| L(s) = 1 | + (−0.345 + 1.37i)2-s + (−0.615 + 1.89i)3-s + (−1.76 − 0.947i)4-s + (−2.38 − 1.49i)6-s − 1.38i·7-s + (1.90 − 2.08i)8-s + (−0.783 − 0.568i)9-s + (3.04 + 4.18i)11-s + (2.87 − 2.75i)12-s + (2.49 + 1.81i)13-s + (1.89 + 0.477i)14-s + (2.20 + 3.33i)16-s + (3.63 − 1.17i)17-s + (1.05 − 0.877i)18-s + (6.09 − 1.97i)19-s + ⋯ |
| L(s) = 1 | + (−0.244 + 0.969i)2-s + (−0.355 + 1.09i)3-s + (−0.880 − 0.473i)4-s + (−0.973 − 0.611i)6-s − 0.521i·7-s + (0.674 − 0.738i)8-s + (−0.261 − 0.189i)9-s + (0.917 + 1.26i)11-s + (0.831 − 0.794i)12-s + (0.692 + 0.503i)13-s + (0.506 + 0.127i)14-s + (0.550 + 0.834i)16-s + (0.880 − 0.286i)17-s + (0.247 − 0.206i)18-s + (1.39 − 0.454i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.903 - 0.429i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.903 - 0.429i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.277381 + 1.22921i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.277381 + 1.22921i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.345 - 1.37i)T \) |
| 5 | \( 1 \) |
| good | 3 | \( 1 + (0.615 - 1.89i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + 1.38iT - 7T^{2} \) |
| 11 | \( 1 + (-3.04 - 4.18i)T + (-3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-2.49 - 1.81i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.63 + 1.17i)T + (13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-6.09 + 1.97i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (-0.168 - 0.232i)T + (-7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (8.75 + 2.84i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.38 - 4.27i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (4.07 + 2.96i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-3.28 - 2.38i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 7.54T + 43T^{2} \) |
| 47 | \( 1 + (0.954 + 0.310i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (1.02 - 3.15i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (1.05 - 1.44i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (1.30 + 1.80i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (0.552 + 1.69i)T + (-54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (4.68 - 14.4i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (6.88 + 9.46i)T + (-22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (0.381 - 1.17i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-1.29 - 3.99i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (9.13 - 6.63i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-4.65 - 1.51i)T + (78.4 + 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00461338735079763828626022465, −9.499305211712014398918448429601, −8.951540151627910750249902808127, −7.47309028121737834082085780253, −7.20732926608925592491071783091, −5.97248149908090305481879680817, −5.14463623448748986378631257193, −4.30214737182291330490651300834, −3.67914018973172445577213770109, −1.33204903721725801531738267821,
0.824513162344981120180365861134, 1.63934772439784243594338316802, 3.12261488071577288943612317120, 3.85304914104525818504711878915, 5.58421261279949772390701885318, 5.94218899405706741435561012152, 7.31839053012607099866601865629, 8.006048539770744626012859711607, 8.880889609469664258410136991633, 9.573465044980592037925136495381