Properties

Label 1000.2.o.a.949.11
Level $1000$
Weight $2$
Character 1000.949
Analytic conductor $7.985$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1000,2,Mod(149,1000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1000.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1000, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.o (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 949.11
Character \(\chi\) \(=\) 1000.949
Dual form 1000.2.o.a.549.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.345564 + 1.37134i) q^{2} +(-0.615546 + 1.89446i) q^{3} +(-1.76117 - 0.947775i) q^{4} +(-2.38524 - 1.49878i) q^{6} -1.38088i q^{7} +(1.90832 - 2.08765i) q^{8} +(-0.783019 - 0.568896i) q^{9} +(3.04233 + 4.18740i) q^{11} +(2.87960 - 2.75306i) q^{12} +(2.49716 + 1.81429i) q^{13} +(1.89366 + 0.477183i) q^{14} +(2.20344 + 3.33839i) q^{16} +(3.63061 - 1.17966i) q^{17} +(1.05074 - 0.877198i) q^{18} +(6.09071 - 1.97899i) q^{19} +(2.61602 + 0.849997i) q^{21} +(-6.79369 + 2.72506i) q^{22} +(0.168832 + 0.232378i) q^{23} +(2.78031 + 4.90029i) q^{24} +(-3.35095 + 2.79751i) q^{26} +(-3.27483 + 2.37930i) q^{27} +(-1.30877 + 2.43197i) q^{28} +(-8.75018 - 2.84311i) q^{29} +(1.38826 + 4.27263i) q^{31} +(-5.33951 + 1.86805i) q^{32} +(-9.80555 + 3.18602i) q^{33} +(0.363107 + 5.38647i) q^{34} +(0.839843 + 1.74405i) q^{36} +(-4.07603 - 2.96141i) q^{37} +(0.609147 + 9.03633i) q^{38} +(-4.97421 + 3.61398i) q^{39} +(3.28522 + 2.38685i) q^{41} +(-2.06964 + 3.29374i) q^{42} +7.54302 q^{43} +(-1.38934 - 10.2582i) q^{44} +(-0.377013 + 0.151226i) q^{46} +(-0.954360 - 0.310090i) q^{47} +(-7.68075 + 2.11940i) q^{48} +5.09317 q^{49} +7.60418i q^{51} +(-2.67838 - 5.56202i) q^{52} +(-1.02485 + 3.15418i) q^{53} +(-2.13118 - 5.31312i) q^{54} +(-2.88280 - 2.63517i) q^{56} +12.7567i q^{57} +(6.92263 - 11.0170i) q^{58} +(-1.05228 + 1.44834i) q^{59} +(-1.30861 - 1.80115i) q^{61} +(-6.33899 + 0.427317i) q^{62} +(-0.785578 + 1.08126i) q^{63} +(-0.716599 - 7.96784i) q^{64} +(-0.980677 - 14.5478i) q^{66} +(-0.552275 - 1.69973i) q^{67} +(-7.51218 - 1.36343i) q^{68} +(-0.544154 + 0.176806i) q^{69} +(-4.68658 + 14.4238i) q^{71} +(-2.68191 + 0.549033i) q^{72} +(-6.88021 - 9.46979i) q^{73} +(5.46964 - 4.56628i) q^{74} +(-12.6024 - 2.28728i) q^{76} +(5.78231 - 4.20109i) q^{77} +(-3.23710 - 8.07022i) q^{78} +(-0.381800 + 1.17506i) q^{79} +(-3.38894 - 10.4301i) q^{81} +(-4.40845 + 3.68036i) q^{82} +(1.29836 + 3.99593i) q^{83} +(-3.80165 - 3.97639i) q^{84} +(-2.60660 + 10.3441i) q^{86} +(10.7723 - 14.8268i) q^{87} +(14.5476 + 1.63960i) q^{88} +(-9.13763 + 6.63888i) q^{89} +(2.50532 - 3.44828i) q^{91} +(-0.0771007 - 0.569272i) q^{92} -8.94886 q^{93} +(0.755034 - 1.20160i) q^{94} +(-0.252228 - 11.2653i) q^{96} +(4.65397 + 1.51217i) q^{97} +(-1.76002 + 6.98448i) q^{98} -5.00958i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 5 q^{2} - 3 q^{4} + q^{6} - 10 q^{8} - 30 q^{9} + 5 q^{12} - 3 q^{14} - 15 q^{16} + 10 q^{17} + 30 q^{22} + 10 q^{23} - 16 q^{24} - 14 q^{26} - 15 q^{28} - 18 q^{31} + 10 q^{33} + 9 q^{34} + 41 q^{36}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.345564 + 1.37134i −0.244351 + 0.969687i
\(3\) −0.615546 + 1.89446i −0.355386 + 1.09377i 0.600400 + 0.799700i \(0.295008\pi\)
−0.955785 + 0.294065i \(0.904992\pi\)
\(4\) −1.76117 0.947775i −0.880585 0.473888i
\(5\) 0 0
\(6\) −2.38524 1.49878i −0.973771 0.611875i
\(7\) 1.38088i 0.521924i −0.965349 0.260962i \(-0.915960\pi\)
0.965349 0.260962i \(-0.0840398\pi\)
\(8\) 1.90832 2.08765i 0.674694 0.738097i
\(9\) −0.783019 0.568896i −0.261006 0.189632i
\(10\) 0 0
\(11\) 3.04233 + 4.18740i 0.917296 + 1.26255i 0.964613 + 0.263670i \(0.0849330\pi\)
−0.0473169 + 0.998880i \(0.515067\pi\)
\(12\) 2.87960 2.75306i 0.831269 0.794741i
\(13\) 2.49716 + 1.81429i 0.692587 + 0.503194i 0.877510 0.479559i \(-0.159203\pi\)
−0.184923 + 0.982753i \(0.559203\pi\)
\(14\) 1.89366 + 0.477183i 0.506103 + 0.127533i
\(15\) 0 0
\(16\) 2.20344 + 3.33839i 0.550861 + 0.834597i
\(17\) 3.63061 1.17966i 0.880553 0.286109i 0.166366 0.986064i \(-0.446797\pi\)
0.714187 + 0.699955i \(0.246797\pi\)
\(18\) 1.05074 0.877198i 0.247661 0.206758i
\(19\) 6.09071 1.97899i 1.39730 0.454012i 0.488986 0.872292i \(-0.337367\pi\)
0.908318 + 0.418280i \(0.137367\pi\)
\(20\) 0 0
\(21\) 2.61602 + 0.849997i 0.570863 + 0.185484i
\(22\) −6.79369 + 2.72506i −1.44842 + 0.580985i
\(23\) 0.168832 + 0.232378i 0.0352040 + 0.0484541i 0.826256 0.563295i \(-0.190466\pi\)
−0.791052 + 0.611749i \(0.790466\pi\)
\(24\) 2.78031 + 4.90029i 0.567528 + 1.00027i
\(25\) 0 0
\(26\) −3.35095 + 2.79751i −0.657175 + 0.548637i
\(27\) −3.27483 + 2.37930i −0.630241 + 0.457897i
\(28\) −1.30877 + 2.43197i −0.247333 + 0.459599i
\(29\) −8.75018 2.84311i −1.62487 0.527952i −0.651785 0.758404i \(-0.725979\pi\)
−0.973084 + 0.230452i \(0.925979\pi\)
\(30\) 0 0
\(31\) 1.38826 + 4.27263i 0.249339 + 0.767388i 0.994892 + 0.100941i \(0.0321855\pi\)
−0.745553 + 0.666446i \(0.767815\pi\)
\(32\) −5.33951 + 1.86805i −0.943901 + 0.330228i
\(33\) −9.80555 + 3.18602i −1.70693 + 0.554614i
\(34\) 0.363107 + 5.38647i 0.0622723 + 0.923772i
\(35\) 0 0
\(36\) 0.839843 + 1.74405i 0.139974 + 0.290675i
\(37\) −4.07603 2.96141i −0.670095 0.486853i 0.199962 0.979804i \(-0.435918\pi\)
−0.870057 + 0.492951i \(0.835918\pi\)
\(38\) 0.609147 + 9.03633i 0.0988166 + 1.46589i
\(39\) −4.97421 + 3.61398i −0.796512 + 0.578700i
\(40\) 0 0
\(41\) 3.28522 + 2.38685i 0.513065 + 0.372764i 0.813985 0.580886i \(-0.197294\pi\)
−0.300920 + 0.953649i \(0.597294\pi\)
\(42\) −2.06964 + 3.29374i −0.319353 + 0.508235i
\(43\) 7.54302 1.15030 0.575150 0.818048i \(-0.304944\pi\)
0.575150 + 0.818048i \(0.304944\pi\)
\(44\) −1.38934 10.2582i −0.209451 1.54648i
\(45\) 0 0
\(46\) −0.377013 + 0.151226i −0.0555875 + 0.0222970i
\(47\) −0.954360 0.310090i −0.139208 0.0452313i 0.238584 0.971122i \(-0.423317\pi\)
−0.377792 + 0.925890i \(0.623317\pi\)
\(48\) −7.68075 + 2.11940i −1.10862 + 0.305909i
\(49\) 5.09317 0.727595
\(50\) 0 0
\(51\) 7.60418i 1.06480i
\(52\) −2.67838 5.56202i −0.371425 0.771314i
\(53\) −1.02485 + 3.15418i −0.140775 + 0.433260i −0.996443 0.0842641i \(-0.973146\pi\)
0.855669 + 0.517524i \(0.173146\pi\)
\(54\) −2.13118 5.31312i −0.290017 0.723024i
\(55\) 0 0
\(56\) −2.88280 2.63517i −0.385231 0.352139i
\(57\) 12.7567i 1.68967i
\(58\) 6.92263 11.0170i 0.908986 1.44661i
\(59\) −1.05228 + 1.44834i −0.136996 + 0.188558i −0.872003 0.489501i \(-0.837179\pi\)
0.735007 + 0.678060i \(0.237179\pi\)
\(60\) 0 0
\(61\) −1.30861 1.80115i −0.167550 0.230613i 0.716983 0.697091i \(-0.245523\pi\)
−0.884533 + 0.466478i \(0.845523\pi\)
\(62\) −6.33899 + 0.427317i −0.805052 + 0.0542693i
\(63\) −0.785578 + 1.08126i −0.0989736 + 0.136225i
\(64\) −0.716599 7.96784i −0.0895748 0.995980i
\(65\) 0 0
\(66\) −0.980677 14.5478i −0.120713 1.79071i
\(67\) −0.552275 1.69973i −0.0674711 0.207655i 0.911637 0.410997i \(-0.134819\pi\)
−0.979108 + 0.203343i \(0.934819\pi\)
\(68\) −7.51218 1.36343i −0.910986 0.165340i
\(69\) −0.544154 + 0.176806i −0.0655085 + 0.0212850i
\(70\) 0 0
\(71\) −4.68658 + 14.4238i −0.556194 + 1.71179i 0.136574 + 0.990630i \(0.456391\pi\)
−0.692768 + 0.721161i \(0.743609\pi\)
\(72\) −2.68191 + 0.549033i −0.316066 + 0.0647042i
\(73\) −6.88021 9.46979i −0.805267 1.10836i −0.992036 0.125951i \(-0.959802\pi\)
0.186769 0.982404i \(-0.440198\pi\)
\(74\) 5.46964 4.56628i 0.635833 0.530820i
\(75\) 0 0
\(76\) −12.6024 2.28728i −1.44560 0.262369i
\(77\) 5.78231 4.20109i 0.658955 0.478759i
\(78\) −3.23710 8.07022i −0.366529 0.913773i
\(79\) −0.381800 + 1.17506i −0.0429559 + 0.132205i −0.970234 0.242167i \(-0.922142\pi\)
0.927279 + 0.374372i \(0.122142\pi\)
\(80\) 0 0
\(81\) −3.38894 10.4301i −0.376549 1.15890i
\(82\) −4.40845 + 3.68036i −0.486832 + 0.406428i
\(83\) 1.29836 + 3.99593i 0.142513 + 0.438610i 0.996683 0.0813841i \(-0.0259341\pi\)
−0.854170 + 0.519994i \(0.825934\pi\)
\(84\) −3.80165 3.97639i −0.414794 0.433860i
\(85\) 0 0
\(86\) −2.60660 + 10.3441i −0.281077 + 1.11543i
\(87\) 10.7723 14.8268i 1.15491 1.58960i
\(88\) 14.5476 + 1.63960i 1.55078 + 0.174782i
\(89\) −9.13763 + 6.63888i −0.968587 + 0.703720i −0.955129 0.296190i \(-0.904284\pi\)
−0.0134580 + 0.999909i \(0.504284\pi\)
\(90\) 0 0
\(91\) 2.50532 3.44828i 0.262629 0.361478i
\(92\) −0.0771007 0.569272i −0.00803830 0.0593508i
\(93\) −8.94886 −0.927954
\(94\) 0.755034 1.20160i 0.0778758 0.123936i
\(95\) 0 0
\(96\) −0.252228 11.2653i −0.0257429 1.14976i
\(97\) 4.65397 + 1.51217i 0.472539 + 0.153537i 0.535599 0.844473i \(-0.320086\pi\)
−0.0630600 + 0.998010i \(0.520086\pi\)
\(98\) −1.76002 + 6.98448i −0.177788 + 0.705539i
\(99\) 5.00958i 0.503482i
\(100\) 0 0
\(101\) 16.5698i 1.64876i −0.566039 0.824378i \(-0.691525\pi\)
0.566039 0.824378i \(-0.308475\pi\)
\(102\) −10.4279 2.62773i −1.03252 0.260184i
\(103\) 3.86872 + 1.25702i 0.381196 + 0.123858i 0.493346 0.869833i \(-0.335774\pi\)
−0.112150 + 0.993691i \(0.535774\pi\)
\(104\) 8.55300 1.75095i 0.838691 0.171694i
\(105\) 0 0
\(106\) −3.97131 2.49540i −0.385728 0.242375i
\(107\) 13.5206 1.30709 0.653545 0.756888i \(-0.273281\pi\)
0.653545 + 0.756888i \(0.273281\pi\)
\(108\) 8.02258 1.08656i 0.771973 0.104554i
\(109\) −5.89818 + 8.11815i −0.564944 + 0.777578i −0.991945 0.126673i \(-0.959570\pi\)
0.427001 + 0.904251i \(0.359570\pi\)
\(110\) 0 0
\(111\) 8.11925 5.89898i 0.770645 0.559906i
\(112\) 4.60992 3.04270i 0.435596 0.287508i
\(113\) −5.59149 + 7.69603i −0.526004 + 0.723982i −0.986515 0.163672i \(-0.947666\pi\)
0.460511 + 0.887654i \(0.347666\pi\)
\(114\) −17.4939 4.40828i −1.63845 0.412873i
\(115\) 0 0
\(116\) 12.7159 + 13.3004i 1.18065 + 1.23491i
\(117\) −0.923177 2.84125i −0.0853478 0.262673i
\(118\) −1.62255 1.94354i −0.149367 0.178917i
\(119\) −1.62897 5.01345i −0.149327 0.459582i
\(120\) 0 0
\(121\) −4.87941 + 15.0173i −0.443583 + 1.36521i
\(122\) 2.92220 1.17214i 0.264564 0.106121i
\(123\) −6.54400 + 4.75449i −0.590052 + 0.428698i
\(124\) 1.60453 8.84060i 0.144091 0.793909i
\(125\) 0 0
\(126\) −1.21131 1.45094i −0.107912 0.129260i
\(127\) 4.92287 + 6.77575i 0.436834 + 0.601251i 0.969505 0.245072i \(-0.0788116\pi\)
−0.532671 + 0.846323i \(0.678812\pi\)
\(128\) 11.1743 + 1.77070i 0.987677 + 0.156509i
\(129\) −4.64308 + 14.2899i −0.408800 + 1.25816i
\(130\) 0 0
\(131\) −8.61583 + 2.79945i −0.752769 + 0.244589i −0.660172 0.751114i \(-0.729517\pi\)
−0.0925967 + 0.995704i \(0.529517\pi\)
\(132\) 20.2889 + 3.68234i 1.76592 + 0.320507i
\(133\) −2.73275 8.41055i −0.236960 0.729287i
\(134\) 2.52176 0.169994i 0.217847 0.0146852i
\(135\) 0 0
\(136\) 4.46567 9.83064i 0.382928 0.842970i
\(137\) 0.409034 0.562988i 0.0349462 0.0480993i −0.791186 0.611575i \(-0.790536\pi\)
0.826133 + 0.563476i \(0.190536\pi\)
\(138\) −0.0544222 0.807321i −0.00463273 0.0687237i
\(139\) 6.25490 + 8.60913i 0.530533 + 0.730217i 0.987212 0.159415i \(-0.0509609\pi\)
−0.456678 + 0.889632i \(0.650961\pi\)
\(140\) 0 0
\(141\) 1.17491 1.61712i 0.0989449 0.136186i
\(142\) −18.1605 11.4113i −1.52399 0.957612i
\(143\) 15.9763i 1.33600i
\(144\) 0.173859 3.86755i 0.0144883 0.322296i
\(145\) 0 0
\(146\) 15.3639 6.16271i 1.27153 0.510029i
\(147\) −3.13508 + 9.64878i −0.258577 + 0.795818i
\(148\) 4.37183 + 9.07871i 0.359363 + 0.746265i
\(149\) 3.22211i 0.263966i 0.991252 + 0.131983i \(0.0421344\pi\)
−0.991252 + 0.131983i \(0.957866\pi\)
\(150\) 0 0
\(151\) 20.1976 1.64366 0.821828 0.569736i \(-0.192955\pi\)
0.821828 + 0.569736i \(0.192955\pi\)
\(152\) 7.49160 16.4918i 0.607649 1.33767i
\(153\) −3.51394 1.14175i −0.284085 0.0923049i
\(154\) 3.76299 + 9.38129i 0.303230 + 0.755966i
\(155\) 0 0
\(156\) 12.1857 1.65039i 0.975635 0.132137i
\(157\) −21.3717 −1.70565 −0.852824 0.522198i \(-0.825112\pi\)
−0.852824 + 0.522198i \(0.825112\pi\)
\(158\) −1.47948 0.929638i −0.117701 0.0739581i
\(159\) −5.34461 3.88309i −0.423855 0.307949i
\(160\) 0 0
\(161\) 0.320886 0.233138i 0.0252894 0.0183738i
\(162\) 15.4743 1.04314i 1.21578 0.0819566i
\(163\) −10.2617 7.45556i −0.803759 0.583965i 0.108256 0.994123i \(-0.465473\pi\)
−0.912014 + 0.410158i \(0.865473\pi\)
\(164\) −3.52363 7.31731i −0.275150 0.571386i
\(165\) 0 0
\(166\) −5.92846 + 0.399643i −0.460138 + 0.0310183i
\(167\) −8.75032 + 2.84315i −0.677120 + 0.220010i −0.627334 0.778750i \(-0.715854\pi\)
−0.0497860 + 0.998760i \(0.515854\pi\)
\(168\) 6.76671 3.83928i 0.522063 0.296207i
\(169\) −1.07308 3.30259i −0.0825444 0.254045i
\(170\) 0 0
\(171\) −5.89498 1.91539i −0.450800 0.146474i
\(172\) −13.2845 7.14909i −1.01294 0.545113i
\(173\) 15.7758 11.4618i 1.19941 0.871423i 0.205184 0.978723i \(-0.434221\pi\)
0.994227 + 0.107301i \(0.0342208\pi\)
\(174\) 16.6101 + 19.8961i 1.25921 + 1.50832i
\(175\) 0 0
\(176\) −7.27558 + 19.3832i −0.548418 + 1.46106i
\(177\) −2.09609 2.88503i −0.157552 0.216852i
\(178\) −5.94655 14.8250i −0.445713 1.11118i
\(179\) −3.15544 1.02527i −0.235849 0.0766320i 0.188708 0.982033i \(-0.439570\pi\)
−0.424557 + 0.905401i \(0.639570\pi\)
\(180\) 0 0
\(181\) 4.68953 1.52372i 0.348570 0.113257i −0.129499 0.991580i \(-0.541337\pi\)
0.478069 + 0.878322i \(0.341337\pi\)
\(182\) 3.86303 + 4.62726i 0.286347 + 0.342995i
\(183\) 4.21771 1.37042i 0.311782 0.101304i
\(184\) 0.807312 + 0.0909887i 0.0595158 + 0.00670777i
\(185\) 0 0
\(186\) 3.09241 12.2720i 0.226746 0.899825i
\(187\) 15.9852 + 11.6139i 1.16896 + 0.849296i
\(188\) 1.38690 + 1.45064i 0.101150 + 0.105799i
\(189\) 3.28554 + 4.52215i 0.238988 + 0.328938i
\(190\) 0 0
\(191\) −0.543712 0.395030i −0.0393416 0.0285833i 0.567941 0.823069i \(-0.307740\pi\)
−0.607282 + 0.794486i \(0.707740\pi\)
\(192\) 15.5358 + 3.54701i 1.12120 + 0.255983i
\(193\) 4.75497i 0.342270i 0.985248 + 0.171135i \(0.0547434\pi\)
−0.985248 + 0.171135i \(0.945257\pi\)
\(194\) −3.68194 + 5.85964i −0.264348 + 0.420698i
\(195\) 0 0
\(196\) −8.96993 4.82718i −0.640710 0.344798i
\(197\) −1.73569 + 5.34192i −0.123663 + 0.380596i −0.993655 0.112470i \(-0.964124\pi\)
0.869992 + 0.493066i \(0.164124\pi\)
\(198\) 6.86986 + 1.73113i 0.488220 + 0.123026i
\(199\) 3.56353 0.252612 0.126306 0.991991i \(-0.459688\pi\)
0.126306 + 0.991991i \(0.459688\pi\)
\(200\) 0 0
\(201\) 3.56001 0.251104
\(202\) 22.7229 + 5.72593i 1.59878 + 0.402875i
\(203\) −3.92599 + 12.0830i −0.275551 + 0.848058i
\(204\) 7.20705 13.3923i 0.504595 0.937645i
\(205\) 0 0
\(206\) −3.06070 + 4.87096i −0.213249 + 0.339376i
\(207\) 0.278004i 0.0193226i
\(208\) −0.554462 + 12.3342i −0.0384450 + 0.855221i
\(209\) 26.8168 + 19.4835i 1.85495 + 1.34770i
\(210\) 0 0
\(211\) −16.5725 22.8101i −1.14090 1.57031i −0.765487 0.643452i \(-0.777502\pi\)
−0.375411 0.926859i \(-0.622498\pi\)
\(212\) 4.79440 4.58371i 0.329280 0.314811i
\(213\) −24.4405 17.7570i −1.67463 1.21669i
\(214\) −4.67225 + 18.5415i −0.319389 + 1.26747i
\(215\) 0 0
\(216\) −1.28227 + 11.3772i −0.0872478 + 0.774120i
\(217\) 5.90000 1.91703i 0.400518 0.130136i
\(218\) −9.09458 10.8938i −0.615963 0.737820i
\(219\) 22.1752 7.20516i 1.49846 0.486879i
\(220\) 0 0
\(221\) 11.2065 + 3.64120i 0.753828 + 0.244934i
\(222\) 5.28381 + 13.1728i 0.354626 + 0.884098i
\(223\) −9.72513 13.3855i −0.651243 0.896359i 0.347909 0.937528i \(-0.386892\pi\)
−0.999152 + 0.0411689i \(0.986892\pi\)
\(224\) 2.57956 + 7.37323i 0.172354 + 0.492645i
\(225\) 0 0
\(226\) −8.62169 10.3273i −0.573506 0.686964i
\(227\) 9.97209 7.24515i 0.661871 0.480878i −0.205423 0.978673i \(-0.565857\pi\)
0.867294 + 0.497796i \(0.165857\pi\)
\(228\) 12.0905 22.4668i 0.800715 1.48790i
\(229\) 10.7797 + 3.50252i 0.712340 + 0.231453i 0.642699 0.766119i \(-0.277815\pi\)
0.0696410 + 0.997572i \(0.477815\pi\)
\(230\) 0 0
\(231\) 4.39951 + 13.5403i 0.289467 + 0.890887i
\(232\) −22.6336 + 12.8418i −1.48597 + 0.843105i
\(233\) 6.12514 1.99018i 0.401271 0.130381i −0.101427 0.994843i \(-0.532341\pi\)
0.502698 + 0.864462i \(0.332341\pi\)
\(234\) 4.21535 0.284160i 0.275566 0.0185761i
\(235\) 0 0
\(236\) 3.22595 1.55345i 0.209992 0.101121i
\(237\) −1.99109 1.44661i −0.129335 0.0939673i
\(238\) 7.43808 0.501407i 0.482139 0.0325014i
\(239\) 1.70418 1.23816i 0.110234 0.0800897i −0.531303 0.847182i \(-0.678297\pi\)
0.641537 + 0.767092i \(0.278297\pi\)
\(240\) 0 0
\(241\) −17.2054 12.5005i −1.10830 0.805227i −0.125904 0.992042i \(-0.540183\pi\)
−0.982395 + 0.186816i \(0.940183\pi\)
\(242\) −18.9077 11.8808i −1.21543 0.763726i
\(243\) 9.70164 0.622360
\(244\) 0.597603 + 4.41240i 0.0382576 + 0.282475i
\(245\) 0 0
\(246\) −4.25867 10.6171i −0.271523 0.676919i
\(247\) 18.7999 + 6.10847i 1.19621 + 0.388672i
\(248\) 11.5690 + 5.25536i 0.734635 + 0.333716i
\(249\) −8.36931 −0.530384
\(250\) 0 0
\(251\) 17.4979i 1.10446i 0.833693 + 0.552229i \(0.186222\pi\)
−0.833693 + 0.552229i \(0.813778\pi\)
\(252\) 2.40833 1.15972i 0.151710 0.0730558i
\(253\) −0.459417 + 1.41394i −0.0288833 + 0.0888936i
\(254\) −10.9931 + 4.40949i −0.689766 + 0.276676i
\(255\) 0 0
\(256\) −6.28967 + 14.7119i −0.393104 + 0.919494i
\(257\) 28.7486i 1.79329i 0.442753 + 0.896644i \(0.354002\pi\)
−0.442753 + 0.896644i \(0.645998\pi\)
\(258\) −17.9919 11.3053i −1.12013 0.703840i
\(259\) −4.08936 + 5.62852i −0.254100 + 0.349739i
\(260\) 0 0
\(261\) 5.23412 + 7.20415i 0.323984 + 0.445926i
\(262\) −0.861691 12.7827i −0.0532354 0.789716i
\(263\) 12.3479 16.9955i 0.761407 1.04799i −0.235689 0.971829i \(-0.575735\pi\)
0.997096 0.0761580i \(-0.0242653\pi\)
\(264\) −12.0609 + 26.5505i −0.742295 + 1.63407i
\(265\) 0 0
\(266\) 12.4781 0.841160i 0.765081 0.0515748i
\(267\) −6.95243 21.3974i −0.425482 1.30950i
\(268\) −0.638309 + 3.51694i −0.0389910 + 0.214831i
\(269\) 15.0792 4.89953i 0.919396 0.298730i 0.189177 0.981943i \(-0.439418\pi\)
0.730219 + 0.683213i \(0.239418\pi\)
\(270\) 0 0
\(271\) 9.17886 28.2496i 0.557576 1.71604i −0.131465 0.991321i \(-0.541968\pi\)
0.689041 0.724722i \(-0.258032\pi\)
\(272\) 11.9380 + 9.52109i 0.723848 + 0.577301i
\(273\) 4.99048 + 6.86880i 0.302037 + 0.415719i
\(274\) 0.630702 + 0.755475i 0.0381021 + 0.0456399i
\(275\) 0 0
\(276\) 1.12592 + 0.204350i 0.0677725 + 0.0123004i
\(277\) 0.881062 0.640129i 0.0529379 0.0384616i −0.561002 0.827815i \(-0.689584\pi\)
0.613940 + 0.789353i \(0.289584\pi\)
\(278\) −13.9675 + 5.60261i −0.837718 + 0.336022i
\(279\) 1.34365 4.13533i 0.0804422 0.247576i
\(280\) 0 0
\(281\) −7.85909 24.1878i −0.468834 1.44292i −0.854096 0.520116i \(-0.825889\pi\)
0.385261 0.922808i \(-0.374111\pi\)
\(282\) 1.81162 + 2.17002i 0.107881 + 0.129223i
\(283\) 7.75392 + 23.8641i 0.460923 + 1.41857i 0.864039 + 0.503425i \(0.167927\pi\)
−0.403116 + 0.915149i \(0.632073\pi\)
\(284\) 21.9244 20.9610i 1.30097 1.24380i
\(285\) 0 0
\(286\) −21.9090 5.52083i −1.29550 0.326454i
\(287\) 3.29596 4.53650i 0.194554 0.267781i
\(288\) 5.24366 + 1.57491i 0.308986 + 0.0928024i
\(289\) −1.96352 + 1.42658i −0.115501 + 0.0839166i
\(290\) 0 0
\(291\) −5.72946 + 7.88593i −0.335867 + 0.462281i
\(292\) 3.14198 + 23.1988i 0.183871 + 1.35761i
\(293\) 31.6461 1.84879 0.924393 0.381440i \(-0.124572\pi\)
0.924393 + 0.381440i \(0.124572\pi\)
\(294\) −12.1484 7.63355i −0.708511 0.445198i
\(295\) 0 0
\(296\) −13.9608 + 2.85801i −0.811454 + 0.166119i
\(297\) −19.9262 6.47442i −1.15624 0.375684i
\(298\) −4.41863 1.11345i −0.255964 0.0645003i
\(299\) 0.886596i 0.0512731i
\(300\) 0 0
\(301\) 10.4160i 0.600369i
\(302\) −6.97956 + 27.6978i −0.401629 + 1.59383i
\(303\) 31.3908 + 10.1995i 1.80335 + 0.585945i
\(304\) 20.0272 + 15.9726i 1.14864 + 0.916089i
\(305\) 0 0
\(306\) 2.78002 4.42428i 0.158923 0.252919i
\(307\) −3.74062 −0.213488 −0.106744 0.994287i \(-0.534043\pi\)
−0.106744 + 0.994287i \(0.534043\pi\)
\(308\) −14.1653 + 1.91851i −0.807144 + 0.109317i
\(309\) −4.76275 + 6.55536i −0.270943 + 0.372921i
\(310\) 0 0
\(311\) −9.08998 + 6.60426i −0.515446 + 0.374493i −0.814885 0.579622i \(-0.803200\pi\)
0.299440 + 0.954115i \(0.403200\pi\)
\(312\) −1.94768 + 17.2811i −0.110265 + 0.978348i
\(313\) 3.87093 5.32787i 0.218798 0.301149i −0.685482 0.728089i \(-0.740409\pi\)
0.904280 + 0.426940i \(0.140409\pi\)
\(314\) 7.38530 29.3080i 0.416777 1.65394i
\(315\) 0 0
\(316\) 1.78611 1.70762i 0.100476 0.0960612i
\(317\) 6.24885 + 19.2320i 0.350970 + 1.08018i 0.958309 + 0.285733i \(0.0922370\pi\)
−0.607339 + 0.794443i \(0.707763\pi\)
\(318\) 7.17195 5.98744i 0.402183 0.335759i
\(319\) −14.7157 45.2902i −0.823920 2.53577i
\(320\) 0 0
\(321\) −8.32258 + 25.6143i −0.464521 + 1.42965i
\(322\) 0.208825 + 0.520610i 0.0116374 + 0.0290125i
\(323\) 19.7785 14.3699i 1.10050 0.799563i
\(324\) −3.91687 + 21.5811i −0.217604 + 1.19895i
\(325\) 0 0
\(326\) 13.7702 11.4960i 0.762662 0.636702i
\(327\) −11.7489 16.1710i −0.649715 0.894256i
\(328\) 11.2522 2.30352i 0.621298 0.127190i
\(329\) −0.428198 + 1.31786i −0.0236073 + 0.0726559i
\(330\) 0 0
\(331\) 20.2986 6.59541i 1.11571 0.362517i 0.307582 0.951522i \(-0.400480\pi\)
0.808129 + 0.589005i \(0.200480\pi\)
\(332\) 1.50062 8.26806i 0.0823570 0.453769i
\(333\) 1.50687 + 4.63768i 0.0825761 + 0.254143i
\(334\) −0.875141 12.9822i −0.0478856 0.710354i
\(335\) 0 0
\(336\) 2.92664 + 10.6062i 0.159661 + 0.578616i
\(337\) −9.78712 + 13.4708i −0.533139 + 0.733802i −0.987605 0.156962i \(-0.949830\pi\)
0.454466 + 0.890764i \(0.349830\pi\)
\(338\) 4.89981 0.330300i 0.266514 0.0179660i
\(339\) −11.1380 15.3301i −0.604932 0.832617i
\(340\) 0 0
\(341\) −13.6677 + 18.8120i −0.740147 + 1.01873i
\(342\) 4.66376 7.42215i 0.252187 0.401344i
\(343\) 16.6992i 0.901674i
\(344\) 14.3945 15.7472i 0.776101 0.849033i
\(345\) 0 0
\(346\) 10.2665 + 25.5948i 0.551930 + 1.37599i
\(347\) 4.90149 15.0852i 0.263126 0.809818i −0.728993 0.684521i \(-0.760012\pi\)
0.992119 0.125297i \(-0.0399884\pi\)
\(348\) −33.0243 + 15.9028i −1.77029 + 0.852479i
\(349\) 11.9445i 0.639375i −0.947523 0.319688i \(-0.896422\pi\)
0.947523 0.319688i \(-0.103578\pi\)
\(350\) 0 0
\(351\) −12.4945 −0.666908
\(352\) −24.0668 16.6755i −1.28277 0.888805i
\(353\) −4.78471 1.55465i −0.254665 0.0827456i 0.178903 0.983867i \(-0.442745\pi\)
−0.433567 + 0.901121i \(0.642745\pi\)
\(354\) 4.68070 1.87751i 0.248776 0.0997883i
\(355\) 0 0
\(356\) 22.3851 3.03178i 1.18641 0.160684i
\(357\) 10.5005 0.555744
\(358\) 2.49640 3.97291i 0.131939 0.209975i
\(359\) 4.41690 + 3.20906i 0.233115 + 0.169368i 0.698210 0.715893i \(-0.253980\pi\)
−0.465096 + 0.885260i \(0.653980\pi\)
\(360\) 0 0
\(361\) 17.8090 12.9390i 0.937315 0.681000i
\(362\) 0.469011 + 6.95750i 0.0246507 + 0.365678i
\(363\) −25.4461 18.4877i −1.33557 0.970351i
\(364\) −7.68049 + 3.69853i −0.402567 + 0.193855i
\(365\) 0 0
\(366\) 0.421823 + 6.25749i 0.0220491 + 0.327084i
\(367\) −14.3846 + 4.67384i −0.750871 + 0.243973i −0.659356 0.751831i \(-0.729171\pi\)
−0.0915149 + 0.995804i \(0.529171\pi\)
\(368\) −0.403755 + 1.07566i −0.0210472 + 0.0560727i
\(369\) −1.21452 3.73790i −0.0632253 0.194587i
\(370\) 0 0
\(371\) 4.35555 + 1.41520i 0.226129 + 0.0734737i
\(372\) 15.7605 + 8.48151i 0.817142 + 0.439746i
\(373\) 26.1912 19.0290i 1.35613 0.985284i 0.357447 0.933933i \(-0.383647\pi\)
0.998681 0.0513509i \(-0.0163527\pi\)
\(374\) −21.4506 + 17.9079i −1.10919 + 0.925994i
\(375\) 0 0
\(376\) −2.46859 + 1.40062i −0.127308 + 0.0722315i
\(377\) −16.6924 22.9751i −0.859701 1.18328i
\(378\) −7.33679 + 2.94291i −0.377364 + 0.151367i
\(379\) −12.3752 4.02096i −0.635674 0.206543i −0.0265869 0.999647i \(-0.508464\pi\)
−0.609087 + 0.793104i \(0.708464\pi\)
\(380\) 0 0
\(381\) −15.8666 + 5.15538i −0.812872 + 0.264118i
\(382\) 0.729609 0.609108i 0.0373300 0.0311647i
\(383\) −13.4131 + 4.35817i −0.685376 + 0.222692i −0.630948 0.775825i \(-0.717334\pi\)
−0.0544287 + 0.998518i \(0.517334\pi\)
\(384\) −10.2328 + 20.0793i −0.522190 + 1.02467i
\(385\) 0 0
\(386\) −6.52070 1.64315i −0.331895 0.0836340i
\(387\) −5.90632 4.29119i −0.300235 0.218134i
\(388\) −6.76324 7.07410i −0.343351 0.359133i
\(389\) −11.6423 16.0243i −0.590290 0.812465i 0.404486 0.914544i \(-0.367450\pi\)
−0.994776 + 0.102080i \(0.967450\pi\)
\(390\) 0 0
\(391\) 0.887092 + 0.644510i 0.0448622 + 0.0325943i
\(392\) 9.71941 10.6328i 0.490904 0.537036i
\(393\) 18.0455i 0.910276i
\(394\) −6.72582 4.22621i −0.338842 0.212913i
\(395\) 0 0
\(396\) −4.74796 + 8.82273i −0.238594 + 0.443359i
\(397\) 3.25515 10.0183i 0.163371 0.502805i −0.835541 0.549428i \(-0.814846\pi\)
0.998913 + 0.0466224i \(0.0148457\pi\)
\(398\) −1.23143 + 4.88682i −0.0617259 + 0.244954i
\(399\) 17.6156 0.881881
\(400\) 0 0
\(401\) −14.5328 −0.725732 −0.362866 0.931841i \(-0.618202\pi\)
−0.362866 + 0.931841i \(0.618202\pi\)
\(402\) −1.23021 + 4.88200i −0.0613574 + 0.243492i
\(403\) −4.28509 + 13.1882i −0.213456 + 0.656949i
\(404\) −15.7044 + 29.1822i −0.781325 + 1.45187i
\(405\) 0 0
\(406\) −15.2132 9.55933i −0.755020 0.474422i
\(407\) 26.0776i 1.29262i
\(408\) 15.8749 + 14.5112i 0.785924 + 0.718413i
\(409\) −20.3026 14.7507i −1.00390 0.729375i −0.0409776 0.999160i \(-0.513047\pi\)
−0.962920 + 0.269785i \(0.913047\pi\)
\(410\) 0 0
\(411\) 0.814776 + 1.12144i 0.0401899 + 0.0553167i
\(412\) −5.62209 5.88050i −0.276981 0.289712i
\(413\) 1.99999 + 1.45308i 0.0984131 + 0.0715013i
\(414\) 0.381240 + 0.0960684i 0.0187369 + 0.00472150i
\(415\) 0 0
\(416\) −16.7228 5.02261i −0.819902 0.246254i
\(417\) −20.1598 + 6.55032i −0.987230 + 0.320770i
\(418\) −35.9855 + 30.0422i −1.76011 + 1.46941i
\(419\) 0.728039 0.236554i 0.0355671 0.0115564i −0.291179 0.956668i \(-0.594048\pi\)
0.326746 + 0.945112i \(0.394048\pi\)
\(420\) 0 0
\(421\) −11.1284 3.61584i −0.542366 0.176225i 0.0250056 0.999687i \(-0.492040\pi\)
−0.567371 + 0.823462i \(0.692040\pi\)
\(422\) 37.0073 14.8442i 1.80149 0.722606i
\(423\) 0.570872 + 0.785739i 0.0277568 + 0.0382039i
\(424\) 4.62908 + 8.15874i 0.224808 + 0.396223i
\(425\) 0 0
\(426\) 32.7968 27.3801i 1.58901 1.32657i
\(427\) −2.48717 + 1.80704i −0.120363 + 0.0874486i
\(428\) −23.8122 12.8145i −1.15100 0.619414i
\(429\) −30.2664 9.83414i −1.46127 0.474797i
\(430\) 0 0
\(431\) 6.71966 + 20.6810i 0.323675 + 0.996169i 0.972035 + 0.234835i \(0.0754550\pi\)
−0.648360 + 0.761334i \(0.724545\pi\)
\(432\) −15.1589 5.68999i −0.729335 0.273760i
\(433\) 3.49647 1.13607i 0.168030 0.0545962i −0.223794 0.974636i \(-0.571844\pi\)
0.391824 + 0.920040i \(0.371844\pi\)
\(434\) 0.590074 + 8.75339i 0.0283245 + 0.420176i
\(435\) 0 0
\(436\) 18.0819 8.70730i 0.865966 0.417004i
\(437\) 1.48818 + 1.08123i 0.0711894 + 0.0517222i
\(438\) 2.21780 + 32.8997i 0.105970 + 1.57201i
\(439\) −1.89736 + 1.37851i −0.0905559 + 0.0657927i −0.632142 0.774853i \(-0.717824\pi\)
0.541586 + 0.840645i \(0.317824\pi\)
\(440\) 0 0
\(441\) −3.98804 2.89748i −0.189907 0.137975i
\(442\) −8.86589 + 14.1096i −0.421707 + 0.671127i
\(443\) −0.969245 −0.0460502 −0.0230251 0.999735i \(-0.507330\pi\)
−0.0230251 + 0.999735i \(0.507330\pi\)
\(444\) −19.8903 + 2.69389i −0.943951 + 0.127846i
\(445\) 0 0
\(446\) 21.7168 8.71096i 1.02832 0.412476i
\(447\) −6.10416 1.98336i −0.288717 0.0938098i
\(448\) −11.0026 + 0.989538i −0.519826 + 0.0467513i
\(449\) 34.3240 1.61985 0.809925 0.586533i \(-0.199508\pi\)
0.809925 + 0.586533i \(0.199508\pi\)
\(450\) 0 0
\(451\) 21.0181i 0.989705i
\(452\) 17.1417 8.25455i 0.806277 0.388261i
\(453\) −12.4325 + 38.2634i −0.584132 + 1.79777i
\(454\) 6.48960 + 16.1788i 0.304572 + 0.759311i
\(455\) 0 0
\(456\) 26.6317 + 24.3440i 1.24714 + 1.14001i
\(457\) 34.4324i 1.61068i −0.592812 0.805341i \(-0.701982\pi\)
0.592812 0.805341i \(-0.298018\pi\)
\(458\) −8.52823 + 13.5723i −0.398498 + 0.634191i
\(459\) −9.08288 + 12.5015i −0.423953 + 0.583521i
\(460\) 0 0
\(461\) 21.8458 + 30.0682i 1.01746 + 1.40041i 0.913969 + 0.405783i \(0.133001\pi\)
0.103491 + 0.994630i \(0.466999\pi\)
\(462\) −20.0887 + 1.35420i −0.934612 + 0.0630031i
\(463\) 8.48120 11.6734i 0.394155 0.542507i −0.565110 0.825015i \(-0.691166\pi\)
0.959265 + 0.282508i \(0.0911664\pi\)
\(464\) −9.78914 35.4761i −0.454450 1.64694i
\(465\) 0 0
\(466\) 0.612591 + 9.08741i 0.0283777 + 0.420966i
\(467\) 3.46409 + 10.6614i 0.160299 + 0.493349i 0.998659 0.0517673i \(-0.0164854\pi\)
−0.838360 + 0.545116i \(0.816485\pi\)
\(468\) −1.06699 + 5.87889i −0.0493217 + 0.271752i
\(469\) −2.34712 + 0.762626i −0.108380 + 0.0352148i
\(470\) 0 0
\(471\) 13.1553 40.4878i 0.606163 1.86558i
\(472\) 1.01554 + 4.96071i 0.0467441 + 0.228335i
\(473\) 22.9483 + 31.5857i 1.05517 + 1.45231i
\(474\) 2.67185 2.23057i 0.122722 0.102453i
\(475\) 0 0
\(476\) −1.88273 + 10.3734i −0.0862949 + 0.475466i
\(477\) 2.59688 1.88674i 0.118903 0.0863881i
\(478\) 1.10904 + 2.76488i 0.0507262 + 0.126462i
\(479\) 1.46974 4.52340i 0.0671543 0.206680i −0.911848 0.410527i \(-0.865345\pi\)
0.979003 + 0.203848i \(0.0653447\pi\)
\(480\) 0 0
\(481\) −4.80563 14.7902i −0.219118 0.674376i
\(482\) 23.0880 19.2749i 1.05163 0.877946i
\(483\) 0.244149 + 0.751413i 0.0111092 + 0.0341905i
\(484\) 22.8265 21.8234i 1.03757 0.991973i
\(485\) 0 0
\(486\) −3.35254 + 13.3043i −0.152074 + 0.603495i
\(487\) −7.81977 + 10.7630i −0.354348 + 0.487718i −0.948563 0.316588i \(-0.897463\pi\)
0.594215 + 0.804306i \(0.297463\pi\)
\(488\) −6.25742 0.705248i −0.283260 0.0319251i
\(489\) 20.4408 14.8511i 0.924365 0.671590i
\(490\) 0 0
\(491\) 10.4364 14.3645i 0.470990 0.648262i −0.505752 0.862679i \(-0.668785\pi\)
0.976742 + 0.214417i \(0.0687851\pi\)
\(492\) 16.0313 2.17123i 0.722746 0.0978867i
\(493\) −35.1224 −1.58184
\(494\) −14.8734 + 23.6703i −0.669186 + 1.06498i
\(495\) 0 0
\(496\) −11.2048 + 14.0491i −0.503108 + 0.630822i
\(497\) 19.9176 + 6.47161i 0.893425 + 0.290291i
\(498\) 2.89214 11.4772i 0.129600 0.514306i
\(499\) 15.6179i 0.699151i −0.936908 0.349576i \(-0.886326\pi\)
0.936908 0.349576i \(-0.113674\pi\)
\(500\) 0 0
\(501\) 18.3272i 0.818799i
\(502\) −23.9956 6.04665i −1.07098 0.269875i
\(503\) −0.0298452 0.00969730i −0.00133073 0.000432381i 0.308352 0.951272i \(-0.400223\pi\)
−0.309682 + 0.950840i \(0.600223\pi\)
\(504\) 0.758150 + 3.70340i 0.0337707 + 0.164963i
\(505\) 0 0
\(506\) −1.78024 1.11863i −0.0791413 0.0497290i
\(507\) 6.91715 0.307201
\(508\) −2.24813 16.5990i −0.0997445 0.736463i
\(509\) −6.00479 + 8.26488i −0.266157 + 0.366334i −0.921088 0.389355i \(-0.872698\pi\)
0.654930 + 0.755689i \(0.272698\pi\)
\(510\) 0 0
\(511\) −13.0767 + 9.50075i −0.578477 + 0.420288i
\(512\) −18.0016 13.7092i −0.795566 0.605867i
\(513\) −15.2374 + 20.9725i −0.672748 + 0.925959i
\(514\) −39.4242 9.93448i −1.73893 0.438191i
\(515\) 0 0
\(516\) 21.7209 20.7664i 0.956209 0.914189i
\(517\) −1.60500 4.93969i −0.0705879 0.217247i
\(518\) −6.30550 7.55293i −0.277048 0.331857i
\(519\) 12.0031 + 36.9418i 0.526878 + 1.62156i
\(520\) 0 0
\(521\) 6.03139 18.5627i 0.264240 0.813248i −0.727627 0.685973i \(-0.759377\pi\)
0.991867 0.127275i \(-0.0406231\pi\)
\(522\) −11.6881 + 4.68829i −0.511574 + 0.205201i
\(523\) −7.08464 + 5.14729i −0.309789 + 0.225075i −0.731806 0.681513i \(-0.761322\pi\)
0.422017 + 0.906588i \(0.361322\pi\)
\(524\) 17.8272 + 3.23556i 0.778785 + 0.141346i
\(525\) 0 0
\(526\) 19.0397 + 22.8063i 0.830168 + 0.994403i
\(527\) 10.0805 + 13.8746i 0.439113 + 0.604388i
\(528\) −32.2421 25.7145i −1.40316 1.11908i
\(529\) 7.08190 21.7958i 0.307909 0.947645i
\(530\) 0 0
\(531\) 1.64791 0.535440i 0.0715134 0.0232361i
\(532\) −3.15847 + 17.4024i −0.136937 + 0.754492i
\(533\) 3.87327 + 11.9207i 0.167770 + 0.516343i
\(534\) 31.7457 2.14001i 1.37377 0.0926071i
\(535\) 0 0
\(536\) −4.60236 2.09067i −0.198792 0.0903033i
\(537\) 3.88464 5.34675i 0.167635 0.230729i
\(538\) 1.50811 + 22.3719i 0.0650192 + 0.964521i
\(539\) 15.4951 + 21.3271i 0.667420 + 0.918625i
\(540\) 0 0
\(541\) 15.5336 21.3802i 0.667843 0.919208i −0.331866 0.943327i \(-0.607678\pi\)
0.999709 + 0.0241190i \(0.00767806\pi\)
\(542\) 35.5681 + 22.3494i 1.52778 + 0.959991i
\(543\) 9.82203i 0.421504i
\(544\) −17.1820 + 13.0810i −0.736674 + 0.560842i
\(545\) 0 0
\(546\) −11.1440 + 4.47005i −0.476920 + 0.191300i
\(547\) −8.93390 + 27.4957i −0.381986 + 1.17563i 0.556657 + 0.830742i \(0.312084\pi\)
−0.938643 + 0.344890i \(0.887916\pi\)
\(548\) −1.25397 + 0.603844i −0.0535667 + 0.0257950i
\(549\) 2.15480i 0.0919644i
\(550\) 0 0
\(551\) −58.9213 −2.51013
\(552\) −0.669312 + 1.47341i −0.0284878 + 0.0627125i
\(553\) 1.62262 + 0.527221i 0.0690008 + 0.0224197i
\(554\) 0.573374 + 1.42944i 0.0243603 + 0.0607313i
\(555\) 0 0
\(556\) −2.85642 21.0904i −0.121139 0.894431i
\(557\) −33.1381 −1.40411 −0.702053 0.712125i \(-0.747733\pi\)
−0.702053 + 0.712125i \(0.747733\pi\)
\(558\) 5.20664 + 3.27163i 0.220415 + 0.138499i
\(559\) 18.8361 + 13.6852i 0.796682 + 0.578824i
\(560\) 0 0
\(561\) −31.8418 + 23.1344i −1.34436 + 0.976735i
\(562\) 35.8856 2.41908i 1.51374 0.102043i
\(563\) −25.4540 18.4934i −1.07276 0.779404i −0.0963518 0.995347i \(-0.530717\pi\)
−0.976406 + 0.215943i \(0.930717\pi\)
\(564\) −3.60188 + 1.73448i −0.151666 + 0.0730346i
\(565\) 0 0
\(566\) −35.4054 + 2.38671i −1.48820 + 0.100321i
\(567\) −14.4027 + 4.67972i −0.604857 + 0.196530i
\(568\) 21.1684 + 37.3092i 0.888206 + 1.56546i
\(569\) −5.66167 17.4248i −0.237350 0.730487i −0.996801 0.0799229i \(-0.974533\pi\)
0.759451 0.650564i \(-0.225467\pi\)
\(570\) 0 0
\(571\) −4.90965 1.59524i −0.205462 0.0667588i 0.204478 0.978871i \(-0.434450\pi\)
−0.409940 + 0.912112i \(0.634450\pi\)
\(572\) 15.1419 28.1369i 0.633115 1.17646i
\(573\) 1.08305 0.786879i 0.0452449 0.0328723i
\(574\) 5.08214 + 6.08755i 0.212124 + 0.254089i
\(575\) 0 0
\(576\) −3.97176 + 6.64664i −0.165490 + 0.276943i
\(577\) −0.868662 1.19561i −0.0361629 0.0497739i 0.790553 0.612394i \(-0.209793\pi\)
−0.826716 + 0.562620i \(0.809793\pi\)
\(578\) −1.27781 3.18564i −0.0531500 0.132505i
\(579\) −9.00808 2.92690i −0.374363 0.121638i
\(580\) 0 0
\(581\) 5.51790 1.79288i 0.228921 0.0743810i
\(582\) −8.83443 10.5822i −0.366199 0.438645i
\(583\) −16.3258 + 5.30456i −0.676144 + 0.219692i
\(584\) −32.8993 3.70794i −1.36138 0.153436i
\(585\) 0 0
\(586\) −10.9358 + 43.3977i −0.451753 + 1.79274i
\(587\) −6.19025 4.49748i −0.255499 0.185631i 0.452662 0.891682i \(-0.350475\pi\)
−0.708160 + 0.706052i \(0.750475\pi\)
\(588\) 14.6663 14.0218i 0.604828 0.578249i
\(589\) 16.9110 + 23.2760i 0.696806 + 0.959071i
\(590\) 0 0
\(591\) −9.05163 6.57640i −0.372334 0.270517i
\(592\) 0.905030 20.1327i 0.0371965 0.827448i
\(593\) 31.1703i 1.28001i −0.768370 0.640006i \(-0.778932\pi\)
0.768370 0.640006i \(-0.221068\pi\)
\(594\) 15.7644 25.0884i 0.646823 1.02939i
\(595\) 0 0
\(596\) 3.05384 5.67469i 0.125090 0.232445i
\(597\) −2.19352 + 6.75095i −0.0897747 + 0.276298i
\(598\) −1.21583 0.306376i −0.0497189 0.0125286i
\(599\) −30.2376 −1.23547 −0.617737 0.786385i \(-0.711950\pi\)
−0.617737 + 0.786385i \(0.711950\pi\)
\(600\) 0 0
\(601\) 47.2925 1.92910 0.964551 0.263895i \(-0.0850073\pi\)
0.964551 + 0.263895i \(0.0850073\pi\)
\(602\) 14.2839 + 3.59940i 0.582170 + 0.146701i
\(603\) −0.534527 + 1.64511i −0.0217676 + 0.0669939i
\(604\) −35.5714 19.1428i −1.44738 0.778908i
\(605\) 0 0
\(606\) −24.8345 + 39.5230i −1.00883 + 1.60551i
\(607\) 13.6800i 0.555252i −0.960689 0.277626i \(-0.910452\pi\)
0.960689 0.277626i \(-0.0895477\pi\)
\(608\) −28.8245 + 21.9446i −1.16899 + 0.889971i
\(609\) −20.4740 14.8753i −0.829650 0.602776i
\(610\) 0 0
\(611\) −1.82059 2.50583i −0.0736533 0.101375i
\(612\) 5.10653 + 5.34124i 0.206419 + 0.215907i
\(613\) −12.8625 9.34518i −0.519513 0.377448i 0.296907 0.954906i \(-0.404045\pi\)
−0.816420 + 0.577458i \(0.804045\pi\)
\(614\) 1.29262 5.12968i 0.0521661 0.207017i
\(615\) 0 0
\(616\) 2.26409 20.0885i 0.0912228 0.809389i
\(617\) 10.0312 3.25933i 0.403840 0.131216i −0.100052 0.994982i \(-0.531901\pi\)
0.503892 + 0.863767i \(0.331901\pi\)
\(618\) −7.34382 8.79667i −0.295412 0.353854i
\(619\) −25.5938 + 8.31591i −1.02870 + 0.334245i −0.774276 0.632848i \(-0.781886\pi\)
−0.254424 + 0.967093i \(0.581886\pi\)
\(620\) 0 0
\(621\) −1.10580 0.359295i −0.0443740 0.0144180i
\(622\) −5.91554 14.7477i −0.237192 0.591329i
\(623\) 9.16751 + 12.6180i 0.367288 + 0.505529i
\(624\) −23.0253 8.64266i −0.921748 0.345983i
\(625\) 0 0
\(626\) 5.96869 + 7.14949i 0.238557 + 0.285751i
\(627\) −53.4176 + 38.8102i −2.13330 + 1.54993i
\(628\) 37.6392 + 20.2556i 1.50197 + 0.808286i
\(629\) −18.2919 5.94341i −0.729348 0.236979i
\(630\) 0 0
\(631\) 0.0360428 + 0.110928i 0.00143484 + 0.00441599i 0.951771 0.306808i \(-0.0992610\pi\)
−0.950337 + 0.311224i \(0.899261\pi\)
\(632\) 1.72452 + 3.03946i 0.0685978 + 0.120903i
\(633\) 53.4138 17.3552i 2.12301 0.689808i
\(634\) −28.5330 + 1.92344i −1.13319 + 0.0763895i
\(635\) 0 0
\(636\) 5.73247 + 11.9043i 0.227307 + 0.472035i
\(637\) 12.7184 + 9.24049i 0.503923 + 0.366121i
\(638\) 67.1937 4.52959i 2.66022 0.179328i
\(639\) 11.8753 8.62793i 0.469781 0.341316i
\(640\) 0 0
\(641\) 8.56388 + 6.22202i 0.338253 + 0.245755i 0.743924 0.668264i \(-0.232962\pi\)
−0.405672 + 0.914019i \(0.632962\pi\)
\(642\) −32.2500 20.2645i −1.27281 0.799776i
\(643\) 7.74220 0.305323 0.152661 0.988279i \(-0.451216\pi\)
0.152661 + 0.988279i \(0.451216\pi\)
\(644\) −0.786098 + 0.106467i −0.0309766 + 0.00419538i
\(645\) 0 0
\(646\) 12.8714 + 32.0888i 0.506417 + 1.26252i
\(647\) −21.5750 7.01014i −0.848200 0.275597i −0.147508 0.989061i \(-0.547125\pi\)
−0.700692 + 0.713464i \(0.747125\pi\)
\(648\) −28.2416 12.8290i −1.10943 0.503972i
\(649\) −9.26619 −0.363730
\(650\) 0 0
\(651\) 12.3573i 0.484322i
\(652\) 11.0064 + 22.8563i 0.431044 + 0.895122i
\(653\) −9.55959 + 29.4214i −0.374096 + 1.15135i 0.569991 + 0.821651i \(0.306947\pi\)
−0.944087 + 0.329697i \(0.893053\pi\)
\(654\) 26.2359 10.5237i 1.02591 0.411508i
\(655\) 0 0
\(656\) −0.729441 + 16.2266i −0.0284799 + 0.633544i
\(657\) 11.3291i 0.441992i
\(658\) −1.65927 1.04261i −0.0646850 0.0406453i
\(659\) 13.3643 18.3944i 0.520601 0.716545i −0.465061 0.885279i \(-0.653968\pi\)
0.985662 + 0.168733i \(0.0539676\pi\)
\(660\) 0 0
\(661\) −9.06815 12.4812i −0.352710 0.485464i 0.595389 0.803437i \(-0.296998\pi\)
−0.948100 + 0.317973i \(0.896998\pi\)
\(662\) 2.03011 + 30.1155i 0.0789025 + 1.17047i
\(663\) −13.7962 + 18.9888i −0.535800 + 0.737465i
\(664\) 10.8198 + 4.91501i 0.419890 + 0.190739i
\(665\) 0 0
\(666\) −6.88057 + 0.463826i −0.266617 + 0.0179729i
\(667\) −0.816640 2.51336i −0.0316204 0.0973176i
\(668\) 18.1055 + 3.28606i 0.700522 + 0.127142i
\(669\) 31.3445 10.1845i 1.21185 0.393754i
\(670\) 0 0
\(671\) 3.56091 10.9594i 0.137467 0.423081i
\(672\) −15.5561 + 0.348297i −0.600090 + 0.0134359i
\(673\) −13.5949 18.7118i −0.524046 0.721288i 0.462162 0.886795i \(-0.347074\pi\)
−0.986209 + 0.165507i \(0.947074\pi\)
\(674\) −15.0910 18.0765i −0.581286 0.696283i
\(675\) 0 0
\(676\) −1.24024 + 6.83346i −0.0477017 + 0.262825i
\(677\) 2.66645 1.93729i 0.102480 0.0744561i −0.535365 0.844621i \(-0.679826\pi\)
0.637845 + 0.770165i \(0.279826\pi\)
\(678\) 24.8717 9.97646i 0.955194 0.383144i
\(679\) 2.08812 6.42658i 0.0801348 0.246629i
\(680\) 0 0
\(681\) 7.58734 + 23.3514i 0.290747 + 0.894829i
\(682\) −21.0746 25.2439i −0.806989 0.966637i
\(683\) 4.53666 + 13.9624i 0.173591 + 0.534257i 0.999566 0.0294489i \(-0.00937522\pi\)
−0.825976 + 0.563706i \(0.809375\pi\)
\(684\) 8.56670 + 8.96045i 0.327556 + 0.342611i
\(685\) 0 0
\(686\) 22.9004 + 5.77066i 0.874341 + 0.220325i
\(687\) −13.2708 + 18.2656i −0.506311 + 0.696877i
\(688\) 16.6206 + 25.1815i 0.633655 + 0.960036i
\(689\) −8.28182 + 6.01710i −0.315512 + 0.229233i
\(690\) 0 0
\(691\) −0.529926 + 0.729380i −0.0201593 + 0.0277469i −0.818978 0.573825i \(-0.805459\pi\)
0.798818 + 0.601572i \(0.205459\pi\)
\(692\) −38.6470 + 5.23425i −1.46914 + 0.198976i
\(693\) −6.91764 −0.262779
\(694\) 18.9933 + 11.9346i 0.720975 + 0.453029i
\(695\) 0 0
\(696\) −10.3962 50.7831i −0.394066 1.92493i
\(697\) 14.7430 + 4.79030i 0.558433 + 0.181446i
\(698\) 16.3800 + 4.12760i 0.619994 + 0.156232i
\(699\) 12.8289i 0.485232i
\(700\) 0 0
\(701\) 25.3479i 0.957379i −0.877984 0.478689i \(-0.841112\pi\)
0.877984 0.478689i \(-0.158888\pi\)
\(702\) 4.31766 17.1343i 0.162960 0.646692i
\(703\) −30.6865 9.97065i −1.15736 0.376050i
\(704\) 31.1844 27.2415i 1.17531 1.02670i
\(705\) 0 0
\(706\) 3.78538 6.02426i 0.142465 0.226726i
\(707\) −22.8809 −0.860526
\(708\) 0.957223 + 7.06765i 0.0359746 + 0.265619i
\(709\) 3.03019 4.17070i 0.113801 0.156634i −0.748317 0.663342i \(-0.769138\pi\)
0.862118 + 0.506708i \(0.169138\pi\)
\(710\) 0 0
\(711\) 0.967444 0.702889i 0.0362820 0.0263604i
\(712\) −3.57788 + 31.7453i −0.134087 + 1.18971i
\(713\) −0.758482 + 1.04396i −0.0284054 + 0.0390966i
\(714\) −3.62859 + 14.3998i −0.135796 + 0.538897i
\(715\) 0 0
\(716\) 4.58555 + 4.79632i 0.171370 + 0.179247i
\(717\) 1.29663 + 3.99063i 0.0484237 + 0.149033i
\(718\) −5.92705 + 4.94815i −0.221196 + 0.184663i
\(719\) 5.09933 + 15.6941i 0.190173 + 0.585292i 0.999999 0.00137806i \(-0.000438650\pi\)
−0.809826 + 0.586670i \(0.800439\pi\)
\(720\) 0 0
\(721\) 1.73580 5.34224i 0.0646445 0.198955i
\(722\) 11.5897 + 28.8935i 0.431322 + 1.07531i
\(723\) 34.2724 24.9003i 1.27460 0.926053i
\(724\) −9.70320 1.76109i −0.360617 0.0654503i
\(725\) 0 0
\(726\) 34.1462 28.5067i 1.26729 1.05798i
\(727\) 13.5429 + 18.6402i 0.502278 + 0.691326i 0.982593 0.185770i \(-0.0594778\pi\)
−0.480315 + 0.877096i \(0.659478\pi\)
\(728\) −2.41785 11.8107i −0.0896114 0.437733i
\(729\) 4.19500 12.9109i 0.155370 0.478181i
\(730\) 0 0
\(731\) 27.3858 8.89818i 1.01290 0.329111i
\(732\) −8.72695 1.58390i −0.322557 0.0585427i
\(733\) −11.8423 36.4467i −0.437404 1.34619i −0.890603 0.454781i \(-0.849718\pi\)
0.453200 0.891409i \(-0.350282\pi\)
\(734\) −1.43864 21.3414i −0.0531012 0.787724i
\(735\) 0 0
\(736\) −1.33558 0.925397i −0.0492300 0.0341106i
\(737\) 5.43724 7.48373i 0.200283 0.275667i
\(738\) 5.54564 0.373837i 0.204138 0.0137611i
\(739\) 5.15085 + 7.08954i 0.189477 + 0.260793i 0.893178 0.449704i \(-0.148470\pi\)
−0.703701 + 0.710497i \(0.748470\pi\)
\(740\) 0 0
\(741\) −23.1444 + 31.8556i −0.850233 + 1.17024i
\(742\) −3.44585 + 5.48391i −0.126501 + 0.201321i
\(743\) 7.97007i 0.292393i 0.989256 + 0.146197i \(0.0467032\pi\)
−0.989256 + 0.146197i \(0.953297\pi\)
\(744\) −17.0773 + 18.6821i −0.626085 + 0.684920i
\(745\) 0 0
\(746\) 17.0446 + 42.4929i 0.624046 + 1.55577i
\(747\) 1.25663 3.86752i 0.0459778 0.141505i
\(748\) −17.1453 35.6045i −0.626894 1.30183i
\(749\) 18.6704i 0.682202i
\(750\) 0 0
\(751\) 1.54105 0.0562339 0.0281169 0.999605i \(-0.491049\pi\)
0.0281169 + 0.999605i \(0.491049\pi\)
\(752\) −1.06768 3.86929i −0.0389342 0.141099i
\(753\) −33.1490 10.7708i −1.20802 0.392508i
\(754\) 37.2750 14.9516i 1.35748 0.544506i
\(755\) 0 0
\(756\) −1.50041 11.0782i −0.0545692 0.402911i
\(757\) 20.8270 0.756971 0.378485 0.925607i \(-0.376445\pi\)
0.378485 + 0.925607i \(0.376445\pi\)
\(758\) 9.79056 15.5812i 0.355609 0.565935i
\(759\) −2.39585 1.74069i −0.0869640 0.0631831i
\(760\) 0 0
\(761\) −7.81874 + 5.68064i −0.283429 + 0.205923i −0.720412 0.693547i \(-0.756047\pi\)
0.436983 + 0.899470i \(0.356047\pi\)
\(762\) −1.58686 23.5401i −0.0574859 0.852768i
\(763\) 11.2102 + 8.14469i 0.405837 + 0.294858i
\(764\) 0.583170 + 1.21103i 0.0210983 + 0.0438136i
\(765\) 0 0
\(766\) −1.34148 19.9000i −0.0484695 0.719015i
\(767\) −5.25543 + 1.70759i −0.189763 + 0.0616576i
\(768\) −23.9995 20.9714i −0.866007 0.756739i
\(769\) −1.06128 3.26628i −0.0382706 0.117785i 0.930096 0.367316i \(-0.119723\pi\)
−0.968367 + 0.249532i \(0.919723\pi\)
\(770\) 0 0
\(771\) −54.4630 17.6961i −1.96144 0.637309i
\(772\) 4.50664 8.37431i 0.162198 0.301398i
\(773\) −5.52497 + 4.01412i −0.198719 + 0.144378i −0.682695 0.730703i \(-0.739192\pi\)
0.483976 + 0.875081i \(0.339192\pi\)
\(774\) 7.92572 6.61672i 0.284884 0.237833i
\(775\) 0 0
\(776\) 12.0382 6.83017i 0.432145 0.245189i
\(777\) −8.14579 11.2117i −0.292229 0.402218i
\(778\) 25.9980 10.4282i 0.932074 0.373870i
\(779\) 24.7329 + 8.03620i 0.886147 + 0.287927i
\(780\) 0 0
\(781\) −74.6564 + 24.2573i −2.67142 + 0.867996i
\(782\) −1.19039 + 0.993789i −0.0425684 + 0.0355378i
\(783\) 35.4200 11.5086i 1.26581 0.411286i
\(784\) 11.2225 + 17.0030i 0.400804 + 0.607249i
\(785\) 0 0
\(786\) 24.7466 + 6.23589i 0.882683 + 0.222427i
\(787\) 3.59275 + 2.61029i 0.128068 + 0.0930467i 0.649975 0.759956i \(-0.274779\pi\)
−0.521907 + 0.853002i \(0.674779\pi\)
\(788\) 8.11979 7.76298i 0.289256 0.276545i
\(789\) 24.5965 + 33.8542i 0.875658 + 1.20524i
\(790\) 0 0
\(791\) 10.6273 + 7.72119i 0.377864 + 0.274534i
\(792\) −10.4583 9.55991i −0.371619 0.339697i
\(793\) 6.87195i 0.244030i
\(794\) 12.6137 + 7.92591i 0.447644 + 0.281280i
\(795\) 0 0
\(796\) −6.27598 3.37742i −0.222446 0.119710i
\(797\) 4.56123 14.0380i 0.161567 0.497252i −0.837200 0.546897i \(-0.815809\pi\)
0.998767 + 0.0496450i \(0.0158090\pi\)
\(798\) −6.08731 + 24.1570i −0.215488 + 0.855148i
\(799\) −3.83071 −0.135521
\(800\) 0 0
\(801\) 10.9318 0.386255
\(802\) 5.02201 19.9294i 0.177333 0.703733i
\(803\) 18.7220 57.6204i 0.660685 2.03338i
\(804\) −6.26979 3.37409i −0.221118 0.118995i
\(805\) 0 0
\(806\) −16.6047 10.4337i −0.584877 0.367511i
\(807\) 31.5828i 1.11177i
\(808\) −34.5920 31.6205i −1.21694 1.11241i
\(809\) 14.9496 + 10.8616i 0.525601 + 0.381872i 0.818710 0.574207i \(-0.194690\pi\)
−0.293108 + 0.956079i \(0.594690\pi\)
\(810\) 0 0
\(811\) 15.6070 + 21.4812i 0.548036 + 0.754307i 0.989744 0.142852i \(-0.0456274\pi\)
−0.441708 + 0.897159i \(0.645627\pi\)
\(812\) 18.3663 17.5592i 0.644530 0.616207i
\(813\) 47.8677 + 34.7779i 1.67879 + 1.21971i
\(814\) 35.7613 + 9.01148i 1.25343 + 0.315852i
\(815\) 0 0
\(816\) −25.3857 + 16.7554i −0.888677 + 0.586555i
\(817\) 45.9423 14.9276i 1.60732 0.522249i
\(818\) 27.2441 22.7445i 0.952568 0.795243i
\(819\) −3.92343 + 1.27480i −0.137096 + 0.0445451i
\(820\) 0 0
\(821\) 41.8393 + 13.5944i 1.46020 + 0.474448i 0.928132 0.372252i \(-0.121414\pi\)
0.532070 + 0.846700i \(0.321414\pi\)
\(822\) −1.81944 + 0.729808i −0.0634603 + 0.0254550i
\(823\) −14.3603 19.7653i −0.500569 0.688975i 0.481724 0.876323i \(-0.340011\pi\)
−0.982294 + 0.187348i \(0.940011\pi\)
\(824\) 10.0070 5.67774i 0.348610 0.197793i
\(825\) 0 0
\(826\) −2.68380 + 2.24054i −0.0933812 + 0.0779585i
\(827\) 38.6082 28.0505i 1.34254 0.975412i 0.343192 0.939265i \(-0.388492\pi\)
0.999347 0.0361465i \(-0.0115083\pi\)
\(828\) −0.263486 + 0.489613i −0.00915676 + 0.0170152i
\(829\) 22.8468 + 7.42337i 0.793502 + 0.257824i 0.677595 0.735436i \(-0.263022\pi\)
0.115907 + 0.993260i \(0.463022\pi\)
\(830\) 0 0
\(831\) 0.670362 + 2.06316i 0.0232546 + 0.0715703i
\(832\) 12.6665 21.1971i 0.439133 0.734876i
\(833\) 18.4913 6.00819i 0.640686 0.208172i
\(834\) −2.01623 29.9096i −0.0698164 1.03568i
\(835\) 0 0
\(836\) −28.7629 59.7301i −0.994785 2.06581i
\(837\) −14.7122 10.6891i −0.508529 0.369468i
\(838\) 0.0728130 + 1.08014i 0.00251528 + 0.0373127i
\(839\) 13.1474 9.55211i 0.453897 0.329776i −0.337235 0.941420i \(-0.609492\pi\)
0.791132 + 0.611645i \(0.209492\pi\)
\(840\) 0 0
\(841\) 45.0210 + 32.7096i 1.55245 + 1.12792i
\(842\) 8.80415 14.0114i 0.303411 0.482864i
\(843\) 50.6604 1.74484
\(844\) 7.56816 + 55.8794i 0.260507 + 1.92345i
\(845\) 0 0
\(846\) −1.27479 + 0.511340i −0.0438282 + 0.0175802i
\(847\) 20.7371 + 6.73789i 0.712535 + 0.231517i
\(848\) −12.7881 + 3.52869i −0.439144 + 0.121176i
\(849\) −49.9824 −1.71539
\(850\) 0 0
\(851\) 1.44716i 0.0496081i
\(852\) 26.2141 + 54.4372i 0.898082 + 1.86499i
\(853\) −14.3719 + 44.2323i −0.492086 + 1.51449i 0.329363 + 0.944203i \(0.393166\pi\)
−0.821449 + 0.570282i \(0.806834\pi\)
\(854\) −1.61859 4.03522i −0.0553870 0.138082i
\(855\) 0 0
\(856\) 25.8018 28.2264i 0.881886 0.964759i
\(857\) 34.8114i 1.18913i −0.804046 0.594567i \(-0.797323\pi\)
0.804046 0.594567i \(-0.202677\pi\)
\(858\) 23.9450 38.1073i 0.817468 1.30096i
\(859\) −23.5563 + 32.4224i −0.803730 + 1.10624i 0.188531 + 0.982067i \(0.439627\pi\)
−0.992261 + 0.124172i \(0.960373\pi\)
\(860\) 0 0
\(861\) 6.56539 + 9.03648i 0.223748 + 0.307963i
\(862\) −30.6828 + 2.06836i −1.04506 + 0.0704485i
\(863\) −30.0211 + 41.3205i −1.02193 + 1.40657i −0.111087 + 0.993811i \(0.535433\pi\)
−0.910842 + 0.412755i \(0.864567\pi\)
\(864\) 13.0413 18.8219i 0.443675 0.640333i
\(865\) 0 0
\(866\) 0.349691 + 5.18745i 0.0118830 + 0.176277i
\(867\) −1.49396 4.59793i −0.0507375 0.156154i
\(868\) −12.2078 2.21567i −0.414360 0.0752046i
\(869\) −6.08201 + 1.97617i −0.206318 + 0.0670368i
\(870\) 0 0
\(871\) 1.70468 5.24648i 0.0577610 0.177770i
\(872\) 5.69225 + 27.8054i 0.192764 + 0.941611i
\(873\) −2.78388 3.83168i −0.0942200 0.129683i
\(874\) −1.99700 + 1.66718i −0.0675495 + 0.0563931i
\(875\) 0 0
\(876\) −45.8832 8.32759i −1.55025 0.281363i
\(877\) 14.2117 10.3254i 0.479894 0.348664i −0.321390 0.946947i \(-0.604150\pi\)
0.801285 + 0.598283i \(0.204150\pi\)
\(878\) −1.23475 3.07829i −0.0416709 0.103887i
\(879\) −19.4797 + 59.9522i −0.657033 + 2.02214i
\(880\) 0 0
\(881\) 2.27227 + 6.99332i 0.0765546 + 0.235611i 0.982009 0.188832i \(-0.0604701\pi\)
−0.905455 + 0.424443i \(0.860470\pi\)
\(882\) 5.35157 4.46771i 0.180197 0.150436i
\(883\) −13.8280 42.5583i −0.465350 1.43220i −0.858541 0.512745i \(-0.828629\pi\)
0.393191 0.919457i \(-0.371371\pi\)
\(884\) −16.2854 17.0340i −0.547739 0.572915i
\(885\) 0 0
\(886\) 0.334936 1.32917i 0.0112524 0.0446543i
\(887\) −22.0394 + 30.3347i −0.740012 + 1.01854i 0.258606 + 0.965983i \(0.416737\pi\)
−0.998618 + 0.0525565i \(0.983263\pi\)
\(888\) 3.17913 28.2073i 0.106685 0.946577i
\(889\) 9.35651 6.79790i 0.313807 0.227994i
\(890\) 0 0
\(891\) 33.3647 45.9226i 1.11776 1.53846i
\(892\) 4.44118 + 32.7914i 0.148702 + 1.09794i
\(893\) −6.42640 −0.215051
\(894\) 4.82925 7.68552i 0.161514 0.257042i
\(895\) 0 0
\(896\) 2.44512 15.4304i 0.0816859 0.515492i
\(897\) −1.67962 0.545741i −0.0560808 0.0182218i
\(898\) −11.8612 + 47.0700i −0.395812 + 1.57075i
\(899\) 41.3333i 1.37854i
\(900\) 0 0
\(901\) 12.6606i 0.421785i
\(902\) −28.8231 7.26312i −0.959704 0.241835i
\(903\) 19.7327 + 6.41154i 0.656663 + 0.213363i
\(904\) 5.39627 + 26.3596i 0.179477 + 0.876708i
\(905\) 0 0
\(906\) −48.1761 30.2718i −1.60054 1.00571i
\(907\) 9.10715 0.302398 0.151199 0.988503i \(-0.451687\pi\)
0.151199 + 0.988503i \(0.451687\pi\)
\(908\) −24.4293 + 3.30864i −0.810716 + 0.109801i
\(909\) −9.42650 + 12.9745i −0.312657 + 0.430336i
\(910\) 0 0
\(911\) 4.83681 3.51415i 0.160251 0.116429i −0.504770 0.863254i \(-0.668423\pi\)
0.665021 + 0.746825i \(0.268423\pi\)
\(912\) −42.5870 + 28.1088i −1.41020 + 0.930774i
\(913\) −12.7825 + 17.5937i −0.423040 + 0.582265i
\(914\) 47.2187 + 11.8986i 1.56186 + 0.393571i
\(915\) 0 0
\(916\) −15.6652 16.3852i −0.517593 0.541384i
\(917\) 3.86572 + 11.8974i 0.127657 + 0.392888i
\(918\) −14.0052 16.7758i −0.462239 0.553685i
\(919\) 5.41966 + 16.6800i 0.178778 + 0.550222i 0.999786 0.0206948i \(-0.00658785\pi\)
−0.821008 + 0.570917i \(0.806588\pi\)
\(920\) 0 0
\(921\) 2.30252 7.08644i 0.0758708 0.233506i
\(922\) −48.7829 + 19.5676i −1.60658 + 0.644425i
\(923\) −37.8721 + 27.5157i −1.24658 + 0.905690i
\(924\) 5.08488 28.0165i 0.167280 0.921676i
\(925\) 0 0
\(926\) 13.0774 + 15.6645i 0.429750 + 0.514769i
\(927\) −2.31416 3.18517i −0.0760070 0.104615i
\(928\) 52.0328 1.16500i 1.70806 0.0382430i
\(929\) −8.23207 + 25.3357i −0.270085 + 0.831237i 0.720393 + 0.693566i \(0.243962\pi\)
−0.990478 + 0.137671i \(0.956038\pi\)
\(930\) 0 0
\(931\) 31.0210 10.0793i 1.01667 0.330337i
\(932\) −12.6737 2.30021i −0.415140 0.0753460i
\(933\) −6.91618 21.2858i −0.226425 0.696866i
\(934\) −15.8175 + 1.06627i −0.517563 + 0.0348894i
\(935\) 0 0
\(936\) −7.69326 3.49475i −0.251462 0.114229i
\(937\) −5.75045 + 7.91482i −0.187859 + 0.258566i −0.892550 0.450949i \(-0.851086\pi\)
0.704691 + 0.709515i \(0.251086\pi\)
\(938\) −0.234742 3.48225i −0.00766458 0.113699i
\(939\) 7.71069 + 10.6129i 0.251629 + 0.346337i
\(940\) 0 0
\(941\) 0.184526 0.253979i 0.00601539 0.00827947i −0.805999 0.591917i \(-0.798371\pi\)
0.812014 + 0.583638i \(0.198371\pi\)
\(942\) 50.9767 + 32.0316i 1.66091 + 1.04364i
\(943\) 1.16639i 0.0379829i
\(944\) −7.15378 0.321586i −0.232836 0.0104667i
\(945\) 0 0
\(946\) −51.2449 + 20.5552i −1.66612 + 0.668306i
\(947\) 14.4398 44.4410i 0.469229 1.44414i −0.384356 0.923185i \(-0.625576\pi\)
0.853585 0.520954i \(-0.174424\pi\)
\(948\) 2.13558 + 4.43483i 0.0693605 + 0.144036i
\(949\) 36.1303i 1.17284i
\(950\) 0 0
\(951\) −40.2806 −1.30619
\(952\) −13.5749 6.16656i −0.439967 0.199859i
\(953\) 31.6721 + 10.2909i 1.02596 + 0.333354i 0.773191 0.634173i \(-0.218659\pi\)
0.252768 + 0.967527i \(0.418659\pi\)
\(954\) 1.68999 + 4.21321i 0.0547153 + 0.136408i
\(955\) 0 0
\(956\) −4.17484 + 0.565429i −0.135024 + 0.0182873i
\(957\) 94.8585 3.06634
\(958\) 5.69525 + 3.57865i 0.184005 + 0.115621i
\(959\) −0.777419 0.564828i −0.0251042 0.0182393i
\(960\) 0 0
\(961\) 8.75140 6.35826i 0.282303 0.205105i
\(962\) 21.9431 1.47921i 0.707475 0.0476915i
\(963\) −10.5869 7.69184i −0.341159 0.247866i
\(964\) 18.4541 + 38.3224i 0.594365 + 1.23428i
\(965\) 0 0
\(966\) −1.11481 + 0.0751506i −0.0358686 + 0.00241793i
\(967\) 28.5494 9.27626i 0.918087 0.298304i 0.188405 0.982091i \(-0.439668\pi\)
0.729682 + 0.683787i \(0.239668\pi\)
\(968\) 22.0394 + 38.8444i 0.708373 + 1.24851i
\(969\) 15.0486 + 46.3148i 0.483431 + 1.48785i
\(970\) 0 0
\(971\) −12.0721 3.92245i −0.387411 0.125878i 0.108834 0.994060i \(-0.465288\pi\)
−0.496245 + 0.868182i \(0.665288\pi\)
\(972\) −17.0862 9.19498i −0.548042 0.294929i
\(973\) 11.8882 8.63727i 0.381118 0.276898i
\(974\) −12.0575 14.4429i −0.386348 0.462781i
\(975\) 0 0
\(976\) 3.12948 8.33737i 0.100172 0.266873i
\(977\) 29.7939 + 41.0078i 0.953191 + 1.31196i 0.950095 + 0.311960i \(0.100986\pi\)
0.00309631 + 0.999995i \(0.499014\pi\)
\(978\) 13.3024 + 33.1634i 0.425363 + 1.06045i
\(979\) −55.5993 18.0653i −1.77696 0.577370i
\(980\) 0 0
\(981\) 9.23677 3.00121i 0.294907 0.0958213i
\(982\) 16.0922 + 19.2758i 0.513524 + 0.615116i
\(983\) −50.4346 + 16.3872i −1.60862 + 0.522671i −0.969218 0.246206i \(-0.920816\pi\)
−0.639397 + 0.768876i \(0.720816\pi\)
\(984\) −2.56233 + 22.7347i −0.0816842 + 0.724756i
\(985\) 0 0
\(986\) 12.1371 48.1650i 0.386523 1.53388i
\(987\) −2.23305 1.62241i −0.0710788 0.0516418i
\(988\) −27.3204 28.5762i −0.869178 0.909129i
\(989\) 1.27351 + 1.75283i 0.0404951 + 0.0557368i
\(990\) 0 0
\(991\) 1.47581 + 1.07224i 0.0468808 + 0.0340609i 0.610979 0.791647i \(-0.290776\pi\)
−0.564098 + 0.825708i \(0.690776\pi\)
\(992\) −15.3942 20.2204i −0.488765 0.641999i
\(993\) 42.5146i 1.34916i
\(994\) −15.7576 + 25.0775i −0.499801 + 0.795409i
\(995\) 0 0
\(996\) 14.7398 + 7.93223i 0.467048 + 0.251342i
\(997\) 5.04048 15.5130i 0.159634 0.491302i −0.838967 0.544182i \(-0.816840\pi\)
0.998601 + 0.0528802i \(0.0168401\pi\)
\(998\) 21.4175 + 5.39697i 0.677958 + 0.170838i
\(999\) 20.3944 0.645250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.o.a.949.11 112
5.2 odd 4 1000.2.t.b.301.5 224
5.3 odd 4 1000.2.t.b.301.52 224
5.4 even 2 200.2.o.a.189.18 yes 112
8.5 even 2 inner 1000.2.o.a.949.28 112
20.19 odd 2 800.2.be.a.689.7 112
25.9 even 10 inner 1000.2.o.a.549.28 112
25.12 odd 20 1000.2.t.b.701.27 224
25.13 odd 20 1000.2.t.b.701.30 224
25.16 even 5 200.2.o.a.109.1 112
40.13 odd 4 1000.2.t.b.301.30 224
40.19 odd 2 800.2.be.a.689.22 112
40.29 even 2 200.2.o.a.189.1 yes 112
40.37 odd 4 1000.2.t.b.301.27 224
100.91 odd 10 800.2.be.a.209.22 112
200.13 odd 20 1000.2.t.b.701.52 224
200.37 odd 20 1000.2.t.b.701.5 224
200.91 odd 10 800.2.be.a.209.7 112
200.109 even 10 inner 1000.2.o.a.549.11 112
200.141 even 10 200.2.o.a.109.18 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.1 112 25.16 even 5
200.2.o.a.109.18 yes 112 200.141 even 10
200.2.o.a.189.1 yes 112 40.29 even 2
200.2.o.a.189.18 yes 112 5.4 even 2
800.2.be.a.209.7 112 200.91 odd 10
800.2.be.a.209.22 112 100.91 odd 10
800.2.be.a.689.7 112 20.19 odd 2
800.2.be.a.689.22 112 40.19 odd 2
1000.2.o.a.549.11 112 200.109 even 10 inner
1000.2.o.a.549.28 112 25.9 even 10 inner
1000.2.o.a.949.11 112 1.1 even 1 trivial
1000.2.o.a.949.28 112 8.5 even 2 inner
1000.2.t.b.301.5 224 5.2 odd 4
1000.2.t.b.301.27 224 40.37 odd 4
1000.2.t.b.301.30 224 40.13 odd 4
1000.2.t.b.301.52 224 5.3 odd 4
1000.2.t.b.701.5 224 200.37 odd 20
1000.2.t.b.701.27 224 25.12 odd 20
1000.2.t.b.701.30 224 25.13 odd 20
1000.2.t.b.701.52 224 200.13 odd 20