(414\) 0 0
\(415\) 16.6446 9.60976i 0.817051 0.471725i
\(416\) 0 0
\(417\) −21.8338 + 14.6951i −1.06921 + 0.719621i
\(418\) 0 0
\(419\) −3.51452 + 6.08732i −0.171695 + 0.297385i −0.939013 0.343882i \(-0.888258\pi\)
0.767317 + 0.641268i \(0.221591\pi\)
\(420\) 0 0
\(421\) −3.01107 5.21533i −0.146751 0.254179i 0.783274 0.621676i \(-0.213548\pi\)
−0.930025 + 0.367497i \(0.880215\pi\)
\(422\) 0 0
\(423\) −4.87196 + 0.674683i −0.236883 + 0.0328042i
\(424\) 0 0
\(425\) 0.869967 + 0.502276i 0.0421996 + 0.0243639i
\(426\) 0 0
\(427\) 27.8219 2.01862i 1.34640 0.0976879i
\(428\) 0 0
\(429\) −3.86639 + 2.60224i −0.186671 + 0.125637i
\(430\) 0 0
\(431\) −14.3683 8.29555i −0.692097 0.399582i 0.112300 0.993674i \(-0.464178\pi\)
−0.804397 + 0.594092i \(0.797512\pi\)
\(432\) 0 0
\(433\) 6.42380i 0.308708i 0.988016 + 0.154354i \(0.0493297\pi\)
−0.988016 + 0.154354i \(0.950670\pi\)
\(434\) 0 0
\(435\) 5.90540 0.406956i 0.283142 0.0195121i
\(436\) 0 0
\(437\) 11.7652 6.79265i 0.562807 0.324937i
\(438\) 0 0
\(439\) −2.23155 + 3.86517i −0.106506 + 0.184474i −0.914353 0.404919i \(-0.867300\pi\)
0.807846 + 0.589393i \(0.200633\pi\)
\(440\) 0 0
\(441\) 20.1678 5.85318i 0.960372 0.278723i
\(442\) 0 0
\(443\) 23.8533 + 13.7717i 1.13331 + 0.654315i 0.944764 0.327751i \(-0.106291\pi\)
0.188542 + 0.982065i \(0.439624\pi\)
\(444\) 0 0
\(445\) 1.28021 + 2.21739i 0.0606877 + 0.105114i
\(446\) 0 0
\(447\) 17.9795 + 8.79167i 0.850402 + 0.415832i
\(448\) 0 0
\(449\) 38.3329 1.80904 0.904520 0.426432i \(-0.140229\pi\)
0.904520 + 0.426432i \(0.140229\pi\)
\(450\) 0 0
\(451\) 0.304265 0.527003i 0.0143273 0.0248156i
\(452\) 0 0
\(453\) 17.2394 35.2556i 0.809977 1.65645i
\(454\) 0 0
\(455\) 0.756100 + 10.4211i 0.0354465 + 0.488547i
\(456\) 0 0
\(457\) 17.1583 29.7190i 0.802629 1.39019i −0.115250 0.993336i \(-0.536767\pi\)
0.917880 0.396858i \(-0.129900\pi\)
\(458\) 0 0
\(459\) −1.62595 + 4.95306i −0.0758927 + 0.231189i
\(460\) 0 0
\(461\) 13.9331 8.04429i 0.648930 0.374660i −0.139116 0.990276i \(-0.544426\pi\)
0.788046 + 0.615616i \(0.211093\pi\)
\(462\) 0 0
\(463\) −15.7583 9.09805i −0.732349 0.422822i 0.0869318 0.996214i \(-0.472294\pi\)
−0.819281 + 0.573392i \(0.805627\pi\)
\(464\) 0 0
\(465\) −1.80454 + 0.124355i −0.0836834 + 0.00576684i
\(466\) 0 0
\(467\) 7.08122 + 12.2650i 0.327680 + 0.567558i 0.982051 0.188615i \(-0.0603999\pi\)
−0.654371 + 0.756173i \(0.727067\pi\)
\(468\) 0 0
\(469\) −7.50399 + 15.4881i −0.346502 + 0.715175i
\(470\) 0 0
\(471\) −25.2758 + 1.74182i −1.16465 + 0.0802590i
\(472\) 0 0
\(473\) 4.32560 + 7.49216i 0.198891 + 0.344490i
\(474\) 0 0
\(475\) 0.775389 + 1.34301i 0.0355773 + 0.0616217i
\(476\) 0 0
\(477\) 7.38827 1.02315i 0.338286 0.0468467i
\(478\) 0 0
\(479\) 33.7963 1.54419 0.772096 0.635506i \(-0.219208\pi\)
0.772096 + 0.635506i \(0.219208\pi\)
\(480\) 0 0
\(481\) 6.07694i 0.277084i
\(482\) 0 0
\(483\) −5.65815 39.7961i −0.257455 1.81078i
\(484\) 0 0
\(485\) 9.60304 + 16.6330i 0.436052 + 0.755264i
\(486\) 0 0
\(487\) −9.41218 5.43412i −0.426506 0.246244i 0.271351 0.962481i \(-0.412530\pi\)
−0.697857 + 0.716237i \(0.745863\pi\)
\(488\) 0 0
\(489\) −20.8381 + 1.43600i −0.942330 + 0.0649384i
\(490\) 0 0
\(491\) 29.3930 + 16.9701i 1.32649 + 0.765848i 0.984755 0.173949i \(-0.0556529\pi\)
0.341733 + 0.939797i \(0.388986\pi\)
\(492\) 0 0
\(493\) 1.71464i 0.0772234i
\(494\) 0 0
\(495\) −5.01917 6.45104i −0.225595 0.289953i
\(496\) 0 0
\(497\) −2.33623 3.44414i −0.104794 0.154491i
\(498\) 0 0
\(499\) 2.97182i 0.133037i −0.997785 0.0665185i \(-0.978811\pi\)
0.997785 0.0665185i \(-0.0211891\pi\)
\(500\) 0 0
\(501\) 31.8670 21.4478i 1.42371 0.958215i
\(502\) 0 0
\(503\) −26.0651 −1.16219 −0.581093 0.813837i \(-0.697375\pi\)
−0.581093 + 0.813837i \(0.697375\pi\)
\(504\) 0 0
\(505\) 22.5377 1.00292
\(506\) 0 0
\(507\) −1.08358 15.7241i −0.0481237 0.698330i
\(508\) 0 0
\(509\) 17.7599i 0.787195i −0.919283 0.393598i \(-0.871230\pi\)
0.919283 0.393598i \(-0.128770\pi\)
\(510\) 0 0
\(511\) 41.5454 3.01433i 1.83786 0.133346i
\(512\) 0 0
\(513\) −5.99693 + 5.36686i −0.264771 + 0.236953i
\(514\) 0 0
\(515\) 19.2209i 0.846976i
\(516\) 0 0
\(517\) 1.93451 + 1.11689i 0.0850796 + 0.0491207i
\(518\) 0 0
\(519\) −14.4781 21.5115i −0.635518 0.944248i
\(520\) 0 0
\(521\) 24.9679 + 14.4152i 1.09387 + 0.631543i 0.934603 0.355693i \(-0.115755\pi\)
0.159262 + 0.987236i \(0.449088\pi\)
\(522\) 0 0
\(523\) −6.32766 10.9598i −0.276689 0.479240i 0.693871 0.720100i \(-0.255904\pi\)
−0.970560 + 0.240860i \(0.922571\pi\)
\(524\) 0 0
\(525\) 4.54277 0.645884i 0.198263 0.0281887i
\(526\) 0 0
\(527\) 0.523949i 0.0228236i
\(528\) 0 0
\(529\) −53.9401 −2.34522
\(530\) 0 0
\(531\) 14.2629 35.0979i 0.618959 1.52312i
\(532\) 0 0
\(533\) −0.441024 0.763876i −0.0191029 0.0330871i
\(534\) 0 0
\(535\) −12.8008 22.1717i −0.553428 0.958565i
\(536\) 0 0
\(537\) −13.6184 20.2341i −0.587678 0.873168i
\(538\) 0 0
\(539\) −8.86150 3.52648i −0.381692 0.151896i
\(540\) 0 0
\(541\) −7.29665 12.6382i −0.313708 0.543358i 0.665454 0.746439i \(-0.268238\pi\)
−0.979162 + 0.203081i \(0.934905\pi\)
\(542\) 0 0
\(543\) 3.58266 7.32677i 0.153747 0.314422i
\(544\) 0 0
\(545\) 25.2209 + 14.5613i 1.08035 + 0.623738i
\(546\) 0 0
\(547\) 5.61933 3.24432i 0.240265 0.138717i −0.375033 0.927011i \(-0.622369\pi\)
0.615299 + 0.788294i \(0.289035\pi\)
\(548\) 0 0
\(549\) 4.33881 + 31.3310i 0.185176 + 1.33718i
\(550\) 0 0
\(551\) −1.32349 + 2.29235i −0.0563825 + 0.0976573i
\(552\) 0 0
\(553\) −15.7256 + 1.14097i −0.668721 + 0.0485191i
\(554\) 0 0
\(555\) 10.6325 0.732711i 0.451323 0.0311019i
\(556\) 0 0
\(557\) 18.2102 31.5410i 0.771590 1.33643i −0.165101 0.986277i \(-0.552795\pi\)
0.936691 0.350157i \(-0.113872\pi\)
\(558\) 0 0
\(559\) 12.5397 0.530372
\(560\) 0 0
\(561\) 1.96416 1.32196i 0.0829271 0.0558133i
\(562\) 0 0
\(563\) −3.77699 6.54194i −0.159181 0.275710i 0.775392 0.631480i \(-0.217552\pi\)
−0.934574 + 0.355770i \(0.884219\pi\)
\(564\) 0 0
\(565\) 31.4463 + 18.1555i 1.32296 + 0.763809i
\(566\) 0 0
\(567\) 8.11226 + 22.3873i 0.340683 + 0.940178i
\(568\) 0 0
\(569\) −11.9165 + 20.6399i −0.499564 + 0.865270i −1.00000 0.000503808i \(-0.999840\pi\)
0.500436 + 0.865773i \(0.333173\pi\)
\(570\) 0 0
\(571\) −16.5695 + 9.56639i −0.693411 + 0.400341i −0.804889 0.593426i \(-0.797775\pi\)
0.111478 + 0.993767i \(0.464442\pi\)
\(572\) 0 0
\(573\) 8.35026 + 12.4068i 0.348837 + 0.518300i
\(574\) 0 0
\(575\) 8.78281i 0.366268i
\(576\) 0 0
\(577\) 0.278675 + 0.160893i 0.0116014 + 0.00669808i 0.505789 0.862657i \(-0.331201\pi\)
−0.494188 + 0.869355i \(0.664535\pi\)
\(578\) 0 0
\(579\) −1.30128 18.8830i −0.0540793 0.784752i
\(580\) 0 0
\(581\) 22.8846 + 11.0876i 0.949414 + 0.459991i
\(582\) 0 0
\(583\) −2.93366 1.69375i −0.121500 0.0701479i
\(584\) 0 0
\(585\) −11.7354 + 1.62516i −0.485200 + 0.0671919i
\(586\) 0 0
\(587\) 22.9285 + 39.7134i 0.946362 + 1.63915i 0.753001 + 0.658019i \(0.228605\pi\)
0.193360 + 0.981128i \(0.438061\pi\)
\(588\) 0 0
\(589\) 0.404424 0.700483i 0.0166640 0.0288629i
\(590\) 0 0
\(591\) −30.6758 14.9999i −1.26183 0.617015i
\(592\) 0 0
\(593\) −24.8195 + 14.3295i −1.01921 + 0.588443i −0.913876 0.405993i \(-0.866926\pi\)
−0.105338 + 0.994437i \(0.533592\pi\)
\(594\) 0 0
\(595\) −0.384107 5.29401i −0.0157468 0.217033i
\(596\) 0 0
\(597\) −38.3871 + 25.8361i −1.57108 + 1.05740i
\(598\) 0 0
\(599\) −21.1787 + 12.2275i −0.865339 + 0.499604i −0.865797 0.500396i \(-0.833188\pi\)
0.000457342 1.00000i \(0.499854\pi\)
\(600\) 0 0
\(601\) 6.86788 3.96517i 0.280147 0.161743i −0.353343 0.935494i \(-0.614955\pi\)
0.633490 + 0.773751i \(0.281622\pi\)
\(602\) 0 0
\(603\) −18.0788 7.34680i −0.736226 0.299185i
\(604\) 0 0
\(605\) 18.2843i 0.743363i
\(606\) 0 0
\(607\) 4.90473 0.199077 0.0995384 0.995034i \(-0.468263\pi\)
0.0995384 + 0.995034i \(0.468263\pi\)
\(608\) 0 0
\(609\) 4.83170 + 6.16387i 0.195790 + 0.249772i
\(610\) 0 0
\(611\) 2.80402 1.61890i 0.113438 0.0654937i
\(612\) 0 0
\(613\) 9.53276 16.5112i 0.385025 0.666882i −0.606748 0.794894i \(-0.707526\pi\)
0.991773 + 0.128012i \(0.0408596\pi\)
\(614\) 0 0
\(615\) 1.28334 0.863737i 0.0517491 0.0348292i
\(616\) 0 0
\(617\) 21.2636 36.8296i 0.856040 1.48270i −0.0196377 0.999807i \(-0.506251\pi\)
0.875677 0.482897i \(-0.160415\pi\)
\(618\) 0 0
\(619\) 12.5249 0.503416 0.251708 0.967803i \(-0.419008\pi\)
0.251708 + 0.967803i \(0.419008\pi\)
\(620\) 0 0
\(621\) 44.6108 9.34122i 1.79017 0.374850i
\(622\) 0 0
\(623\) −1.47708 + 3.04868i −0.0591781 + 0.122143i
\(624\) 0 0
\(625\) −18.9910 −0.759641
\(626\) 0 0
\(627\) 3.64634 0.251279i 0.145621 0.0100351i
\(628\) 0 0
\(629\) 3.08715i 0.123093i
\(630\) 0 0
\(631\) 17.8526i 0.710700i −0.934733 0.355350i \(-0.884362\pi\)
0.934733 0.355350i \(-0.115638\pi\)
\(632\) 0 0
\(633\) 7.00506 + 10.4081i 0.278426 + 0.413684i
\(634\) 0 0
\(635\) 26.4565 1.04989
\(636\) 0 0
\(637\) −10.8490 + 8.56789i −0.429852 + 0.339472i
\(638\) 0 0
\(639\) 3.72445 2.89777i 0.147337 0.114634i
\(640\) 0 0
\(641\) 39.1443 1.54611 0.773054 0.634340i \(-0.218728\pi\)
0.773054 + 0.634340i \(0.218728\pi\)
\(642\) 0 0
\(643\) 2.93372 5.08136i 0.115695 0.200389i −0.802363 0.596837i \(-0.796424\pi\)
0.918057 + 0.396448i \(0.129757\pi\)
\(644\) 0 0
\(645\) 1.51194 + 21.9400i 0.0595326 + 0.863886i
\(646\) 0 0
\(647\) −19.5795 + 33.9127i −0.769750 + 1.33325i 0.167949 + 0.985796i \(0.446286\pi\)
−0.937699 + 0.347450i \(0.887048\pi\)
\(648\) 0 0
\(649\) −14.9009 + 8.60303i −0.584911 + 0.337698i
\(650\) 0 0
\(651\) −1.47644 1.88352i −0.0578663 0.0738209i
\(652\) 0 0
\(653\) 27.2522 1.06646 0.533231 0.845969i \(-0.320978\pi\)
0.533231 + 0.845969i \(0.320978\pi\)
\(654\) 0 0
\(655\) 17.0823i 0.667461i
\(656\) 0 0
\(657\) 6.47898 + 46.7854i 0.252769 + 1.82527i
\(658\) 0 0
\(659\) −18.1766 + 10.4943i −0.708061 + 0.408799i −0.810343 0.585956i \(-0.800719\pi\)
0.102282 + 0.994755i \(0.467386\pi\)
\(660\) 0 0
\(661\) −1.82514 + 1.05375i −0.0709899 + 0.0409860i −0.535075 0.844805i \(-0.679717\pi\)
0.464085 + 0.885791i \(0.346383\pi\)
\(662\) 0 0
\(663\) −0.235933 3.42365i −0.00916286 0.132964i
\(664\) 0 0
\(665\) 3.57279 7.37419i 0.138547 0.285959i
\(666\) 0 0
\(667\) 12.9827 7.49555i 0.502691 0.290229i
\(668\) 0 0
\(669\) 2.33578 + 33.8948i 0.0903063 + 1.31045i
\(670\) 0 0
\(671\) 7.18258 12.4406i 0.277281 0.480264i
\(672\) 0 0
\(673\) 3.40292 + 5.89403i 0.131173 + 0.227198i 0.924129 0.382081i \(-0.124792\pi\)
−0.792956 + 0.609279i \(0.791459\pi\)
\(674\) 0 0
\(675\) 1.06631 + 5.09238i 0.0410424 + 0.196006i
\(676\) 0 0
\(677\) −37.5390 21.6732i −1.44274 0.832967i −0.444709 0.895675i \(-0.646693\pi\)
−0.998032 + 0.0627082i \(0.980026\pi\)
\(678\) 0 0
\(679\) −11.0798 + 22.8686i −0.425205 + 0.877617i
\(680\) 0 0
\(681\) −32.3311 15.8093i −1.23893 0.605815i
\(682\) 0 0
\(683\) −25.2674 14.5882i −0.966832 0.558201i −0.0685629 0.997647i \(-0.521841\pi\)
−0.898269 + 0.439446i \(0.855175\pi\)
\(684\) 0 0
\(685\) 7.70901i 0.294546i
\(686\) 0 0
\(687\) −16.8358 + 34.4302i −0.642324 + 1.31359i
\(688\) 0 0
\(689\) −4.25226 + 2.45504i −0.161998 + 0.0935297i
\(690\) 0 0
\(691\) 23.5987 40.8741i 0.897736 1.55493i 0.0673555 0.997729i \(-0.478544\pi\)
0.830381 0.557196i \(-0.188123\pi\)
\(692\) 0 0
\(693\) 3.33570 10.2871i 0.126713 0.390775i
\(694\) 0 0
\(695\) 26.3142 + 15.1925i 0.998156 + 0.576286i
\(696\) 0 0
\(697\) 0.224045 + 0.388057i 0.00848630 + 0.0146987i
\(698\) 0 0
\(699\) −0.466700 6.77236i −0.0176522 0.256154i
\(700\) 0 0
\(701\) 14.7459 0.556946 0.278473 0.960444i \(-0.410172\pi\)
0.278473 + 0.960444i \(0.410172\pi\)
\(702\) 0 0
\(703\) −2.38290 + 4.12730i −0.0898726 + 0.155664i
\(704\) 0 0
\(705\) 3.17059 + 4.71084i 0.119411 + 0.177420i
\(706\) 0 0
\(707\) 16.7394 + 24.6777i 0.629549 + 0.928101i
\(708\) 0 0
\(709\) 14.6710 25.4109i 0.550981 0.954327i −0.447223 0.894422i \(-0.647587\pi\)
0.998204 0.0599043i \(-0.0190796\pi\)
\(710\) 0 0
\(711\) −2.45240 17.7090i −0.0919721 0.664141i
\(712\) 0 0
\(713\) −3.96717 + 2.29045i −0.148572 + 0.0857779i
\(714\) 0 0
\(715\) 4.65978 + 2.69033i 0.174266 + 0.100613i
\(716\) 0 0
\(717\) −8.24867 12.2558i −0.308052 0.457702i
\(718\) 0 0
\(719\) 19.0100 + 32.9262i 0.708952 + 1.22794i 0.965246 + 0.261342i \(0.0841651\pi\)
−0.256294 + 0.966599i \(0.582502\pi\)
\(720\) 0 0
\(721\) 21.0460 14.2759i 0.783793 0.531663i
\(722\) 0 0
\(723\) −1.84299 + 3.76903i −0.0685416 + 0.140172i
\(724\) 0 0
\(725\) 0.855626 + 1.48199i 0.0317772 + 0.0550396i
\(726\) 0 0
\(727\) 1.33619 + 2.31435i 0.0495565 + 0.0858343i 0.889740 0.456469i \(-0.150886\pi\)
−0.840183 + 0.542303i \(0.817553\pi\)
\(728\) 0 0
\(729\) −24.7318 + 10.8323i −0.915992 + 0.401197i
\(730\) 0 0
\(731\) −6.37029 −0.235614
\(732\) 0 0
\(733\) 3.28387i 0.121293i 0.998159 + 0.0606463i \(0.0193162\pi\)
−0.998159 + 0.0606463i \(0.980684\pi\)
\(734\) 0 0
\(735\) −16.2988 17.9488i −0.601192 0.662051i
\(736\) 0 0
\(737\) 4.43139 + 7.67540i 0.163232 + 0.282727i
\(738\) 0 0
\(739\) 22.7991 + 13.1631i 0.838680 + 0.484212i 0.856815 0.515624i \(-0.172440\pi\)
−0.0181356 + 0.999836i \(0.505773\pi\)
\(740\) 0 0
\(741\) 2.32721 4.75929i 0.0854922 0.174837i
\(742\) 0 0
\(743\) −21.0356 12.1449i −0.771720 0.445553i 0.0617681 0.998091i \(-0.480326\pi\)
−0.833488 + 0.552538i \(0.813659\pi\)
\(744\) 0 0
\(745\) 23.1064i 0.846552i
\(746\) 0 0
\(747\) −10.8553 + 26.7125i −0.397175 + 0.977358i
\(748\) 0 0
\(749\) 14.7694 30.4838i 0.539662 1.11385i
\(750\) 0 0
\(751\) 9.37486i 0.342094i −0.985263 0.171047i \(-0.945285\pi\)
0.985263 0.171047i \(-0.0547149\pi\)
\(752\) 0 0
\(753\) 1.70835 + 0.835355i 0.0622559 + 0.0304420i
\(754\) 0 0
\(755\) −45.3087 −1.64895
\(756\) 0 0
\(757\) −50.8723 −1.84899 −0.924493 0.381200i \(-0.875511\pi\)
−0.924493 + 0.381200i \(0.875511\pi\)
\(758\) 0 0
\(759\) −18.5958 9.09304i −0.674986 0.330056i
\(760\) 0 0
\(761\) 42.3508i 1.53522i 0.640920 + 0.767608i \(0.278553\pi\)
−0.640920 + 0.767608i \(0.721447\pi\)
\(762\) 0 0
\(763\) 2.78834 + 38.4307i 0.100945 + 1.39129i
\(764\) 0 0
\(765\) 5.96172 0.825596i 0.215547 0.0298495i
\(766\) 0 0
\(767\) 24.9397i 0.900521i
\(768\) 0 0
\(769\) 3.61419 + 2.08665i 0.130331 + 0.0752467i 0.563748 0.825947i \(-0.309359\pi\)
−0.433417 + 0.901194i \(0.642692\pi\)
\(770\) 0 0
\(771\) −16.0151 + 32.7519i −0.576770 + 1.17953i
\(772\) 0 0
\(773\) −4.51890 2.60899i −0.162534 0.0938389i 0.416527 0.909123i \(-0.363247\pi\)
−0.579061 + 0.815285i \(0.696581\pi\)
\(774\) 0 0
\(775\) −0.261457 0.452857i −0.00939182 0.0162671i
\(776\) 0 0
\(777\) 8.69931 + 11.0978i 0.312086 + 0.398133i
\(778\) 0 0
\(779\) 0.691739i 0.0247841i
\(780\) 0 0
\(781\) −2.14318 −0.0766888
\(782\) 0 0
\(783\) −6.61748 + 5.92222i −0.236490 + 0.211643i
\(784\) 0 0
\(785\) 14.6253 + 25.3317i 0.521998 + 0.904128i
\(786\) 0 0
\(787\) −14.7930 25.6223i −0.527314 0.913335i −0.999493 0.0318321i \(-0.989866\pi\)
0.472179 0.881503i \(-0.343468\pi\)
\(788\) 0 0
\(789\) 18.6122 38.0632i 0.662613 1.35508i
\(790\) 0 0
\(791\) 3.47660 + 47.9168i 0.123614 + 1.70372i
\(792\) 0 0
\(793\) −10.4110 18.0323i −0.369704 0.640346i
\(794\) 0 0
\(795\) −4.80816 7.14393i −0.170528 0.253369i
\(796\) 0 0
\(797\) −41.7053 24.0785i −1.47728 0.852906i −0.477606 0.878574i \(-0.658495\pi\)
−0.999671 + 0.0256682i \(0.991829\pi\)
\(798\) 0 0
\(799\) −1.42447 + 0.822418i −0.0503941 + 0.0290951i
\(800\) 0 0
\(801\) −3.55862 1.44614i −0.125738 0.0510969i
\(802\) 0 0
\(803\) 10.7255 18.5771i 0.378494 0.655571i
\(804\) 0 0
\(805\) −38.4054 + 26.0511i −1.35361 + 0.918181i
\(806\) 0 0
\(807\) −10.9403 16.2550i −0.385117 0.572205i
\(808\) 0 0
\(809\) −2.61482 + 4.52900i −0.0919321 + 0.159231i −0.908324 0.418267i \(-0.862638\pi\)
0.816392 + 0.577498i \(0.195971\pi\)
\(810\) 0 0
\(811\) 28.4364 0.998538 0.499269 0.866447i \(-0.333602\pi\)
0.499269 + 0.866447i \(0.333602\pi\)
\(812\) 0 0
\(813\) −0.114517 1.66177i −0.00401628 0.0582808i
\(814\) 0 0
\(815\) 12.0575 + 20.8841i 0.422354 + 0.731539i
\(816\) 0 0
\(817\) −8.51662 4.91707i −0.297959 0.172027i
\(818\) 0 0
\(819\) −10.4957 11.6427i −0.366749 0.406828i
\(820\) 0 0
\(821\) −2.58408 + 4.47576i −0.0901851 + 0.156205i −0.907589 0.419860i \(-0.862079\pi\)
0.817404 + 0.576065i \(0.195413\pi\)
\(822\) 0 0
\(823\) −14.8527 + 8.57519i −0.517731 + 0.298912i −0.736006 0.676975i \(-0.763290\pi\)
0.218275 + 0.975887i \(0.429957\pi\)
\(824\) 0 0
\(825\) 1.03798 2.12274i 0.0361379 0.0739042i
\(826\) 0 0
\(827\) 46.7499i 1.62565i −0.582505 0.812827i \(-0.697927\pi\)
0.582505 0.812827i \(-0.302073\pi\)
\(828\) 0 0
\(829\) −31.5449 18.2124i −1.09560 0.632544i −0.160538 0.987030i \(-0.551323\pi\)
−0.935062 + 0.354485i \(0.884656\pi\)
\(830\) 0 0
\(831\) −38.9773 19.0592i −1.35211 0.661157i
\(832\) 0 0
\(833\) 5.51139 4.35258i 0.190958 0.150808i
\(834\) 0 0
\(835\) −38.4062 22.1738i −1.32910 0.767357i
\(836\) 0 0
\(837\) 2.02213 1.80968i 0.0698951 0.0625517i
\(838\) 0 0
\(839\) −5.36691 9.29577i −0.185286 0.320925i 0.758387 0.651805i \(-0.225988\pi\)
−0.943673 + 0.330880i \(0.892655\pi\)
\(840\) 0 0
\(841\) 13.0396 22.5852i 0.449640 0.778799i
\(842\) 0 0
\(843\) 2.62743 + 38.1270i 0.0904935 + 1.31316i
\(844\) 0 0
\(845\) −15.7588 + 9.09836i −0.542120 + 0.312993i
\(846\) 0 0
\(847\) 20.0204 13.5803i 0.687910 0.466623i
\(848\) 0 0
\(849\) −0.627378 9.10397i −0.0215316 0.312448i
\(850\) 0 0
\(851\) 23.3749 13.4955i 0.801280 0.462619i
\(852\) 0 0
\(853\) 29.2849 16.9076i 1.00269 0.578906i 0.0936502 0.995605i \(-0.470146\pi\)
0.909044 + 0.416699i \(0.136813\pi\)
\(854\) 0 0
\(855\) 8.60766 + 3.49795i 0.294376 + 0.119627i
\(856\) 0 0
\(857\) 30.7052i 1.04887i 0.851451 + 0.524434i \(0.175723\pi\)
−0.851451 + 0.524434i \(0.824277\pi\)
\(858\) 0 0
\(859\) 25.8788 0.882975 0.441487 0.897267i \(-0.354451\pi\)
0.441487 + 0.897267i \(0.354451\pi\)
\(860\) 0 0
\(861\) 1.89892 + 0.763668i 0.0647149 + 0.0260258i
\(862\) 0 0
\(863\) −24.1208 + 13.9262i −0.821083 + 0.474052i −0.850790 0.525506i \(-0.823876\pi\)
0.0297071 + 0.999559i \(0.490543\pi\)
\(864\) 0 0
\(865\) −14.9682 + 25.9257i −0.508935 + 0.881500i
\(866\) 0 0
\(867\) −1.90446 27.6359i −0.0646790 0.938566i
\(868\) 0 0
\(869\) −4.05977 + 7.03173i −0.137718 + 0.238535i
\(870\) 0 0
\(871\) 12.8464 0.435282
\(872\) 0 0
\(873\) −26.6938 10.8477i −0.903448 0.367140i
\(874\) 0 0
\(875\) −17.8235 26.2760i −0.602546 0.888291i
\(876\) 0 0
\(877\) 18.5099 0.625036 0.312518 0.949912i \(-0.398828\pi\)
0.312518 + 0.949912i \(0.398828\pi\)
\(878\) 0 0
\(879\) 13.5216 + 20.0903i 0.456073 + 0.677630i
\(880\) 0 0
\(881\) 37.6194i 1.26743i −0.773567 0.633714i \(-0.781530\pi\)
0.773567 0.633714i \(-0.218470\pi\)
\(882\) 0 0
\(883\) 15.2541i 0.513340i −0.966499 0.256670i \(-0.917375\pi\)
0.966499 0.256670i \(-0.0826254\pi\)
\(884\) 0 0
\(885\) −43.6356 + 3.00704i −1.46680 + 0.101081i
\(886\) 0 0
\(887\) −17.9668 −0.603266 −0.301633 0.953424i \(-0.597532\pi\)
−0.301633 + 0.953424i \(0.597532\pi\)
\(888\) 0 0
\(889\) 19.6500 + 28.9686i 0.659039 + 0.971575i
\(890\) 0 0
\(891\) 11.8861 + 3.01455i 0.398198 + 0.100991i
\(892\) 0 0
\(893\) −2.53922 −0.0849718
\(894\) 0 0
\(895\) −14.0794 + 24.3863i −0.470623 + 0.815144i
\(896\) 0 0
\(897\) −24.8914 + 16.7529i −0.831099 + 0.559364i
\(898\) 0 0
\(899\) 0.446273 0.772968i 0.0148840 0.0257799i
\(900\) 0 0
\(901\) 2.16019 1.24719i 0.0719664 0.0415498i
\(902\) 0 0
\(903\) −22.9002 + 17.9509i −0.762072 + 0.597369i
\(904\) 0 0
\(905\) −9.41600 −0.312998
\(906\) 0 0
\(907\) 18.0310i 0.598710i 0.954142 + 0.299355i \(0.0967715\pi\)
−0.954142 + 0.299355i \(0.903228\pi\)
\(908\) 0 0
\(909\) −26.6862 + 20.7629i −0.885126 + 0.688663i
\(910\) 0 0
\(911\) −7.79715 + 4.50169i −0.258331 + 0.149148i −0.623573 0.781765i \(-0.714320\pi\)
0.365242 + 0.930913i \(0.380986\pi\)
\(912\) 0 0
\(913\) 11.3408 6.54764i 0.375327 0.216695i
\(914\) 0 0
\(915\) 30.2948 20.3897i 1.00152 0.674062i
\(916\) 0 0
\(917\) −18.7043 + 12.6875i −0.617670 + 0.418978i
\(918\) 0 0
\(919\) 20.9938 12.1208i 0.692522 0.399828i −0.112034 0.993704i \(-0.535737\pi\)
0.804556 + 0.593876i \(0.202403\pi\)
\(920\) 0 0
\(921\) 25.3245 + 12.3833i 0.834472 + 0.408042i
\(922\) 0 0
\(923\) −1.55324 + 2.69028i −0.0511254 + 0.0885518i
\(924\) 0 0
\(925\) 1.54053 + 2.66827i 0.0506522 + 0.0877322i
\(926\) 0 0
\(927\) 17.7073 + 22.7589i 0.581585 + 0.747500i
\(928\) 0 0
\(929\) −39.6778 22.9080i −1.30179 0.751586i −0.321076 0.947054i \(-0.604044\pi\)
−0.980710 + 0.195467i \(0.937378\pi\)
\(930\) 0 0
\(931\) 10.7280 1.56498i 0.351596 0.0512901i
\(932\) 0 0
\(933\) −0.760875 11.0412i −0.0249099 0.361471i
\(934\) 0 0
\(935\) −2.36722 1.36671i −0.0774164 0.0446964i
\(936\) 0 0
\(937\) 16.0236i 0.523467i −0.965140 0.261733i \(-0.915706\pi\)
0.965140 0.261733i \(-0.0842941\pi\)
\(938\) 0 0
\(939\) 24.7993 + 36.8466i 0.809293 + 1.20244i
\(940\) 0 0
\(941\) −6.86496 + 3.96349i −0.223791 + 0.129206i −0.607705 0.794163i \(-0.707910\pi\)
0.383913 + 0.923369i \(0.374576\pi\)
\(942\) 0 0
\(943\) 1.95883 3.39279i 0.0637882 0.110484i
\(944\) 0 0
\(945\) 19.1051 19.7675i 0.621487 0.643037i
\(946\) 0 0
\(947\) −13.2565 7.65366i −0.430780 0.248711i 0.268899 0.963168i \(-0.413340\pi\)
−0.699679 + 0.714458i \(0.746673\pi\)
\(948\) 0 0
\(949\) −15.5463 26.9270i −0.504654 0.874086i
\(950\) 0 0
\(951\) −42.1076 + 28.3401i −1.36543 + 0.918992i
\(952\) 0 0
\(953\) −36.5759 −1.18481 −0.592405 0.805640i \(-0.701821\pi\)
−0.592405 + 0.805640i \(0.701821\pi\)
\(954\) 0 0
\(955\) 8.63294 14.9527i 0.279355 0.483858i
\(956\) 0 0
\(957\) 4.02366 0.277281i 0.130066 0.00896321i
\(958\) 0 0
\(959\) −8.44099 + 5.72569i −0.272574 + 0.184892i
\(960\) 0 0
\(961\) 15.3636 26.6106i 0.495601 0.858406i
\(962\) 0 0
\(963\) 35.5827 + 14.4600i 1.14664 + 0.465967i
\(964\) 0 0
\(965\) −18.9248 + 10.9262i −0.609210 + 0.351728i
\(966\) 0 0
\(967\) 27.8653 + 16.0880i 0.896088 + 0.517357i 0.875929 0.482440i \(-0.160249\pi\)
0.0201591 + 0.999797i \(0.493583\pi\)
\(968\) 0 0
\(969\) −1.18225 + 2.41777i −0.0379792 + 0.0776699i
\(970\) 0 0
\(971\) 24.1287 + 41.7921i 0.774326 + 1.34117i 0.935172 + 0.354193i \(0.115244\pi\)
−0.160846 + 0.986979i \(0.551422\pi\)
\(972\) 0 0
\(973\) 2.90922 + 40.0967i 0.0932653 + 1.28544i
\(974\) 0 0
\(975\) −1.91237 2.84138i −0.0612447 0.0909970i
\(976\) 0 0
\(977\) −1.30247 2.25594i −0.0416697 0.0721740i 0.844438 0.535653i \(-0.179934\pi\)
−0.886108 + 0.463479i \(0.846601\pi\)
\(978\) 0 0
\(979\) 0.872274 + 1.51082i 0.0278780 + 0.0482861i
\(980\) 0 0
\(981\) −43.2779 + 5.99324i −1.38176 + 0.191350i
\(982\) 0 0
\(983\) 39.8000 1.26942 0.634711 0.772750i \(-0.281119\pi\)
0.634711 + 0.772750i \(0.281119\pi\)
\(984\) 0 0
\(985\) 39.4230i 1.25612i
\(986\) 0 0
\(987\) −2.80326 + 6.97050i −0.0892286 + 0.221874i
\(988\) 0 0
\(989\) 27.8478 + 48.2337i 0.885507 + 1.53374i
\(990\) 0 0
\(991\) 9.30303 + 5.37111i 0.295521 + 0.170619i 0.640429 0.768018i \(-0.278757\pi\)
−0.344908 + 0.938636i \(0.612090\pi\)
\(992\) 0 0
\(993\) −0.129293 0.192103i −0.00410298 0.00609619i
\(994\) 0 0
\(995\) 46.2644 + 26.7107i 1.46668 + 0.846787i
\(996\) 0 0
\(997\) 23.8585i 0.755605i −0.925886 0.377803i \(-0.876680\pi\)
0.925886 0.377803i \(-0.123320\pi\)
\(998\) 0 0
\(999\) −11.9146 + 10.6628i −0.376960 + 0.337355i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.bf.g.31.11 24
3.2 odd 2 3024.2.bf.h.1711.9 24
4.3 odd 2 1008.2.bf.h.31.2 yes 24
7.5 odd 6 1008.2.cz.g.607.10 yes 24
9.2 odd 6 3024.2.cz.g.2719.4 24
9.7 even 3 1008.2.cz.h.367.3 yes 24
12.11 even 2 3024.2.bf.g.1711.9 24
21.5 even 6 3024.2.cz.h.1279.4 24
28.19 even 6 1008.2.cz.h.607.3 yes 24
36.7 odd 6 1008.2.cz.g.367.10 yes 24
36.11 even 6 3024.2.cz.h.2719.4 24
63.47 even 6 3024.2.bf.g.2287.4 24
63.61 odd 6 1008.2.bf.h.943.2 yes 24
84.47 odd 6 3024.2.cz.g.1279.4 24
252.47 odd 6 3024.2.bf.h.2287.4 24
252.187 even 6 inner 1008.2.bf.g.943.11 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.11 24 1.1 even 1 trivial
1008.2.bf.g.943.11 yes 24 252.187 even 6 inner
1008.2.bf.h.31.2 yes 24 4.3 odd 2
1008.2.bf.h.943.2 yes 24 63.61 odd 6
1008.2.cz.g.367.10 yes 24 36.7 odd 6
1008.2.cz.g.607.10 yes 24 7.5 odd 6
1008.2.cz.h.367.3 yes 24 9.7 even 3
1008.2.cz.h.607.3 yes 24 28.19 even 6
3024.2.bf.g.1711.9 24 12.11 even 2
3024.2.bf.g.2287.4 24 63.47 even 6
3024.2.bf.h.1711.9 24 3.2 odd 2
3024.2.bf.h.2287.4 24 252.47 odd 6
3024.2.cz.g.1279.4 24 84.47 odd 6
3024.2.cz.g.2719.4 24 9.2 odd 6
3024.2.cz.h.1279.4 24 21.5 even 6
3024.2.cz.h.2719.4 24 36.11 even 6