Properties

Label 3024.2.cz.h.2719.4
Level $3024$
Weight $2$
Character 3024.2719
Analytic conductor $24.147$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(1279,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.1279"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cz (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2719.4
Character \(\chi\) \(=\) 3024.2719
Dual form 3024.2.cz.h.1279.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73177 - 0.999840i) q^{5} +(2.38101 + 1.15360i) q^{7} +(-1.17995 + 0.681244i) q^{11} +(1.71030 - 0.987444i) q^{13} +(-0.868852 - 0.501632i) q^{17} +(-0.774396 - 1.34129i) q^{19} +(7.59639 + 4.38578i) q^{23} +(-0.500642 - 0.867137i) q^{25} +(-0.854529 + 1.48009i) q^{29} -0.522244 q^{31} +(-2.96996 - 4.37840i) q^{35} +(1.53855 + 2.66485i) q^{37} +(0.386794 - 0.223316i) q^{41} +(-5.49888 - 3.17478i) q^{43} +1.63949 q^{47} +(4.33842 + 5.49346i) q^{49} +(-1.24313 + 2.15316i) q^{53} +2.72454 q^{55} +12.6284 q^{59} -10.5433i q^{61} -3.94914 q^{65} +6.50486i q^{67} -1.57299i q^{71} +(13.6347 + 7.87199i) q^{73} +(-3.59535 + 0.260861i) q^{77} -5.95935i q^{79} +(4.80565 - 8.32363i) q^{83} +(1.00310 + 1.73743i) q^{85} +(1.10887 - 0.640207i) q^{89} +(5.21136 - 0.378111i) q^{91} +3.09709i q^{95} +(8.31781 + 4.80229i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 3 q^{5} + 4 q^{7} + 9 q^{11} - 3 q^{13} + 3 q^{17} - 4 q^{19} + 6 q^{23} + 15 q^{25} - 18 q^{29} + 34 q^{31} + 42 q^{35} - 3 q^{37} - 36 q^{41} + 24 q^{43} + 42 q^{47} + 30 q^{49} + 12 q^{53} - 30 q^{55}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.73177 0.999840i −0.774472 0.447142i 0.0599953 0.998199i \(-0.480891\pi\)
−0.834468 + 0.551057i \(0.814225\pi\)
\(6\) 0 0
\(7\) 2.38101 + 1.15360i 0.899937 + 0.436019i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.17995 + 0.681244i −0.355768 + 0.205403i −0.667223 0.744858i \(-0.732517\pi\)
0.311455 + 0.950261i \(0.399184\pi\)
\(12\) 0 0
\(13\) 1.71030 0.987444i 0.474353 0.273868i −0.243707 0.969849i \(-0.578364\pi\)
0.718060 + 0.695981i \(0.245030\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.868852 0.501632i −0.210728 0.121664i 0.390922 0.920424i \(-0.372156\pi\)
−0.601649 + 0.798760i \(0.705490\pi\)
\(18\) 0 0
\(19\) −0.774396 1.34129i −0.177659 0.307714i 0.763420 0.645903i \(-0.223519\pi\)
−0.941078 + 0.338189i \(0.890186\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.59639 + 4.38578i 1.58396 + 0.914498i 0.994274 + 0.106862i \(0.0340804\pi\)
0.589682 + 0.807635i \(0.299253\pi\)
\(24\) 0 0
\(25\) −0.500642 0.867137i −0.100128 0.173427i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.854529 + 1.48009i −0.158682 + 0.274846i −0.934394 0.356242i \(-0.884058\pi\)
0.775712 + 0.631088i \(0.217391\pi\)
\(30\) 0 0
\(31\) −0.522244 −0.0937979 −0.0468989 0.998900i \(-0.514934\pi\)
−0.0468989 + 0.998900i \(0.514934\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.96996 4.37840i −0.502014 0.740085i
\(36\) 0 0
\(37\) 1.53855 + 2.66485i 0.252936 + 0.438099i 0.964333 0.264692i \(-0.0852703\pi\)
−0.711397 + 0.702791i \(0.751937\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.386794 0.223316i 0.0604071 0.0348761i −0.469492 0.882937i \(-0.655563\pi\)
0.529899 + 0.848061i \(0.322230\pi\)
\(42\) 0 0
\(43\) −5.49888 3.17478i −0.838572 0.484150i 0.0182067 0.999834i \(-0.494204\pi\)
−0.856779 + 0.515685i \(0.827538\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.63949 0.239144 0.119572 0.992826i \(-0.461848\pi\)
0.119572 + 0.992826i \(0.461848\pi\)
\(48\) 0 0
\(49\) 4.33842 + 5.49346i 0.619774 + 0.784780i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.24313 + 2.15316i −0.170757 + 0.295760i −0.938685 0.344777i \(-0.887955\pi\)
0.767928 + 0.640537i \(0.221288\pi\)
\(54\) 0 0
\(55\) 2.72454 0.367377
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.6284 1.64408 0.822040 0.569430i \(-0.192836\pi\)
0.822040 + 0.569430i \(0.192836\pi\)
\(60\) 0 0
\(61\) 10.5433i 1.34994i −0.737847 0.674968i \(-0.764157\pi\)
0.737847 0.674968i \(-0.235843\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.94914 −0.489831
\(66\) 0 0
\(67\) 6.50486i 0.794695i 0.917668 + 0.397347i \(0.130069\pi\)
−0.917668 + 0.397347i \(0.869931\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.57299i 0.186679i −0.995634 0.0933396i \(-0.970246\pi\)
0.995634 0.0933396i \(-0.0297542\pi\)
\(72\) 0 0
\(73\) 13.6347 + 7.87199i 1.59582 + 0.921346i 0.992281 + 0.124012i \(0.0395760\pi\)
0.603538 + 0.797334i \(0.293757\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.59535 + 0.260861i −0.409728 + 0.0297279i
\(78\) 0 0
\(79\) 5.95935i 0.670479i −0.942133 0.335240i \(-0.891183\pi\)
0.942133 0.335240i \(-0.108817\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.80565 8.32363i 0.527489 0.913637i −0.471998 0.881600i \(-0.656467\pi\)
0.999487 0.0320377i \(-0.0101997\pi\)
\(84\) 0 0
\(85\) 1.00310 + 1.73743i 0.108802 + 0.188450i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.10887 0.640207i 0.117540 0.0678618i −0.440077 0.897960i \(-0.645049\pi\)
0.557617 + 0.830098i \(0.311716\pi\)
\(90\) 0 0
\(91\) 5.21136 0.378111i 0.546299 0.0396368i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.09709i 0.317754i
\(96\) 0 0
\(97\) 8.31781 + 4.80229i 0.844546 + 0.487599i 0.858807 0.512299i \(-0.171206\pi\)
−0.0142608 + 0.999898i \(0.504540\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.76069 + 5.63534i −0.971225 + 0.560737i −0.899610 0.436695i \(-0.856149\pi\)
−0.0716156 + 0.997432i \(0.522815\pi\)
\(102\) 0 0
\(103\) 4.80600 8.32424i 0.473550 0.820212i −0.525992 0.850490i \(-0.676306\pi\)
0.999542 + 0.0302775i \(0.00963909\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.0876 6.40144i 1.07188 0.618850i 0.143186 0.989696i \(-0.454265\pi\)
0.928695 + 0.370845i \(0.120932\pi\)
\(108\) 0 0
\(109\) −7.28182 + 12.6125i −0.697472 + 1.20806i 0.271869 + 0.962334i \(0.412358\pi\)
−0.969340 + 0.245722i \(0.920975\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.07922 + 15.7257i 0.854101 + 1.47935i 0.877476 + 0.479620i \(0.159225\pi\)
−0.0233754 + 0.999727i \(0.507441\pi\)
\(114\) 0 0
\(115\) −8.77014 15.1903i −0.817820 1.41651i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.49006 2.19670i −0.136594 0.201371i
\(120\) 0 0
\(121\) −4.57181 + 7.91861i −0.415619 + 0.719874i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0006i 1.07337i
\(126\) 0 0
\(127\) 13.2304i 1.17401i −0.809585 0.587003i \(-0.800308\pi\)
0.809585 0.587003i \(-0.199692\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.27126 7.39804i 0.373182 0.646370i −0.616871 0.787064i \(-0.711600\pi\)
0.990053 + 0.140694i \(0.0449334\pi\)
\(132\) 0 0
\(133\) −0.296530 4.08697i −0.0257125 0.354386i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.92756 3.33864i −0.164683 0.285239i 0.771860 0.635793i \(-0.219327\pi\)
−0.936543 + 0.350554i \(0.885993\pi\)
\(138\) 0 0
\(139\) 7.59749 + 13.1592i 0.644410 + 1.11615i 0.984437 + 0.175736i \(0.0562305\pi\)
−0.340027 + 0.940416i \(0.610436\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.34538 + 2.33027i −0.112506 + 0.194867i
\(144\) 0 0
\(145\) 2.95970 1.70878i 0.245790 0.141907i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.77752 10.0070i 0.473313 0.819802i −0.526221 0.850348i \(-0.676391\pi\)
0.999533 + 0.0305463i \(0.00972470\pi\)
\(150\) 0 0
\(151\) 19.6224 11.3290i 1.59685 0.921941i 0.604759 0.796408i \(-0.293269\pi\)
0.992089 0.125533i \(-0.0400640\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.904409 + 0.522161i 0.0726439 + 0.0419409i
\(156\) 0 0
\(157\) 14.6276i 1.16741i −0.811965 0.583706i \(-0.801602\pi\)
0.811965 0.583706i \(-0.198398\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.0276 + 19.2058i 1.02672 + 1.51363i
\(162\) 0 0
\(163\) 10.4437 6.02970i 0.818017 0.472282i −0.0317152 0.999497i \(-0.510097\pi\)
0.849732 + 0.527215i \(0.176764\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.0887 + 19.2062i 0.858069 + 1.48622i 0.873769 + 0.486342i \(0.161669\pi\)
−0.0156998 + 0.999877i \(0.504998\pi\)
\(168\) 0 0
\(169\) −4.54991 + 7.88067i −0.349993 + 0.606206i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.9706i 1.13819i −0.822270 0.569097i \(-0.807293\pi\)
0.822270 0.569097i \(-0.192707\pi\)
\(174\) 0 0
\(175\) −0.191705 2.64220i −0.0144915 0.199732i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.1951 7.04084i −0.911505 0.526257i −0.0305897 0.999532i \(-0.509739\pi\)
−0.880915 + 0.473275i \(0.843072\pi\)
\(180\) 0 0
\(181\) 4.70875i 0.349999i −0.984569 0.174999i \(-0.944008\pi\)
0.984569 0.174999i \(-0.0559924\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.15322i 0.452394i
\(186\) 0 0
\(187\) 1.36693 0.0999601
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.63432i 0.624758i −0.949958 0.312379i \(-0.898874\pi\)
0.949958 0.312379i \(-0.101126\pi\)
\(192\) 0 0
\(193\) 10.9280 0.786613 0.393307 0.919407i \(-0.371331\pi\)
0.393307 + 0.919407i \(0.371331\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.7147 1.40461 0.702305 0.711876i \(-0.252154\pi\)
0.702305 + 0.711876i \(0.252154\pi\)
\(198\) 0 0
\(199\) 13.3575 23.1359i 0.946889 1.64006i 0.194965 0.980810i \(-0.437541\pi\)
0.751924 0.659249i \(-0.229126\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.74207 + 2.53832i −0.262642 + 0.178155i
\(204\) 0 0
\(205\) −0.893120 −0.0623782
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.82749 + 1.05510i 0.126410 + 0.0729831i
\(210\) 0 0
\(211\) 6.27293 3.62168i 0.431846 0.249327i −0.268286 0.963339i \(-0.586457\pi\)
0.700133 + 0.714012i \(0.253124\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.34854 + 10.9960i 0.432967 + 0.749921i
\(216\) 0 0
\(217\) −1.24347 0.602460i −0.0844122 0.0408977i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.98133 −0.133279
\(222\) 0 0
\(223\) −9.80779 + 16.9876i −0.656778 + 1.13757i 0.324667 + 0.945828i \(0.394748\pi\)
−0.981445 + 0.191744i \(0.938586\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3892 + 17.9947i 0.689557 + 1.19435i 0.971981 + 0.235058i \(0.0755281\pi\)
−0.282424 + 0.959290i \(0.591139\pi\)
\(228\) 0 0
\(229\) −19.1630 11.0638i −1.26633 0.731113i −0.292035 0.956408i \(-0.594332\pi\)
−0.974291 + 0.225294i \(0.927666\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.95965 + 3.39421i 0.128381 + 0.222362i 0.923049 0.384681i \(-0.125689\pi\)
−0.794669 + 0.607043i \(0.792355\pi\)
\(234\) 0 0
\(235\) −2.83922 1.63922i −0.185210 0.106931i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.38657 4.26464i 0.477798 0.275857i −0.241701 0.970351i \(-0.577705\pi\)
0.719498 + 0.694494i \(0.244372\pi\)
\(240\) 0 0
\(241\) 2.09775 1.21114i 0.135128 0.0780161i −0.430912 0.902394i \(-0.641808\pi\)
0.566040 + 0.824378i \(0.308475\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.02058 13.8512i −0.129090 0.884918i
\(246\) 0 0
\(247\) −2.64890 1.52934i −0.168546 0.0973099i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.09792 0.0693002 0.0346501 0.999400i \(-0.488968\pi\)
0.0346501 + 0.999400i \(0.488968\pi\)
\(252\) 0 0
\(253\) −11.9511 −0.751361
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.2289 + 10.5245i 1.13709 + 0.656498i 0.945708 0.325018i \(-0.105371\pi\)
0.191380 + 0.981516i \(0.438704\pi\)
\(258\) 0 0
\(259\) 0.589140 + 8.11991i 0.0366074 + 0.504547i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −21.1850 + 12.2312i −1.30632 + 0.754206i −0.981481 0.191562i \(-0.938645\pi\)
−0.324843 + 0.945768i \(0.605311\pi\)
\(264\) 0 0
\(265\) 4.30564 2.48586i 0.264493 0.152705i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.79690 + 5.65624i 0.597327 + 0.344867i 0.767989 0.640462i \(-0.221257\pi\)
−0.170662 + 0.985330i \(0.554591\pi\)
\(270\) 0 0
\(271\) 0.480849 + 0.832856i 0.0292095 + 0.0505924i 0.880261 0.474490i \(-0.157368\pi\)
−0.851051 + 0.525083i \(0.824034\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.18146 + 0.682118i 0.0712449 + 0.0411333i
\(276\) 0 0
\(277\) 12.5249 + 21.6938i 0.752549 + 1.30345i 0.946583 + 0.322459i \(0.104509\pi\)
−0.194034 + 0.980995i \(0.562157\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.0324 + 19.1087i −0.658139 + 1.13993i 0.322958 + 0.946413i \(0.395323\pi\)
−0.981097 + 0.193517i \(0.938010\pi\)
\(282\) 0 0
\(283\) −5.26865 −0.313189 −0.156594 0.987663i \(-0.550052\pi\)
−0.156594 + 0.987663i \(0.550052\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.17858 0.0855118i 0.0695693 0.00504760i
\(288\) 0 0
\(289\) −7.99673 13.8507i −0.470396 0.814750i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.1084 6.99080i 0.707381 0.408407i −0.102709 0.994711i \(-0.532751\pi\)
0.810091 + 0.586305i \(0.199418\pi\)
\(294\) 0 0
\(295\) −21.8696 12.6264i −1.27329 0.735137i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 17.3228 1.00181
\(300\) 0 0
\(301\) −9.43047 13.9027i −0.543563 0.801338i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.5416 + 18.2587i −0.603613 + 1.04549i
\(306\) 0 0
\(307\) −16.2755 −0.928893 −0.464446 0.885601i \(-0.653747\pi\)
−0.464446 + 0.885601i \(0.653747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.38973 0.362329 0.181164 0.983453i \(-0.442013\pi\)
0.181164 + 0.983453i \(0.442013\pi\)
\(312\) 0 0
\(313\) 25.6429i 1.44942i −0.689053 0.724711i \(-0.741973\pi\)
0.689053 0.724711i \(-0.258027\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −29.3042 −1.64589 −0.822945 0.568122i \(-0.807670\pi\)
−0.822945 + 0.568122i \(0.807670\pi\)
\(318\) 0 0
\(319\) 2.32857i 0.130375i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.55385i 0.0864583i
\(324\) 0 0
\(325\) −1.71250 0.988711i −0.0949923 0.0548438i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.90363 + 1.89131i 0.215214 + 0.104271i
\(330\) 0 0
\(331\) 0.133691i 0.00734833i −0.999993 0.00367417i \(-0.998830\pi\)
0.999993 0.00367417i \(-0.00116953\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.50381 11.2649i 0.355341 0.615469i
\(336\) 0 0
\(337\) 9.96606 + 17.2617i 0.542886 + 0.940306i 0.998737 + 0.0502498i \(0.0160017\pi\)
−0.455851 + 0.890056i \(0.650665\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.616222 0.355776i 0.0333703 0.0192663i
\(342\) 0 0
\(343\) 3.99257 + 18.0848i 0.215579 + 0.976486i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.55582i 0.298252i 0.988818 + 0.149126i \(0.0476460\pi\)
−0.988818 + 0.149126i \(0.952354\pi\)
\(348\) 0 0
\(349\) 0.710293 + 0.410088i 0.0380211 + 0.0219515i 0.518890 0.854841i \(-0.326345\pi\)
−0.480869 + 0.876792i \(0.659679\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.5479 + 10.7086i −0.987203 + 0.569962i −0.904437 0.426607i \(-0.859709\pi\)
−0.0827662 + 0.996569i \(0.526375\pi\)
\(354\) 0 0
\(355\) −1.57273 + 2.72406i −0.0834721 + 0.144578i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.64573 + 3.25956i −0.297970 + 0.172033i −0.641531 0.767097i \(-0.721700\pi\)
0.343560 + 0.939131i \(0.388367\pi\)
\(360\) 0 0
\(361\) 8.30062 14.3771i 0.436875 0.756689i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −15.7414 27.2650i −0.823945 1.42711i
\(366\) 0 0
\(367\) 6.58460 + 11.4049i 0.343713 + 0.595329i 0.985119 0.171873i \(-0.0549819\pi\)
−0.641406 + 0.767202i \(0.721649\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.44379 + 3.69263i −0.282628 + 0.191712i
\(372\) 0 0
\(373\) −14.7435 + 25.5364i −0.763388 + 1.32223i 0.177707 + 0.984083i \(0.443132\pi\)
−0.941095 + 0.338143i \(0.890201\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.37520i 0.173832i
\(378\) 0 0
\(379\) 25.2566i 1.29735i 0.761067 + 0.648673i \(0.224676\pi\)
−0.761067 + 0.648673i \(0.775324\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.61272 4.52537i 0.133504 0.231236i −0.791521 0.611142i \(-0.790710\pi\)
0.925025 + 0.379906i \(0.124044\pi\)
\(384\) 0 0
\(385\) 6.48715 + 3.14302i 0.330616 + 0.160183i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.9830 22.4872i −0.658264 1.14015i −0.981065 0.193679i \(-0.937958\pi\)
0.322801 0.946467i \(-0.395375\pi\)
\(390\) 0 0
\(391\) −4.40009 7.62118i −0.222522 0.385420i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.95839 + 10.3202i −0.299799 + 0.519268i
\(396\) 0 0
\(397\) 12.5913 7.26961i 0.631941 0.364851i −0.149562 0.988752i \(-0.547786\pi\)
0.781503 + 0.623901i \(0.214453\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.86138 11.8843i 0.342641 0.593471i −0.642281 0.766469i \(-0.722012\pi\)
0.984922 + 0.172998i \(0.0553453\pi\)
\(402\) 0 0
\(403\) −0.893196 + 0.515687i −0.0444933 + 0.0256882i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.63082 2.09626i −0.179973 0.103908i
\(408\) 0 0
\(409\) 10.0019i 0.494561i 0.968944 + 0.247281i \(0.0795370\pi\)
−0.968944 + 0.247281i \(0.920463\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 30.0684 + 14.5681i 1.47957 + 0.716851i
\(414\) 0 0
\(415\) −16.6446 + 9.60976i −0.817051 + 0.471725i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.51452 6.08732i −0.171695 0.297385i 0.767317 0.641268i \(-0.221591\pi\)
−0.939013 + 0.343882i \(0.888258\pi\)
\(420\) 0 0
\(421\) −3.01107 + 5.21533i −0.146751 + 0.254179i −0.930025 0.367497i \(-0.880215\pi\)
0.783274 + 0.621676i \(0.213548\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.00455i 0.0487279i
\(426\) 0 0
\(427\) 12.1628 25.1038i 0.588598 1.21486i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.3683 8.29555i −0.692097 0.399582i 0.112300 0.993674i \(-0.464178\pi\)
−0.804397 + 0.594092i \(0.797512\pi\)
\(432\) 0 0
\(433\) 6.42380i 0.308708i 0.988016 + 0.154354i \(0.0493297\pi\)
−0.988016 + 0.154354i \(0.950670\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.5853i 0.649873i
\(438\) 0 0
\(439\) −4.46311 −0.213013 −0.106506 0.994312i \(-0.533966\pi\)
−0.106506 + 0.994312i \(0.533966\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.5435i 1.30863i −0.756222 0.654315i \(-0.772957\pi\)
0.756222 0.654315i \(-0.227043\pi\)
\(444\) 0 0
\(445\) −2.56042 −0.121375
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −38.3329 −1.80904 −0.904520 0.426432i \(-0.859771\pi\)
−0.904520 + 0.426432i \(0.859771\pi\)
\(450\) 0 0
\(451\) −0.304265 + 0.527003i −0.0143273 + 0.0248156i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −9.40295 4.55573i −0.440817 0.213576i
\(456\) 0 0
\(457\) −34.3165 −1.60526 −0.802629 0.596478i \(-0.796566\pi\)
−0.802629 + 0.596478i \(0.796566\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.9331 + 8.04429i 0.648930 + 0.374660i 0.788046 0.615616i \(-0.211093\pi\)
−0.139116 + 0.990276i \(0.544426\pi\)
\(462\) 0 0
\(463\) −15.7583 + 9.09805i −0.732349 + 0.422822i −0.819281 0.573392i \(-0.805627\pi\)
0.0869318 + 0.996214i \(0.472294\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.08122 + 12.2650i 0.327680 + 0.567558i 0.982051 0.188615i \(-0.0603999\pi\)
−0.654371 + 0.756173i \(0.727067\pi\)
\(468\) 0 0
\(469\) −7.50399 + 15.4881i −0.346502 + 0.715175i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.65120 0.397783
\(474\) 0 0
\(475\) −0.775389 + 1.34301i −0.0355773 + 0.0616217i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.8982 29.2685i −0.772096 1.33731i −0.936412 0.350902i \(-0.885875\pi\)
0.164316 0.986408i \(-0.447458\pi\)
\(480\) 0 0
\(481\) 5.26278 + 3.03847i 0.239962 + 0.138542i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.60304 16.6330i −0.436052 0.755264i
\(486\) 0 0
\(487\) 9.41218 + 5.43412i 0.426506 + 0.246244i 0.697857 0.716237i \(-0.254137\pi\)
−0.271351 + 0.962481i \(0.587470\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −29.3930 + 16.9701i −1.32649 + 0.765848i −0.984755 0.173949i \(-0.944347\pi\)
−0.341733 + 0.939797i \(0.611014\pi\)
\(492\) 0 0
\(493\) 1.48492 0.857318i 0.0668774 0.0386117i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.81460 3.74530i 0.0813958 0.168000i
\(498\) 0 0
\(499\) −2.57367 1.48591i −0.115213 0.0665185i 0.441286 0.897367i \(-0.354522\pi\)
−0.556499 + 0.830848i \(0.687856\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −26.0651 −1.16219 −0.581093 0.813837i \(-0.697375\pi\)
−0.581093 + 0.813837i \(0.697375\pi\)
\(504\) 0 0
\(505\) 22.5377 1.00292
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.3806 8.87997i −0.681731 0.393598i 0.118776 0.992921i \(-0.462103\pi\)
−0.800507 + 0.599323i \(0.795436\pi\)
\(510\) 0 0
\(511\) 23.3832 + 34.4722i 1.03441 + 1.52496i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.6458 + 9.61047i −0.733502 + 0.423488i
\(516\) 0 0
\(517\) −1.93451 + 1.11689i −0.0850796 + 0.0491207i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −24.9679 14.4152i −1.09387 0.631543i −0.159262 0.987236i \(-0.550912\pi\)
−0.934603 + 0.355693i \(0.884245\pi\)
\(522\) 0 0
\(523\) 6.32766 + 10.9598i 0.276689 + 0.479240i 0.970560 0.240860i \(-0.0774294\pi\)
−0.693871 + 0.720100i \(0.744096\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.453753 + 0.261974i 0.0197658 + 0.0114118i
\(528\) 0 0
\(529\) 26.9701 + 46.7135i 1.17261 + 2.03102i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.441024 0.763876i 0.0191029 0.0330871i
\(534\) 0 0
\(535\) −25.6016 −1.10686
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.86150 3.52648i −0.381692 0.151896i
\(540\) 0 0
\(541\) −7.29665 12.6382i −0.313708 0.543358i 0.665454 0.746439i \(-0.268238\pi\)
−0.979162 + 0.203081i \(0.934905\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 25.2209 14.5613i 1.08035 0.623738i
\(546\) 0 0
\(547\) 5.61933 + 3.24432i 0.240265 + 0.138717i 0.615299 0.788294i \(-0.289035\pi\)
−0.375033 + 0.927011i \(0.622369\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.64698 0.112765
\(552\) 0 0
\(553\) 6.87470 14.1893i 0.292342 0.603389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.2102 + 31.5410i −0.771590 + 1.33643i 0.165101 + 0.986277i \(0.447205\pi\)
−0.936691 + 0.350157i \(0.886128\pi\)
\(558\) 0 0
\(559\) −12.5397 −0.530372
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.55398 0.318362 0.159181 0.987249i \(-0.449115\pi\)
0.159181 + 0.987249i \(0.449115\pi\)
\(564\) 0 0
\(565\) 36.3110i 1.52762i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23.8329 −0.999127 −0.499564 0.866277i \(-0.666506\pi\)
−0.499564 + 0.866277i \(0.666506\pi\)
\(570\) 0 0
\(571\) 19.1328i 0.800682i 0.916366 + 0.400341i \(0.131108\pi\)
−0.916366 + 0.400341i \(0.868892\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.78281i 0.366268i
\(576\) 0 0
\(577\) 0.278675 + 0.160893i 0.0116014 + 0.00669808i 0.505789 0.862657i \(-0.331201\pi\)
−0.494188 + 0.869355i \(0.664535\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 21.0444 14.2749i 0.873070 0.592221i
\(582\) 0 0
\(583\) 3.38750i 0.140296i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.9285 39.7134i 0.946362 1.63915i 0.193360 0.981128i \(-0.438061\pi\)
0.753001 0.658019i \(-0.228605\pi\)
\(588\) 0 0
\(589\) 0.404424 + 0.700483i 0.0166640 + 0.0288629i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.8195 14.3295i 1.01921 0.588443i 0.105338 0.994437i \(-0.466408\pi\)
0.913876 + 0.405993i \(0.133074\pi\)
\(594\) 0 0
\(595\) 0.384107 + 5.29401i 0.0157468 + 0.217033i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.4551i 0.999208i −0.866254 0.499604i \(-0.833479\pi\)
0.866254 0.499604i \(-0.166521\pi\)
\(600\) 0 0
\(601\) −6.86788 3.96517i −0.280147 0.161743i 0.353343 0.935494i \(-0.385045\pi\)
−0.633490 + 0.773751i \(0.718378\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.8347 9.14216i 0.643772 0.371682i
\(606\) 0 0
\(607\) 2.45236 4.24762i 0.0995384 0.172406i −0.811955 0.583720i \(-0.801597\pi\)
0.911494 + 0.411314i \(0.134930\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.80402 1.61890i 0.113438 0.0654937i
\(612\) 0 0
\(613\) 9.53276 16.5112i 0.385025 0.666882i −0.606748 0.794894i \(-0.707526\pi\)
0.991773 + 0.128012i \(0.0408596\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −21.2636 36.8296i −0.856040 1.48270i −0.875677 0.482897i \(-0.839585\pi\)
0.0196377 0.999807i \(-0.493749\pi\)
\(618\) 0 0
\(619\) 6.26243 + 10.8468i 0.251708 + 0.435971i 0.963996 0.265916i \(-0.0856743\pi\)
−0.712288 + 0.701887i \(0.752341\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.37877 0.245147i 0.135368 0.00982161i
\(624\) 0 0
\(625\) 9.49551 16.4467i 0.379820 0.657868i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.08715i 0.123093i
\(630\) 0 0
\(631\) 17.8526i 0.710700i 0.934733 + 0.355350i \(0.115638\pi\)
−0.934733 + 0.355350i \(0.884362\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −13.2283 + 22.9120i −0.524947 + 0.909235i
\(636\) 0 0
\(637\) 12.8445 + 5.11154i 0.508918 + 0.202526i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.5722 + 33.9000i 0.773054 + 1.33897i 0.935882 + 0.352315i \(0.114605\pi\)
−0.162827 + 0.986655i \(0.552061\pi\)
\(642\) 0 0
\(643\) −2.93372 5.08136i −0.115695 0.200389i 0.802363 0.596837i \(-0.203576\pi\)
−0.918057 + 0.396448i \(0.870243\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.5795 + 33.9127i −0.769750 + 1.33325i 0.167949 + 0.985796i \(0.446286\pi\)
−0.937699 + 0.347450i \(0.887048\pi\)
\(648\) 0 0
\(649\) −14.9009 + 8.60303i −0.584911 + 0.337698i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.6261 23.6011i 0.533231 0.923584i −0.466015 0.884777i \(-0.654311\pi\)
0.999247 0.0388072i \(-0.0123558\pi\)
\(654\) 0 0
\(655\) −14.7937 + 8.54115i −0.578038 + 0.333730i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.1766 + 10.4943i 0.708061 + 0.408799i 0.810343 0.585956i \(-0.199281\pi\)
−0.102282 + 0.994755i \(0.532614\pi\)
\(660\) 0 0
\(661\) 2.10749i 0.0819720i −0.999160 0.0409860i \(-0.986950\pi\)
0.999160 0.0409860i \(-0.0130499\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.57279 + 7.37419i −0.138547 + 0.285959i
\(666\) 0 0
\(667\) −12.9827 + 7.49555i −0.502691 + 0.290229i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.18258 + 12.4406i 0.277281 + 0.480264i
\(672\) 0 0
\(673\) 3.40292 5.89403i 0.131173 0.227198i −0.792956 0.609279i \(-0.791459\pi\)
0.924129 + 0.382081i \(0.124792\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 43.3463i 1.66593i −0.553323 0.832967i \(-0.686640\pi\)
0.553323 0.832967i \(-0.313360\pi\)
\(678\) 0 0
\(679\) 14.2649 + 21.0297i 0.547436 + 0.807047i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25.2674 14.5882i −0.966832 0.558201i −0.0685629 0.997647i \(-0.521841\pi\)
−0.898269 + 0.439446i \(0.855175\pi\)
\(684\) 0 0
\(685\) 7.70901i 0.294546i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.91008i 0.187059i
\(690\) 0 0
\(691\) 47.1974 1.79547 0.897736 0.440533i \(-0.145210\pi\)
0.897736 + 0.440533i \(0.145210\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 30.3851i 1.15257i
\(696\) 0 0
\(697\) −0.448089 −0.0169726
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −14.7459 −0.556946 −0.278473 0.960444i \(-0.589828\pi\)
−0.278473 + 0.960444i \(0.589828\pi\)
\(702\) 0 0
\(703\) 2.38290 4.12730i 0.0898726 0.155664i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29.7412 + 2.15788i −1.11853 + 0.0811553i
\(708\) 0 0
\(709\) −29.3420 −1.10196 −0.550981 0.834518i \(-0.685746\pi\)
−0.550981 + 0.834518i \(0.685746\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.96717 2.29045i −0.148572 0.0857779i
\(714\) 0 0
\(715\) 4.65978 2.69033i 0.174266 0.100613i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19.0100 + 32.9262i 0.708952 + 1.22794i 0.965246 + 0.261342i \(0.0841651\pi\)
−0.256294 + 0.966599i \(0.582502\pi\)
\(720\) 0 0
\(721\) 21.0460 14.2759i 0.783793 0.531663i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.71125 0.0635543
\(726\) 0 0
\(727\) −1.33619 + 2.31435i −0.0495565 + 0.0858343i −0.889740 0.456469i \(-0.849114\pi\)
0.840183 + 0.542303i \(0.182447\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.18514 + 5.51683i 0.117807 + 0.204047i
\(732\) 0 0
\(733\) −2.84392 1.64194i −0.105042 0.0606463i 0.446558 0.894754i \(-0.352650\pi\)
−0.551601 + 0.834108i \(0.685983\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.43139 7.67540i −0.163232 0.282727i
\(738\) 0 0
\(739\) −22.7991 13.1631i −0.838680 0.484212i 0.0181356 0.999836i \(-0.494227\pi\)
−0.856815 + 0.515624i \(0.827560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.0356 12.1449i 0.771720 0.445553i −0.0617681 0.998091i \(-0.519674\pi\)
0.833488 + 0.552538i \(0.186341\pi\)
\(744\) 0 0
\(745\) −20.0107 + 11.5532i −0.733135 + 0.423276i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.7844 2.45123i 1.23446 0.0895660i
\(750\) 0 0
\(751\) −8.11887 4.68743i −0.296262 0.171047i 0.344501 0.938786i \(-0.388048\pi\)
−0.640762 + 0.767739i \(0.721382\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −45.3087 −1.64895
\(756\) 0 0
\(757\) −50.8723 −1.84899 −0.924493 0.381200i \(-0.875511\pi\)
−0.924493 + 0.381200i \(0.875511\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.6769 + 21.1754i 1.32954 + 0.767608i 0.985228 0.171249i \(-0.0547803\pi\)
0.344308 + 0.938857i \(0.388114\pi\)
\(762\) 0 0
\(763\) −31.8878 + 21.6301i −1.15442 + 0.783064i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.5984 12.4699i 0.779874 0.450260i
\(768\) 0 0
\(769\) −3.61419 + 2.08665i −0.130331 + 0.0752467i −0.563748 0.825947i \(-0.690641\pi\)
0.433417 + 0.901194i \(0.357308\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.51890 + 2.60899i 0.162534 + 0.0938389i 0.579061 0.815285i \(-0.303419\pi\)
−0.416527 + 0.909123i \(0.636753\pi\)
\(774\) 0 0
\(775\) 0.261457 + 0.452857i 0.00939182 + 0.0162671i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.599064 0.345870i −0.0214637 0.0123921i
\(780\) 0 0
\(781\) 1.07159 + 1.85604i 0.0383444 + 0.0664145i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.6253 + 25.3317i −0.521998 + 0.904128i
\(786\) 0 0
\(787\) −29.5860 −1.05463 −0.527314 0.849670i \(-0.676801\pi\)
−0.527314 + 0.849670i \(0.676801\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.47660 + 47.9168i 0.123614 + 1.70372i
\(792\) 0 0
\(793\) −10.4110 18.0323i −0.369704 0.640346i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −41.7053 + 24.0785i −1.47728 + 0.852906i −0.999671 0.0256682i \(-0.991829\pi\)
−0.477606 + 0.878574i \(0.658495\pi\)
\(798\) 0 0
\(799\) −1.42447 0.822418i −0.0503941 0.0290951i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −21.4510 −0.756988
\(804\) 0 0
\(805\) −3.35825 46.2856i −0.118363 1.63135i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.61482 4.52900i 0.0919321 0.159231i −0.816392 0.577498i \(-0.804029\pi\)
0.908324 + 0.418267i \(0.137362\pi\)
\(810\) 0 0
\(811\) −28.4364 −0.998538 −0.499269 0.866447i \(-0.666398\pi\)
−0.499269 + 0.866447i \(0.666398\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.1149 −0.844709
\(816\) 0 0
\(817\) 9.83415i 0.344053i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.16817 −0.180370 −0.0901851 0.995925i \(-0.528746\pi\)
−0.0901851 + 0.995925i \(0.528746\pi\)
\(822\) 0 0
\(823\) 17.1504i 0.597825i 0.954281 + 0.298912i \(0.0966238\pi\)
−0.954281 + 0.298912i \(0.903376\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.7499i 1.62565i −0.582505 0.812827i \(-0.697927\pi\)
0.582505 0.812827i \(-0.302073\pi\)
\(828\) 0 0
\(829\) −31.5449 18.2124i −1.09560 0.632544i −0.160538 0.987030i \(-0.551323\pi\)
−0.935062 + 0.354485i \(0.884656\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.01375 6.94929i −0.0351243 0.240779i
\(834\) 0 0
\(835\) 44.3477i 1.53471i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.36691 + 9.29577i −0.185286 + 0.320925i −0.943673 0.330880i \(-0.892655\pi\)
0.758387 + 0.651805i \(0.225988\pi\)
\(840\) 0 0
\(841\) 13.0396 + 22.5852i 0.449640 + 0.778799i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 15.7588 9.09836i 0.542120 0.312993i
\(846\) 0 0
\(847\) −20.0204 + 13.5803i −0.687910 + 0.466623i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 26.9910i 0.925239i
\(852\) 0 0
\(853\) −29.2849 16.9076i −1.00269 0.578906i −0.0936502 0.995605i \(-0.529854\pi\)
−0.909044 + 0.416699i \(0.863187\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.5914 + 15.3526i −0.908347 + 0.524434i −0.879899 0.475161i \(-0.842390\pi\)
−0.0284478 + 0.999595i \(0.509056\pi\)
\(858\) 0 0
\(859\) 12.9394 22.4117i 0.441487 0.764679i −0.556313 0.830973i \(-0.687784\pi\)
0.997800 + 0.0662945i \(0.0211177\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.1208 + 13.9262i −0.821083 + 0.474052i −0.850790 0.525506i \(-0.823876\pi\)
0.0297071 + 0.999559i \(0.490543\pi\)
\(864\) 0 0
\(865\) −14.9682 + 25.9257i −0.508935 + 0.881500i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.05977 + 7.03173i 0.137718 + 0.238535i
\(870\) 0 0
\(871\) 6.42318 + 11.1253i 0.217641 + 0.376966i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.8439 + 28.5736i −0.468010 + 0.965966i
\(876\) 0 0
\(877\) −9.25496 + 16.0301i −0.312518 + 0.541297i −0.978907 0.204307i \(-0.934506\pi\)
0.666389 + 0.745604i \(0.267839\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.6194i 1.26743i 0.773567 + 0.633714i \(0.218470\pi\)
−0.773567 + 0.633714i \(0.781530\pi\)
\(882\) 0 0
\(883\) 15.2541i 0.513340i 0.966499 + 0.256670i \(0.0826254\pi\)
−0.966499 + 0.256670i \(0.917375\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.98340 15.5597i 0.301633 0.522444i −0.674873 0.737934i \(-0.735802\pi\)
0.976506 + 0.215490i \(0.0691349\pi\)
\(888\) 0 0
\(889\) 15.2625 31.5017i 0.511889 1.05653i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.26961 2.19903i −0.0424859 0.0735877i
\(894\) 0 0
\(895\) 14.0794 + 24.3863i 0.470623 + 0.815144i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.446273 0.772968i 0.0148840 0.0257799i
\(900\) 0 0
\(901\) 2.16019 1.24719i 0.0719664 0.0415498i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.70800 + 8.15449i −0.156499 + 0.271064i
\(906\) 0 0
\(907\) −15.6153 + 9.01551i −0.518498 + 0.299355i −0.736320 0.676633i \(-0.763438\pi\)
0.217822 + 0.975989i \(0.430105\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.79715 + 4.50169i 0.258331 + 0.149148i 0.623573 0.781765i \(-0.285680\pi\)
−0.365242 + 0.930913i \(0.619014\pi\)
\(912\) 0 0
\(913\) 13.0953i 0.433390i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.7043 12.6875i 0.617670 0.418978i
\(918\) 0 0
\(919\) −20.9938 + 12.1208i −0.692522 + 0.399828i −0.804556 0.593876i \(-0.797597\pi\)
0.112034 + 0.993704i \(0.464263\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.55324 2.69028i −0.0511254 0.0885518i
\(924\) 0 0
\(925\) 1.54053 2.66827i 0.0506522 0.0877322i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 45.8160i 1.50317i −0.659635 0.751586i \(-0.729289\pi\)
0.659635 0.751586i \(-0.270711\pi\)
\(930\) 0 0
\(931\) 4.00869 10.0732i 0.131379 0.330136i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.36722 1.36671i −0.0774164 0.0446964i
\(936\) 0 0
\(937\) 16.0236i 0.523467i −0.965140 0.261733i \(-0.915706\pi\)
0.965140 0.261733i \(-0.0842941\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.92698i 0.258412i 0.991618 + 0.129206i \(0.0412428\pi\)
−0.991618 + 0.129206i \(0.958757\pi\)
\(942\) 0 0
\(943\) 3.91765 0.127576
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.3073i 0.497421i 0.968578 + 0.248711i \(0.0800068\pi\)
−0.968578 + 0.248711i \(0.919993\pi\)
\(948\) 0 0
\(949\) 31.0926 1.00931
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.5759 1.18481 0.592405 0.805640i \(-0.298179\pi\)
0.592405 + 0.805640i \(0.298179\pi\)
\(954\) 0 0
\(955\) −8.63294 + 14.9527i −0.279355 + 0.483858i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.738099 10.1730i −0.0238345 0.328502i
\(960\) 0 0
\(961\) −30.7273 −0.991202
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −18.9248 10.9262i −0.609210 0.351728i
\(966\) 0 0
\(967\) 27.8653 16.0880i 0.896088 0.517357i 0.0201591 0.999797i \(-0.493583\pi\)
0.875929 + 0.482440i \(0.160249\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 24.1287 + 41.7921i 0.774326 + 1.34117i 0.935172 + 0.354193i \(0.115244\pi\)
−0.160846 + 0.986979i \(0.551422\pi\)
\(972\) 0 0
\(973\) 2.90922 + 40.0967i 0.0932653 + 1.28544i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.60494 −0.0833394 −0.0416697 0.999131i \(-0.513268\pi\)
−0.0416697 + 0.999131i \(0.513268\pi\)
\(978\) 0 0
\(979\) −0.872274 + 1.51082i −0.0278780 + 0.0482861i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −19.9000 34.4678i −0.634711 1.09935i −0.986576 0.163301i \(-0.947786\pi\)
0.351865 0.936051i \(-0.385547\pi\)
\(984\) 0 0
\(985\) −34.1413 19.7115i −1.08783 0.628060i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −27.8478 48.2337i −0.885507 1.53374i
\(990\) 0 0
\(991\) −9.30303 5.37111i −0.295521 0.170619i 0.344908 0.938636i \(-0.387910\pi\)
−0.640429 + 0.768018i \(0.721243\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −46.2644 + 26.7107i −1.46668 + 0.846787i
\(996\) 0 0
\(997\) −20.6620 + 11.9292i −0.654373 + 0.377803i −0.790130 0.612940i \(-0.789987\pi\)
0.135756 + 0.990742i \(0.456654\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cz.h.2719.4 24
3.2 odd 2 1008.2.cz.g.367.10 yes 24
4.3 odd 2 3024.2.cz.g.2719.4 24
7.5 odd 6 3024.2.bf.h.2287.4 24
9.4 even 3 3024.2.bf.g.1711.9 24
9.5 odd 6 1008.2.bf.h.31.2 yes 24
12.11 even 2 1008.2.cz.h.367.3 yes 24
21.5 even 6 1008.2.bf.g.943.11 yes 24
28.19 even 6 3024.2.bf.g.2287.4 24
36.23 even 6 1008.2.bf.g.31.11 24
36.31 odd 6 3024.2.bf.h.1711.9 24
63.5 even 6 1008.2.cz.h.607.3 yes 24
63.40 odd 6 3024.2.cz.g.1279.4 24
84.47 odd 6 1008.2.bf.h.943.2 yes 24
252.103 even 6 inner 3024.2.cz.h.1279.4 24
252.131 odd 6 1008.2.cz.g.607.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.11 24 36.23 even 6
1008.2.bf.g.943.11 yes 24 21.5 even 6
1008.2.bf.h.31.2 yes 24 9.5 odd 6
1008.2.bf.h.943.2 yes 24 84.47 odd 6
1008.2.cz.g.367.10 yes 24 3.2 odd 2
1008.2.cz.g.607.10 yes 24 252.131 odd 6
1008.2.cz.h.367.3 yes 24 12.11 even 2
1008.2.cz.h.607.3 yes 24 63.5 even 6
3024.2.bf.g.1711.9 24 9.4 even 3
3024.2.bf.g.2287.4 24 28.19 even 6
3024.2.bf.h.1711.9 24 36.31 odd 6
3024.2.bf.h.2287.4 24 7.5 odd 6
3024.2.cz.g.1279.4 24 63.40 odd 6
3024.2.cz.g.2719.4 24 4.3 odd 2
3024.2.cz.h.1279.4 24 252.103 even 6 inner
3024.2.cz.h.2719.4 24 1.1 even 1 trivial