Properties

Label 1000.2.t.b.301.5
Level $1000$
Weight $2$
Character 1000.301
Analytic conductor $7.985$
Analytic rank $0$
Dimension $224$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1000,2,Mod(101,1000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1000.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1000, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.t (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [224] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(56\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 301.5
Character \(\chi\) \(=\) 1000.301
Dual form 1000.2.t.b.701.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37134 - 0.345564i) q^{2} +(1.89446 + 0.615546i) q^{3} +(1.76117 + 0.947775i) q^{4} +(-2.38524 - 1.49878i) q^{6} +1.38088 q^{7} +(-2.08765 - 1.90832i) q^{8} +(0.783019 + 0.568896i) q^{9} +(3.04233 + 4.18740i) q^{11} +(2.75306 + 2.87960i) q^{12} +(1.81429 - 2.49716i) q^{13} +(-1.89366 - 0.477183i) q^{14} +(2.20344 + 3.33839i) q^{16} +(1.17966 + 3.63061i) q^{17} +(-0.877198 - 1.05074i) q^{18} +(-6.09071 + 1.97899i) q^{19} +(2.61602 + 0.849997i) q^{21} +(-2.72506 - 6.79369i) q^{22} +(0.232378 - 0.168832i) q^{23} +(-2.78031 - 4.90029i) q^{24} +(-3.35095 + 2.79751i) q^{26} +(-2.37930 - 3.27483i) q^{27} +(2.43197 + 1.30877i) q^{28} +(8.75018 + 2.84311i) q^{29} +(1.38826 + 4.27263i) q^{31} +(-1.86805 - 5.33951i) q^{32} +(3.18602 + 9.80555i) q^{33} +(-0.363107 - 5.38647i) q^{34} +(0.839843 + 1.74405i) q^{36} +(2.96141 - 4.07603i) q^{37} +(9.03633 - 0.609147i) q^{38} +(4.97421 - 3.61398i) q^{39} +(3.28522 + 2.38685i) q^{41} +(-3.29374 - 2.06964i) q^{42} -7.54302i q^{43} +(1.38934 + 10.2582i) q^{44} +(-0.377013 + 0.151226i) q^{46} +(0.310090 - 0.954360i) q^{47} +(2.11940 + 7.68075i) q^{48} -5.09317 q^{49} +7.60418i q^{51} +(5.56202 - 2.67838i) q^{52} +(3.15418 + 1.02485i) q^{53} +(2.13118 + 5.31312i) q^{54} +(-2.88280 - 2.63517i) q^{56} -12.7567 q^{57} +(-11.0170 - 6.92263i) q^{58} +(1.05228 - 1.44834i) q^{59} +(-1.30861 - 1.80115i) q^{61} +(-0.427317 - 6.33899i) q^{62} +(1.08126 + 0.785578i) q^{63} +(0.716599 + 7.96784i) q^{64} +(-0.980677 - 14.5478i) q^{66} +(1.69973 - 0.552275i) q^{67} +(-1.36343 + 7.51218i) q^{68} +(0.544154 - 0.176806i) q^{69} +(-4.68658 + 14.4238i) q^{71} +(-0.549033 - 2.68191i) q^{72} +(-9.46979 + 6.88021i) q^{73} +(-5.46964 + 4.56628i) q^{74} +(-12.6024 - 2.28728i) q^{76} +(4.20109 + 5.78231i) q^{77} +(-8.07022 + 3.23710i) q^{78} +(0.381800 - 1.17506i) q^{79} +(-3.38894 - 10.4301i) q^{81} +(-3.68036 - 4.40845i) q^{82} +(3.99593 - 1.29836i) q^{83} +(3.80165 + 3.97639i) q^{84} +(-2.60660 + 10.3441i) q^{86} +(14.8268 + 10.7723i) q^{87} +(1.63960 - 14.5476i) q^{88} +(9.13763 - 6.63888i) q^{89} +(2.50532 - 3.44828i) q^{91} +(0.569272 - 0.0771007i) q^{92} +8.94886i q^{93} +(-0.755034 + 1.20160i) q^{94} +(-0.252228 - 11.2653i) q^{96} +(-1.51217 + 4.65397i) q^{97} +(6.98448 + 1.76002i) q^{98} +5.00958i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q + 6 q^{4} + 2 q^{6} + 60 q^{9} + 6 q^{14} - 30 q^{16} + 32 q^{24} - 28 q^{26} - 36 q^{31} - 18 q^{34} + 82 q^{36} + 20 q^{39} - 20 q^{41} + 64 q^{44} + 26 q^{46} + 160 q^{49} - 86 q^{54} + 72 q^{56}+ \cdots + 92 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37134 0.345564i −0.969687 0.244351i
\(3\) 1.89446 + 0.615546i 1.09377 + 0.355386i 0.799700 0.600400i \(-0.204992\pi\)
0.294065 + 0.955785i \(0.404992\pi\)
\(4\) 1.76117 + 0.947775i 0.880585 + 0.473888i
\(5\) 0 0
\(6\) −2.38524 1.49878i −0.973771 0.611875i
\(7\) 1.38088 0.521924 0.260962 0.965349i \(-0.415960\pi\)
0.260962 + 0.965349i \(0.415960\pi\)
\(8\) −2.08765 1.90832i −0.738097 0.674694i
\(9\) 0.783019 + 0.568896i 0.261006 + 0.189632i
\(10\) 0 0
\(11\) 3.04233 + 4.18740i 0.917296 + 1.26255i 0.964613 + 0.263670i \(0.0849330\pi\)
−0.0473169 + 0.998880i \(0.515067\pi\)
\(12\) 2.75306 + 2.87960i 0.794741 + 0.831269i
\(13\) 1.81429 2.49716i 0.503194 0.692587i −0.479559 0.877510i \(-0.659203\pi\)
0.982753 + 0.184923i \(0.0592034\pi\)
\(14\) −1.89366 0.477183i −0.506103 0.127533i
\(15\) 0 0
\(16\) 2.20344 + 3.33839i 0.550861 + 0.834597i
\(17\) 1.17966 + 3.63061i 0.286109 + 0.880553i 0.986064 + 0.166366i \(0.0532034\pi\)
−0.699955 + 0.714187i \(0.746797\pi\)
\(18\) −0.877198 1.05074i −0.206758 0.247661i
\(19\) −6.09071 + 1.97899i −1.39730 + 0.454012i −0.908318 0.418280i \(-0.862633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(20\) 0 0
\(21\) 2.61602 + 0.849997i 0.570863 + 0.185484i
\(22\) −2.72506 6.79369i −0.580985 1.44842i
\(23\) 0.232378 0.168832i 0.0484541 0.0352040i −0.563295 0.826256i \(-0.690466\pi\)
0.611749 + 0.791052i \(0.290466\pi\)
\(24\) −2.78031 4.90029i −0.567528 1.00027i
\(25\) 0 0
\(26\) −3.35095 + 2.79751i −0.657175 + 0.548637i
\(27\) −2.37930 3.27483i −0.457897 0.630241i
\(28\) 2.43197 + 1.30877i 0.459599 + 0.247333i
\(29\) 8.75018 + 2.84311i 1.62487 + 0.527952i 0.973084 0.230452i \(-0.0740206\pi\)
0.651785 + 0.758404i \(0.274021\pi\)
\(30\) 0 0
\(31\) 1.38826 + 4.27263i 0.249339 + 0.767388i 0.994892 + 0.100941i \(0.0321855\pi\)
−0.745553 + 0.666446i \(0.767815\pi\)
\(32\) −1.86805 5.33951i −0.330228 0.943901i
\(33\) 3.18602 + 9.80555i 0.554614 + 1.70693i
\(34\) −0.363107 5.38647i −0.0622723 0.923772i
\(35\) 0 0
\(36\) 0.839843 + 1.74405i 0.139974 + 0.290675i
\(37\) 2.96141 4.07603i 0.486853 0.670095i −0.492951 0.870057i \(-0.664082\pi\)
0.979804 + 0.199962i \(0.0640818\pi\)
\(38\) 9.03633 0.609147i 1.46589 0.0988166i
\(39\) 4.97421 3.61398i 0.796512 0.578700i
\(40\) 0 0
\(41\) 3.28522 + 2.38685i 0.513065 + 0.372764i 0.813985 0.580886i \(-0.197294\pi\)
−0.300920 + 0.953649i \(0.597294\pi\)
\(42\) −3.29374 2.06964i −0.508235 0.319353i
\(43\) 7.54302i 1.15030i −0.818048 0.575150i \(-0.804944\pi\)
0.818048 0.575150i \(-0.195056\pi\)
\(44\) 1.38934 + 10.2582i 0.209451 + 1.54648i
\(45\) 0 0
\(46\) −0.377013 + 0.151226i −0.0555875 + 0.0222970i
\(47\) 0.310090 0.954360i 0.0452313 0.139208i −0.925890 0.377792i \(-0.876683\pi\)
0.971122 + 0.238584i \(0.0766834\pi\)
\(48\) 2.11940 + 7.68075i 0.305909 + 1.10862i
\(49\) −5.09317 −0.727595
\(50\) 0 0
\(51\) 7.60418i 1.06480i
\(52\) 5.56202 2.67838i 0.771314 0.371425i
\(53\) 3.15418 + 1.02485i 0.433260 + 0.140775i 0.517524 0.855669i \(-0.326854\pi\)
−0.0842641 + 0.996443i \(0.526854\pi\)
\(54\) 2.13118 + 5.31312i 0.290017 + 0.723024i
\(55\) 0 0
\(56\) −2.88280 2.63517i −0.385231 0.352139i
\(57\) −12.7567 −1.68967
\(58\) −11.0170 6.92263i −1.44661 0.908986i
\(59\) 1.05228 1.44834i 0.136996 0.188558i −0.735007 0.678060i \(-0.762821\pi\)
0.872003 + 0.489501i \(0.162821\pi\)
\(60\) 0 0
\(61\) −1.30861 1.80115i −0.167550 0.230613i 0.716983 0.697091i \(-0.245523\pi\)
−0.884533 + 0.466478i \(0.845523\pi\)
\(62\) −0.427317 6.33899i −0.0542693 0.805052i
\(63\) 1.08126 + 0.785578i 0.136225 + 0.0989736i
\(64\) 0.716599 + 7.96784i 0.0895748 + 0.995980i
\(65\) 0 0
\(66\) −0.980677 14.5478i −0.120713 1.79071i
\(67\) 1.69973 0.552275i 0.207655 0.0674711i −0.203343 0.979108i \(-0.565181\pi\)
0.410997 + 0.911637i \(0.365181\pi\)
\(68\) −1.36343 + 7.51218i −0.165340 + 0.910986i
\(69\) 0.544154 0.176806i 0.0655085 0.0212850i
\(70\) 0 0
\(71\) −4.68658 + 14.4238i −0.556194 + 1.71179i 0.136574 + 0.990630i \(0.456391\pi\)
−0.692768 + 0.721161i \(0.743609\pi\)
\(72\) −0.549033 2.68191i −0.0647042 0.316066i
\(73\) −9.46979 + 6.88021i −1.10836 + 0.805267i −0.982404 0.186769i \(-0.940198\pi\)
−0.125951 + 0.992036i \(0.540198\pi\)
\(74\) −5.46964 + 4.56628i −0.635833 + 0.530820i
\(75\) 0 0
\(76\) −12.6024 2.28728i −1.44560 0.262369i
\(77\) 4.20109 + 5.78231i 0.478759 + 0.658955i
\(78\) −8.07022 + 3.23710i −0.913773 + 0.366529i
\(79\) 0.381800 1.17506i 0.0429559 0.132205i −0.927279 0.374372i \(-0.877858\pi\)
0.970234 + 0.242167i \(0.0778583\pi\)
\(80\) 0 0
\(81\) −3.38894 10.4301i −0.376549 1.15890i
\(82\) −3.68036 4.40845i −0.406428 0.486832i
\(83\) 3.99593 1.29836i 0.438610 0.142513i −0.0813841 0.996683i \(-0.525934\pi\)
0.519994 + 0.854170i \(0.325934\pi\)
\(84\) 3.80165 + 3.97639i 0.414794 + 0.433860i
\(85\) 0 0
\(86\) −2.60660 + 10.3441i −0.281077 + 1.11543i
\(87\) 14.8268 + 10.7723i 1.58960 + 1.15491i
\(88\) 1.63960 14.5476i 0.174782 1.55078i
\(89\) 9.13763 6.63888i 0.968587 0.703720i 0.0134580 0.999909i \(-0.495716\pi\)
0.955129 + 0.296190i \(0.0957160\pi\)
\(90\) 0 0
\(91\) 2.50532 3.44828i 0.262629 0.361478i
\(92\) 0.569272 0.0771007i 0.0593508 0.00803830i
\(93\) 8.94886i 0.927954i
\(94\) −0.755034 + 1.20160i −0.0778758 + 0.123936i
\(95\) 0 0
\(96\) −0.252228 11.2653i −0.0257429 1.14976i
\(97\) −1.51217 + 4.65397i −0.153537 + 0.472539i −0.998010 0.0630600i \(-0.979914\pi\)
0.844473 + 0.535599i \(0.179914\pi\)
\(98\) 6.98448 + 1.76002i 0.705539 + 0.177788i
\(99\) 5.00958i 0.503482i
\(100\) 0 0
\(101\) 16.5698i 1.64876i −0.566039 0.824378i \(-0.691525\pi\)
0.566039 0.824378i \(-0.308475\pi\)
\(102\) 2.62773 10.4279i 0.260184 1.03252i
\(103\) 1.25702 3.86872i 0.123858 0.381196i −0.869833 0.493346i \(-0.835774\pi\)
0.993691 + 0.112150i \(0.0357737\pi\)
\(104\) −8.55300 + 1.75095i −0.838691 + 0.171694i
\(105\) 0 0
\(106\) −3.97131 2.49540i −0.385728 0.242375i
\(107\) 13.5206i 1.30709i 0.756888 + 0.653545i \(0.226719\pi\)
−0.756888 + 0.653545i \(0.773281\pi\)
\(108\) −1.08656 8.02258i −0.104554 0.771973i
\(109\) 5.89818 8.11815i 0.564944 0.777578i −0.427001 0.904251i \(-0.640430\pi\)
0.991945 + 0.126673i \(0.0404299\pi\)
\(110\) 0 0
\(111\) 8.11925 5.89898i 0.770645 0.559906i
\(112\) 3.04270 + 4.60992i 0.287508 + 0.435596i
\(113\) 7.69603 + 5.59149i 0.723982 + 0.526004i 0.887654 0.460511i \(-0.152334\pi\)
−0.163672 + 0.986515i \(0.552334\pi\)
\(114\) 17.4939 + 4.40828i 1.63845 + 0.412873i
\(115\) 0 0
\(116\) 12.7159 + 13.3004i 1.18065 + 1.23491i
\(117\) 2.84125 0.923177i 0.262673 0.0853478i
\(118\) −1.94354 + 1.62255i −0.178917 + 0.149367i
\(119\) 1.62897 + 5.01345i 0.149327 + 0.459582i
\(120\) 0 0
\(121\) −4.87941 + 15.0173i −0.443583 + 1.36521i
\(122\) 1.17214 + 2.92220i 0.106121 + 0.264564i
\(123\) 4.75449 + 6.54400i 0.428698 + 0.590052i
\(124\) −1.60453 + 8.84060i −0.144091 + 0.793909i
\(125\) 0 0
\(126\) −1.21131 1.45094i −0.107912 0.129260i
\(127\) −6.77575 + 4.92287i −0.601251 + 0.436834i −0.846323 0.532671i \(-0.821188\pi\)
0.245072 + 0.969505i \(0.421188\pi\)
\(128\) 1.77070 11.1743i 0.156509 0.987677i
\(129\) 4.64308 14.2899i 0.408800 1.25816i
\(130\) 0 0
\(131\) −8.61583 + 2.79945i −0.752769 + 0.244589i −0.660172 0.751114i \(-0.729517\pi\)
−0.0925967 + 0.995704i \(0.529517\pi\)
\(132\) −3.68234 + 20.2889i −0.320507 + 1.76592i
\(133\) −8.41055 + 2.73275i −0.729287 + 0.236960i
\(134\) −2.52176 + 0.169994i −0.217847 + 0.0146852i
\(135\) 0 0
\(136\) 4.46567 9.83064i 0.382928 0.842970i
\(137\) 0.562988 + 0.409034i 0.0480993 + 0.0349462i 0.611575 0.791186i \(-0.290536\pi\)
−0.563476 + 0.826133i \(0.690536\pi\)
\(138\) −0.807321 + 0.0544222i −0.0687237 + 0.00463273i
\(139\) −6.25490 8.60913i −0.530533 0.730217i 0.456678 0.889632i \(-0.349039\pi\)
−0.987212 + 0.159415i \(0.949039\pi\)
\(140\) 0 0
\(141\) 1.17491 1.61712i 0.0989449 0.136186i
\(142\) 11.4113 18.1605i 0.957612 1.52399i
\(143\) 15.9763 1.33600
\(144\) −0.173859 + 3.86755i −0.0144883 + 0.322296i
\(145\) 0 0
\(146\) 15.3639 6.16271i 1.27153 0.510029i
\(147\) −9.64878 3.13508i −0.795818 0.258577i
\(148\) 9.07871 4.37183i 0.746265 0.359363i
\(149\) 3.22211i 0.263966i −0.991252 0.131983i \(-0.957866\pi\)
0.991252 0.131983i \(-0.0421344\pi\)
\(150\) 0 0
\(151\) 20.1976 1.64366 0.821828 0.569736i \(-0.192955\pi\)
0.821828 + 0.569736i \(0.192955\pi\)
\(152\) 16.4918 + 7.49160i 1.33767 + 0.607649i
\(153\) −1.14175 + 3.51394i −0.0923049 + 0.284085i
\(154\) −3.76299 9.38129i −0.303230 0.755966i
\(155\) 0 0
\(156\) 12.1857 1.65039i 0.975635 0.132137i
\(157\) 21.3717i 1.70565i −0.522198 0.852824i \(-0.674888\pi\)
0.522198 0.852824i \(-0.325112\pi\)
\(158\) −0.929638 + 1.47948i −0.0739581 + 0.117701i
\(159\) 5.34461 + 3.88309i 0.423855 + 0.307949i
\(160\) 0 0
\(161\) 0.320886 0.233138i 0.0252894 0.0183738i
\(162\) 1.04314 + 15.4743i 0.0819566 + 1.21578i
\(163\) −7.45556 + 10.2617i −0.583965 + 0.803759i −0.994123 0.108256i \(-0.965473\pi\)
0.410158 + 0.912014i \(0.365473\pi\)
\(164\) 3.52363 + 7.31731i 0.275150 + 0.571386i
\(165\) 0 0
\(166\) −5.92846 + 0.399643i −0.460138 + 0.0310183i
\(167\) −2.84315 8.75032i −0.220010 0.677120i −0.998760 0.0497860i \(-0.984146\pi\)
0.778750 0.627334i \(-0.215854\pi\)
\(168\) −3.83928 6.76671i −0.296207 0.522063i
\(169\) 1.07308 + 3.30259i 0.0825444 + 0.254045i
\(170\) 0 0
\(171\) −5.89498 1.91539i −0.450800 0.146474i
\(172\) 7.14909 13.2845i 0.545113 1.01294i
\(173\) −11.4618 15.7758i −0.871423 1.19941i −0.978723 0.205184i \(-0.934221\pi\)
0.107301 0.994227i \(-0.465779\pi\)
\(174\) −16.6101 19.8961i −1.25921 1.50832i
\(175\) 0 0
\(176\) −7.27558 + 19.3832i −0.548418 + 1.46106i
\(177\) 2.88503 2.09609i 0.216852 0.157552i
\(178\) −14.8250 + 5.94655i −1.11118 + 0.445713i
\(179\) 3.15544 + 1.02527i 0.235849 + 0.0766320i 0.424557 0.905401i \(-0.360430\pi\)
−0.188708 + 0.982033i \(0.560430\pi\)
\(180\) 0 0
\(181\) 4.68953 1.52372i 0.348570 0.113257i −0.129499 0.991580i \(-0.541337\pi\)
0.478069 + 0.878322i \(0.341337\pi\)
\(182\) −4.62726 + 3.86303i −0.342995 + 0.286347i
\(183\) −1.37042 4.21771i −0.101304 0.311782i
\(184\) −0.807312 0.0909887i −0.0595158 0.00670777i
\(185\) 0 0
\(186\) 3.09241 12.2720i 0.226746 0.899825i
\(187\) −11.6139 + 15.9852i −0.849296 + 1.16896i
\(188\) 1.45064 1.38690i 0.105799 0.101150i
\(189\) −3.28554 4.52215i −0.238988 0.328938i
\(190\) 0 0
\(191\) −0.543712 0.395030i −0.0393416 0.0285833i 0.567941 0.823069i \(-0.307740\pi\)
−0.607282 + 0.794486i \(0.707740\pi\)
\(192\) −3.54701 + 15.5358i −0.255983 + 1.12120i
\(193\) 4.75497 0.342270 0.171135 0.985248i \(-0.445257\pi\)
0.171135 + 0.985248i \(0.445257\pi\)
\(194\) 3.68194 5.85964i 0.264348 0.420698i
\(195\) 0 0
\(196\) −8.96993 4.82718i −0.640710 0.344798i
\(197\) −5.34192 1.73569i −0.380596 0.123663i 0.112470 0.993655i \(-0.464124\pi\)
−0.493066 + 0.869992i \(0.664124\pi\)
\(198\) 1.73113 6.86986i 0.123026 0.488220i
\(199\) −3.56353 −0.252612 −0.126306 0.991991i \(-0.540312\pi\)
−0.126306 + 0.991991i \(0.540312\pi\)
\(200\) 0 0
\(201\) 3.56001 0.251104
\(202\) −5.72593 + 22.7229i −0.402875 + 1.59878i
\(203\) 12.0830 + 3.92599i 0.848058 + 0.275551i
\(204\) −7.20705 + 13.3923i −0.504595 + 0.937645i
\(205\) 0 0
\(206\) −3.06070 + 4.87096i −0.213249 + 0.339376i
\(207\) 0.278004 0.0193226
\(208\) 12.3342 + 0.554462i 0.855221 + 0.0384450i
\(209\) −26.8168 19.4835i −1.85495 1.34770i
\(210\) 0 0
\(211\) −16.5725 22.8101i −1.14090 1.57031i −0.765487 0.643452i \(-0.777502\pi\)
−0.375411 0.926859i \(-0.622498\pi\)
\(212\) 4.58371 + 4.79440i 0.314811 + 0.329280i
\(213\) −17.7570 + 24.4405i −1.21669 + 1.67463i
\(214\) 4.67225 18.5415i 0.319389 1.26747i
\(215\) 0 0
\(216\) −1.28227 + 11.3772i −0.0872478 + 0.774120i
\(217\) 1.91703 + 5.90000i 0.130136 + 0.400518i
\(218\) −10.8938 + 9.09458i −0.737820 + 0.615963i
\(219\) −22.1752 + 7.20516i −1.49846 + 0.486879i
\(220\) 0 0
\(221\) 11.2065 + 3.64120i 0.753828 + 0.244934i
\(222\) −13.1728 + 5.28381i −0.884098 + 0.354626i
\(223\) −13.3855 + 9.72513i −0.896359 + 0.651243i −0.937528 0.347909i \(-0.886892\pi\)
0.0411689 + 0.999152i \(0.486892\pi\)
\(224\) −2.57956 7.37323i −0.172354 0.492645i
\(225\) 0 0
\(226\) −8.62169 10.3273i −0.573506 0.686964i
\(227\) 7.24515 + 9.97209i 0.480878 + 0.661871i 0.978673 0.205423i \(-0.0658571\pi\)
−0.497796 + 0.867294i \(0.665857\pi\)
\(228\) −22.4668 12.0905i −1.48790 0.800715i
\(229\) −10.7797 3.50252i −0.712340 0.231453i −0.0696410 0.997572i \(-0.522185\pi\)
−0.642699 + 0.766119i \(0.722185\pi\)
\(230\) 0 0
\(231\) 4.39951 + 13.5403i 0.289467 + 0.890887i
\(232\) −12.8418 22.6336i −0.843105 1.48597i
\(233\) −1.99018 6.12514i −0.130381 0.401271i 0.864462 0.502698i \(-0.167659\pi\)
−0.994843 + 0.101427i \(0.967659\pi\)
\(234\) −4.21535 + 0.284160i −0.275566 + 0.0185761i
\(235\) 0 0
\(236\) 3.22595 1.55345i 0.209992 0.101121i
\(237\) 1.44661 1.99109i 0.0939673 0.129335i
\(238\) −0.501407 7.43808i −0.0325014 0.482139i
\(239\) −1.70418 + 1.23816i −0.110234 + 0.0800897i −0.641537 0.767092i \(-0.721703\pi\)
0.531303 + 0.847182i \(0.321703\pi\)
\(240\) 0 0
\(241\) −17.2054 12.5005i −1.10830 0.805227i −0.125904 0.992042i \(-0.540183\pi\)
−0.982395 + 0.186816i \(0.940183\pi\)
\(242\) 11.8808 18.9077i 0.763726 1.21543i
\(243\) 9.70164i 0.622360i
\(244\) −0.597603 4.41240i −0.0382576 0.282475i
\(245\) 0 0
\(246\) −4.25867 10.6171i −0.271523 0.676919i
\(247\) −6.10847 + 18.7999i −0.388672 + 1.19621i
\(248\) 5.25536 11.5690i 0.333716 0.734635i
\(249\) 8.36931 0.530384
\(250\) 0 0
\(251\) 17.4979i 1.10446i 0.833693 + 0.552229i \(0.186222\pi\)
−0.833693 + 0.552229i \(0.813778\pi\)
\(252\) 1.15972 + 2.40833i 0.0730558 + 0.151710i
\(253\) 1.41394 + 0.459417i 0.0888936 + 0.0288833i
\(254\) 10.9931 4.40949i 0.689766 0.276676i
\(255\) 0 0
\(256\) −6.28967 + 14.7119i −0.393104 + 0.919494i
\(257\) −28.7486 −1.79329 −0.896644 0.442753i \(-0.854002\pi\)
−0.896644 + 0.442753i \(0.854002\pi\)
\(258\) −11.3053 + 17.9919i −0.703840 + 1.12013i
\(259\) 4.08936 5.62852i 0.254100 0.349739i
\(260\) 0 0
\(261\) 5.23412 + 7.20415i 0.323984 + 0.445926i
\(262\) 12.7827 0.861691i 0.789716 0.0532354i
\(263\) −16.9955 12.3479i −1.04799 0.761407i −0.0761580 0.997096i \(-0.524265\pi\)
−0.971829 + 0.235689i \(0.924265\pi\)
\(264\) 12.0609 26.5505i 0.742295 1.63407i
\(265\) 0 0
\(266\) 12.4781 0.841160i 0.765081 0.0515748i
\(267\) 21.3974 6.95243i 1.30950 0.425482i
\(268\) 3.51694 + 0.638309i 0.214831 + 0.0389910i
\(269\) −15.0792 + 4.89953i −0.919396 + 0.298730i −0.730219 0.683213i \(-0.760582\pi\)
−0.189177 + 0.981943i \(0.560582\pi\)
\(270\) 0 0
\(271\) 9.17886 28.2496i 0.557576 1.71604i −0.131465 0.991321i \(-0.541968\pi\)
0.689041 0.724722i \(-0.258032\pi\)
\(272\) −9.52109 + 11.9380i −0.577301 + 0.723848i
\(273\) 6.86880 4.99048i 0.415719 0.302037i
\(274\) −0.630702 0.755475i −0.0381021 0.0456399i
\(275\) 0 0
\(276\) 1.12592 + 0.204350i 0.0677725 + 0.0123004i
\(277\) 0.640129 + 0.881062i 0.0384616 + 0.0529379i 0.827815 0.561002i \(-0.189584\pi\)
−0.789353 + 0.613940i \(0.789584\pi\)
\(278\) 5.60261 + 13.9675i 0.336022 + 0.837718i
\(279\) −1.34365 + 4.13533i −0.0804422 + 0.247576i
\(280\) 0 0
\(281\) −7.85909 24.1878i −0.468834 1.44292i −0.854096 0.520116i \(-0.825889\pi\)
0.385261 0.922808i \(-0.374111\pi\)
\(282\) −2.17002 + 1.81162i −0.129223 + 0.107881i
\(283\) 23.8641 7.75392i 1.41857 0.460923i 0.503425 0.864039i \(-0.332073\pi\)
0.915149 + 0.403116i \(0.132073\pi\)
\(284\) −21.9244 + 20.9610i −1.30097 + 1.24380i
\(285\) 0 0
\(286\) −21.9090 5.52083i −1.29550 0.326454i
\(287\) 4.53650 + 3.29596i 0.267781 + 0.194554i
\(288\) 1.57491 5.24366i 0.0928024 0.308986i
\(289\) 1.96352 1.42658i 0.115501 0.0839166i
\(290\) 0 0
\(291\) −5.72946 + 7.88593i −0.335867 + 0.462281i
\(292\) −23.1988 + 3.14198i −1.35761 + 0.183871i
\(293\) 31.6461i 1.84879i −0.381440 0.924393i \(-0.624572\pi\)
0.381440 0.924393i \(-0.375428\pi\)
\(294\) 12.1484 + 7.63355i 0.708511 + 0.445198i
\(295\) 0 0
\(296\) −13.9608 + 2.85801i −0.811454 + 0.166119i
\(297\) 6.47442 19.9262i 0.375684 1.15624i
\(298\) −1.11345 + 4.41863i −0.0645003 + 0.255964i
\(299\) 0.886596i 0.0512731i
\(300\) 0 0
\(301\) 10.4160i 0.600369i
\(302\) −27.6978 6.97956i −1.59383 0.401629i
\(303\) 10.1995 31.3908i 0.585945 1.80335i
\(304\) −20.0272 15.9726i −1.14864 0.916089i
\(305\) 0 0
\(306\) 2.78002 4.42428i 0.158923 0.252919i
\(307\) 3.74062i 0.213488i −0.994287 0.106744i \(-0.965957\pi\)
0.994287 0.106744i \(-0.0340426\pi\)
\(308\) 1.91851 + 14.1653i 0.109317 + 0.807144i
\(309\) 4.76275 6.55536i 0.270943 0.372921i
\(310\) 0 0
\(311\) −9.08998 + 6.60426i −0.515446 + 0.374493i −0.814885 0.579622i \(-0.803200\pi\)
0.299440 + 0.954115i \(0.403200\pi\)
\(312\) −17.2811 1.94768i −0.978348 0.110265i
\(313\) −5.32787 3.87093i −0.301149 0.218798i 0.426940 0.904280i \(-0.359591\pi\)
−0.728089 + 0.685482i \(0.759591\pi\)
\(314\) −7.38530 + 29.3080i −0.416777 + 1.65394i
\(315\) 0 0
\(316\) 1.78611 1.70762i 0.100476 0.0960612i
\(317\) −19.2320 + 6.24885i −1.08018 + 0.350970i −0.794443 0.607339i \(-0.792237\pi\)
−0.285733 + 0.958309i \(0.592237\pi\)
\(318\) −5.98744 7.17195i −0.335759 0.402183i
\(319\) 14.7157 + 45.2902i 0.823920 + 2.53577i
\(320\) 0 0
\(321\) −8.32258 + 25.6143i −0.464521 + 1.42965i
\(322\) −0.520610 + 0.208825i −0.0290125 + 0.0116374i
\(323\) −14.3699 19.7785i −0.799563 1.10050i
\(324\) 3.91687 21.5811i 0.217604 1.19895i
\(325\) 0 0
\(326\) 13.7702 11.4960i 0.762662 0.636702i
\(327\) 16.1710 11.7489i 0.894256 0.649715i
\(328\) −2.30352 11.2522i −0.127190 0.621298i
\(329\) 0.428198 1.31786i 0.0236073 0.0726559i
\(330\) 0 0
\(331\) 20.2986 6.59541i 1.11571 0.362517i 0.307582 0.951522i \(-0.400480\pi\)
0.808129 + 0.589005i \(0.200480\pi\)
\(332\) 8.26806 + 1.50062i 0.453769 + 0.0823570i
\(333\) 4.63768 1.50687i 0.254143 0.0825761i
\(334\) 0.875141 + 12.9822i 0.0478856 + 0.710354i
\(335\) 0 0
\(336\) 2.92664 + 10.6062i 0.159661 + 0.578616i
\(337\) −13.4708 9.78712i −0.733802 0.533139i 0.156962 0.987605i \(-0.449830\pi\)
−0.890764 + 0.454466i \(0.849830\pi\)
\(338\) −0.330300 4.89981i −0.0179660 0.266514i
\(339\) 11.1380 + 15.3301i 0.604932 + 0.832617i
\(340\) 0 0
\(341\) −13.6677 + 18.8120i −0.740147 + 1.01873i
\(342\) 7.42215 + 4.66376i 0.401344 + 0.252187i
\(343\) −16.6992 −0.901674
\(344\) −14.3945 + 15.7472i −0.776101 + 0.849033i
\(345\) 0 0
\(346\) 10.2665 + 25.5948i 0.551930 + 1.37599i
\(347\) 15.0852 + 4.90149i 0.809818 + 0.263126i 0.684521 0.728993i \(-0.260012\pi\)
0.125297 + 0.992119i \(0.460012\pi\)
\(348\) 15.9028 + 33.0243i 0.852479 + 1.77029i
\(349\) 11.9445i 0.639375i 0.947523 + 0.319688i \(0.103578\pi\)
−0.947523 + 0.319688i \(0.896422\pi\)
\(350\) 0 0
\(351\) −12.4945 −0.666908
\(352\) 16.6755 24.0668i 0.888805 1.28277i
\(353\) −1.55465 + 4.78471i −0.0827456 + 0.254665i −0.983867 0.178903i \(-0.942745\pi\)
0.901121 + 0.433567i \(0.142745\pi\)
\(354\) −4.68070 + 1.87751i −0.248776 + 0.0997883i
\(355\) 0 0
\(356\) 22.3851 3.03178i 1.18641 0.160684i
\(357\) 10.5005i 0.555744i
\(358\) −3.97291 2.49640i −0.209975 0.131939i
\(359\) −4.41690 3.20906i −0.233115 0.169368i 0.465096 0.885260i \(-0.346020\pi\)
−0.698210 + 0.715893i \(0.746020\pi\)
\(360\) 0 0
\(361\) 17.8090 12.9390i 0.937315 0.681000i
\(362\) −6.95750 + 0.469011i −0.365678 + 0.0246507i
\(363\) −18.4877 + 25.4461i −0.970351 + 1.33557i
\(364\) 7.68049 3.69853i 0.402567 0.193855i
\(365\) 0 0
\(366\) 0.421823 + 6.25749i 0.0220491 + 0.327084i
\(367\) −4.67384 14.3846i −0.243973 0.750871i −0.995804 0.0915149i \(-0.970829\pi\)
0.751831 0.659356i \(-0.229171\pi\)
\(368\) 1.07566 + 0.403755i 0.0560727 + 0.0210472i
\(369\) 1.21452 + 3.73790i 0.0632253 + 0.194587i
\(370\) 0 0
\(371\) 4.35555 + 1.41520i 0.226129 + 0.0734737i
\(372\) −8.48151 + 15.7605i −0.439746 + 0.817142i
\(373\) −19.0290 26.1912i −0.985284 1.35613i −0.933933 0.357447i \(-0.883647\pi\)
−0.0513509 0.998681i \(-0.516353\pi\)
\(374\) 21.4506 17.9079i 1.10919 0.925994i
\(375\) 0 0
\(376\) −2.46859 + 1.40062i −0.127308 + 0.0722315i
\(377\) 22.9751 16.6924i 1.18328 0.859701i
\(378\) 2.94291 + 7.33679i 0.151367 + 0.377364i
\(379\) 12.3752 + 4.02096i 0.635674 + 0.206543i 0.609087 0.793104i \(-0.291536\pi\)
0.0265869 + 0.999647i \(0.491536\pi\)
\(380\) 0 0
\(381\) −15.8666 + 5.15538i −0.812872 + 0.264118i
\(382\) 0.609108 + 0.729609i 0.0311647 + 0.0373300i
\(383\) 4.35817 + 13.4131i 0.222692 + 0.685376i 0.998518 + 0.0544287i \(0.0173337\pi\)
−0.775825 + 0.630948i \(0.782666\pi\)
\(384\) 10.2328 20.0793i 0.522190 1.02467i
\(385\) 0 0
\(386\) −6.52070 1.64315i −0.331895 0.0836340i
\(387\) 4.29119 5.90632i 0.218134 0.300235i
\(388\) −7.07410 + 6.76324i −0.359133 + 0.343351i
\(389\) 11.6423 + 16.0243i 0.590290 + 0.812465i 0.994776 0.102080i \(-0.0325496\pi\)
−0.404486 + 0.914544i \(0.632550\pi\)
\(390\) 0 0
\(391\) 0.887092 + 0.644510i 0.0448622 + 0.0325943i
\(392\) 10.6328 + 9.71941i 0.537036 + 0.490904i
\(393\) −18.0455 −0.910276
\(394\) 6.72582 + 4.22621i 0.338842 + 0.212913i
\(395\) 0 0
\(396\) −4.74796 + 8.82273i −0.238594 + 0.443359i
\(397\) 10.0183 + 3.25515i 0.502805 + 0.163371i 0.549428 0.835541i \(-0.314846\pi\)
−0.0466224 + 0.998913i \(0.514846\pi\)
\(398\) 4.88682 + 1.23143i 0.244954 + 0.0617259i
\(399\) −17.6156 −0.881881
\(400\) 0 0
\(401\) −14.5328 −0.725732 −0.362866 0.931841i \(-0.618202\pi\)
−0.362866 + 0.931841i \(0.618202\pi\)
\(402\) −4.88200 1.23021i −0.243492 0.0613574i
\(403\) 13.1882 + 4.28509i 0.656949 + 0.213456i
\(404\) 15.7044 29.1822i 0.781325 1.45187i
\(405\) 0 0
\(406\) −15.2132 9.55933i −0.755020 0.474422i
\(407\) 26.0776 1.29262
\(408\) 14.5112 15.8749i 0.718413 0.785924i
\(409\) 20.3026 + 14.7507i 1.00390 + 0.729375i 0.962920 0.269785i \(-0.0869528\pi\)
0.0409776 + 0.999160i \(0.486953\pi\)
\(410\) 0 0
\(411\) 0.814776 + 1.12144i 0.0401899 + 0.0553167i
\(412\) 5.88050 5.62209i 0.289712 0.276981i
\(413\) 1.45308 1.99999i 0.0715013 0.0984131i
\(414\) −0.381240 0.0960684i −0.0187369 0.00472150i
\(415\) 0 0
\(416\) −16.7228 5.02261i −0.819902 0.246254i
\(417\) −6.55032 20.1598i −0.320770 0.987230i
\(418\) 30.0422 + 35.9855i 1.46941 + 1.76011i
\(419\) −0.728039 + 0.236554i −0.0355671 + 0.0115564i −0.326746 0.945112i \(-0.605952\pi\)
0.291179 + 0.956668i \(0.405952\pi\)
\(420\) 0 0
\(421\) −11.1284 3.61584i −0.542366 0.176225i 0.0250056 0.999687i \(-0.492040\pi\)
−0.567371 + 0.823462i \(0.692040\pi\)
\(422\) 14.8442 + 37.0073i 0.722606 + 1.80149i
\(423\) 0.785739 0.570872i 0.0382039 0.0277568i
\(424\) −4.62908 8.15874i −0.224808 0.396223i
\(425\) 0 0
\(426\) 32.7968 27.3801i 1.58901 1.32657i
\(427\) −1.80704 2.48717i −0.0874486 0.120363i
\(428\) −12.8145 + 23.8122i −0.619414 + 1.15100i
\(429\) 30.2664 + 9.83414i 1.46127 + 0.474797i
\(430\) 0 0
\(431\) 6.71966 + 20.6810i 0.323675 + 0.996169i 0.972035 + 0.234835i \(0.0754550\pi\)
−0.648360 + 0.761334i \(0.724545\pi\)
\(432\) 5.68999 15.1589i 0.273760 0.729335i
\(433\) −1.13607 3.49647i −0.0545962 0.168030i 0.920040 0.391824i \(-0.128156\pi\)
−0.974636 + 0.223794i \(0.928156\pi\)
\(434\) −0.590074 8.75339i −0.0283245 0.420176i
\(435\) 0 0
\(436\) 18.0819 8.70730i 0.865966 0.417004i
\(437\) −1.08123 + 1.48818i −0.0517222 + 0.0711894i
\(438\) 32.8997 2.21780i 1.57201 0.105970i
\(439\) 1.89736 1.37851i 0.0905559 0.0657927i −0.541586 0.840645i \(-0.682176\pi\)
0.632142 + 0.774853i \(0.282176\pi\)
\(440\) 0 0
\(441\) −3.98804 2.89748i −0.189907 0.137975i
\(442\) −14.1096 8.86589i −0.671127 0.421707i
\(443\) 0.969245i 0.0460502i 0.999735 + 0.0230251i \(0.00732977\pi\)
−0.999735 + 0.0230251i \(0.992670\pi\)
\(444\) 19.8903 2.69389i 0.943951 0.127846i
\(445\) 0 0
\(446\) 21.7168 8.71096i 1.02832 0.412476i
\(447\) 1.98336 6.10416i 0.0938098 0.288717i
\(448\) 0.989538 + 11.0026i 0.0467513 + 0.519826i
\(449\) −34.3240 −1.61985 −0.809925 0.586533i \(-0.800492\pi\)
−0.809925 + 0.586533i \(0.800492\pi\)
\(450\) 0 0
\(451\) 21.0181i 0.989705i
\(452\) 8.25455 + 17.1417i 0.388261 + 0.806277i
\(453\) 38.2634 + 12.4325i 1.79777 + 0.584132i
\(454\) −6.48960 16.1788i −0.304572 0.759311i
\(455\) 0 0
\(456\) 26.6317 + 24.3440i 1.24714 + 1.14001i
\(457\) 34.4324 1.61068 0.805341 0.592812i \(-0.201982\pi\)
0.805341 + 0.592812i \(0.201982\pi\)
\(458\) 13.5723 + 8.52823i 0.634191 + 0.398498i
\(459\) 9.08288 12.5015i 0.423953 0.583521i
\(460\) 0 0
\(461\) 21.8458 + 30.0682i 1.01746 + 1.40041i 0.913969 + 0.405783i \(0.133001\pi\)
0.103491 + 0.994630i \(0.466999\pi\)
\(462\) −1.35420 20.0887i −0.0630031 0.934612i
\(463\) −11.6734 8.48120i −0.542507 0.394155i 0.282508 0.959265i \(-0.408834\pi\)
−0.825015 + 0.565110i \(0.808834\pi\)
\(464\) 9.78914 + 35.4761i 0.454450 + 1.64694i
\(465\) 0 0
\(466\) 0.612591 + 9.08741i 0.0283777 + 0.420966i
\(467\) −10.6614 + 3.46409i −0.493349 + 0.160299i −0.545116 0.838360i \(-0.683515\pi\)
0.0517673 + 0.998659i \(0.483515\pi\)
\(468\) 5.87889 + 1.06699i 0.271752 + 0.0493217i
\(469\) 2.34712 0.762626i 0.108380 0.0352148i
\(470\) 0 0
\(471\) 13.1553 40.4878i 0.606163 1.86558i
\(472\) −4.96071 + 1.01554i −0.228335 + 0.0467441i
\(473\) 31.5857 22.9483i 1.45231 1.05517i
\(474\) −2.67185 + 2.23057i −0.122722 + 0.102453i
\(475\) 0 0
\(476\) −1.88273 + 10.3734i −0.0862949 + 0.475466i
\(477\) 1.88674 + 2.59688i 0.0863881 + 0.118903i
\(478\) 2.76488 1.10904i 0.126462 0.0507262i
\(479\) −1.46974 + 4.52340i −0.0671543 + 0.206680i −0.979003 0.203848i \(-0.934655\pi\)
0.911848 + 0.410527i \(0.134655\pi\)
\(480\) 0 0
\(481\) −4.80563 14.7902i −0.219118 0.674376i
\(482\) 19.2749 + 23.0880i 0.877946 + 1.05163i
\(483\) 0.751413 0.244149i 0.0341905 0.0111092i
\(484\) −22.8265 + 21.8234i −1.03757 + 0.991973i
\(485\) 0 0
\(486\) −3.35254 + 13.3043i −0.152074 + 0.603495i
\(487\) −10.7630 7.81977i −0.487718 0.354348i 0.316588 0.948563i \(-0.397463\pi\)
−0.804306 + 0.594215i \(0.797463\pi\)
\(488\) −0.705248 + 6.25742i −0.0319251 + 0.283260i
\(489\) −20.4408 + 14.8511i −0.924365 + 0.671590i
\(490\) 0 0
\(491\) 10.4364 14.3645i 0.470990 0.648262i −0.505752 0.862679i \(-0.668785\pi\)
0.976742 + 0.214417i \(0.0687851\pi\)
\(492\) 2.17123 + 16.0313i 0.0978867 + 0.722746i
\(493\) 35.1224i 1.58184i
\(494\) 14.8734 23.6703i 0.669186 1.06498i
\(495\) 0 0
\(496\) −11.2048 + 14.0491i −0.503108 + 0.630822i
\(497\) −6.47161 + 19.9176i −0.290291 + 0.893425i
\(498\) −11.4772 2.89214i −0.514306 0.129600i
\(499\) 15.6179i 0.699151i 0.936908 + 0.349576i \(0.113674\pi\)
−0.936908 + 0.349576i \(0.886326\pi\)
\(500\) 0 0
\(501\) 18.3272i 0.818799i
\(502\) 6.04665 23.9956i 0.269875 1.07098i
\(503\) −0.00969730 + 0.0298452i −0.000432381 + 0.00133073i −0.951272 0.308352i \(-0.900223\pi\)
0.950840 + 0.309682i \(0.100223\pi\)
\(504\) −0.758150 3.70340i −0.0337707 0.164963i
\(505\) 0 0
\(506\) −1.78024 1.11863i −0.0791413 0.0497290i
\(507\) 6.91715i 0.307201i
\(508\) −16.5990 + 2.24813i −0.736463 + 0.0997445i
\(509\) 6.00479 8.26488i 0.266157 0.366334i −0.654930 0.755689i \(-0.727302\pi\)
0.921088 + 0.389355i \(0.127302\pi\)
\(510\) 0 0
\(511\) −13.0767 + 9.50075i −0.578477 + 0.420288i
\(512\) 13.7092 18.0016i 0.605867 0.795566i
\(513\) 20.9725 + 15.2374i 0.925959 + 0.672748i
\(514\) 39.4242 + 9.93448i 1.73893 + 0.438191i
\(515\) 0 0
\(516\) 21.7209 20.7664i 0.956209 0.914189i
\(517\) 4.93969 1.60500i 0.217247 0.0705879i
\(518\) −7.55293 + 6.30550i −0.331857 + 0.277048i
\(519\) −12.0031 36.9418i −0.526878 1.62156i
\(520\) 0 0
\(521\) 6.03139 18.5627i 0.264240 0.813248i −0.727627 0.685973i \(-0.759377\pi\)
0.991867 0.127275i \(-0.0406231\pi\)
\(522\) −4.68829 11.6881i −0.205201 0.511574i
\(523\) 5.14729 + 7.08464i 0.225075 + 0.309789i 0.906588 0.422017i \(-0.138678\pi\)
−0.681513 + 0.731806i \(0.738678\pi\)
\(524\) −17.8272 3.23556i −0.778785 0.141346i
\(525\) 0 0
\(526\) 19.0397 + 22.8063i 0.830168 + 0.994403i
\(527\) −13.8746 + 10.0805i −0.604388 + 0.439113i
\(528\) −25.7145 + 32.2421i −1.11908 + 1.40316i
\(529\) −7.08190 + 21.7958i −0.307909 + 0.947645i
\(530\) 0 0
\(531\) 1.64791 0.535440i 0.0715134 0.0232361i
\(532\) −17.4024 3.15847i −0.754492 0.136937i
\(533\) 11.9207 3.87327i 0.516343 0.167770i
\(534\) −31.7457 + 2.14001i −1.37377 + 0.0926071i
\(535\) 0 0
\(536\) −4.60236 2.09067i −0.198792 0.0903033i
\(537\) 5.34675 + 3.88464i 0.230729 + 0.167635i
\(538\) 22.3719 1.50811i 0.964521 0.0650192i
\(539\) −15.4951 21.3271i −0.667420 0.918625i
\(540\) 0 0
\(541\) 15.5336 21.3802i 0.667843 0.919208i −0.331866 0.943327i \(-0.607678\pi\)
0.999709 + 0.0241190i \(0.00767806\pi\)
\(542\) −22.3494 + 35.5681i −0.959991 + 1.52778i
\(543\) 9.82203 0.421504
\(544\) 17.1820 13.0810i 0.736674 0.560842i
\(545\) 0 0
\(546\) −11.1440 + 4.47005i −0.476920 + 0.191300i
\(547\) −27.4957 8.93390i −1.17563 0.381986i −0.344890 0.938643i \(-0.612084\pi\)
−0.830742 + 0.556657i \(0.812084\pi\)
\(548\) 0.603844 + 1.25397i 0.0257950 + 0.0535667i
\(549\) 2.15480i 0.0919644i
\(550\) 0 0
\(551\) −58.9213 −2.51013
\(552\) −1.47341 0.669312i −0.0627125 0.0284878i
\(553\) 0.527221 1.62262i 0.0224197 0.0690008i
\(554\) −0.573374 1.42944i −0.0243603 0.0607313i
\(555\) 0 0
\(556\) −2.85642 21.0904i −0.121139 0.894431i
\(557\) 33.1381i 1.40411i −0.712125 0.702053i \(-0.752267\pi\)
0.712125 0.702053i \(-0.247733\pi\)
\(558\) 3.27163 5.20664i 0.138499 0.220415i
\(559\) −18.8361 13.6852i −0.796682 0.578824i
\(560\) 0 0
\(561\) −31.8418 + 23.1344i −1.34436 + 0.976735i
\(562\) 2.41908 + 35.8856i 0.102043 + 1.51374i
\(563\) −18.4934 + 25.4540i −0.779404 + 1.07276i 0.215943 + 0.976406i \(0.430717\pi\)
−0.995347 + 0.0963518i \(0.969283\pi\)
\(564\) 3.60188 1.73448i 0.151666 0.0730346i
\(565\) 0 0
\(566\) −35.4054 + 2.38671i −1.48820 + 0.100321i
\(567\) −4.67972 14.4027i −0.196530 0.604857i
\(568\) 37.3092 21.1684i 1.56546 0.888206i
\(569\) 5.66167 + 17.4248i 0.237350 + 0.730487i 0.996801 + 0.0799229i \(0.0254674\pi\)
−0.759451 + 0.650564i \(0.774533\pi\)
\(570\) 0 0
\(571\) −4.90965 1.59524i −0.205462 0.0667588i 0.204478 0.978871i \(-0.434450\pi\)
−0.409940 + 0.912112i \(0.634450\pi\)
\(572\) 28.1369 + 15.1419i 1.17646 + 0.633115i
\(573\) −0.786879 1.08305i −0.0328723 0.0452449i
\(574\) −5.08214 6.08755i −0.212124 0.254089i
\(575\) 0 0
\(576\) −3.97176 + 6.64664i −0.165490 + 0.276943i
\(577\) 1.19561 0.868662i 0.0497739 0.0361629i −0.562620 0.826716i \(-0.690207\pi\)
0.612394 + 0.790553i \(0.290207\pi\)
\(578\) −3.18564 + 1.27781i −0.132505 + 0.0531500i
\(579\) 9.00808 + 2.92690i 0.374363 + 0.121638i
\(580\) 0 0
\(581\) 5.51790 1.79288i 0.228921 0.0743810i
\(582\) 10.5822 8.83443i 0.438645 0.366199i
\(583\) 5.30456 + 16.3258i 0.219692 + 0.676144i
\(584\) 32.8993 + 3.70794i 1.36138 + 0.153436i
\(585\) 0 0
\(586\) −10.9358 + 43.3977i −0.451753 + 1.79274i
\(587\) 4.49748 6.19025i 0.185631 0.255499i −0.706052 0.708160i \(-0.749525\pi\)
0.891682 + 0.452662i \(0.149525\pi\)
\(588\) −14.0218 14.6663i −0.578249 0.604828i
\(589\) −16.9110 23.2760i −0.696806 0.959071i
\(590\) 0 0
\(591\) −9.05163 6.57640i −0.372334 0.270517i
\(592\) 20.1327 + 0.905030i 0.827448 + 0.0371965i
\(593\) −31.1703 −1.28001 −0.640006 0.768370i \(-0.721068\pi\)
−0.640006 + 0.768370i \(0.721068\pi\)
\(594\) −15.7644 + 25.0884i −0.646823 + 1.02939i
\(595\) 0 0
\(596\) 3.05384 5.67469i 0.125090 0.232445i
\(597\) −6.75095 2.19352i −0.276298 0.0897747i
\(598\) −0.306376 + 1.21583i −0.0125286 + 0.0497189i
\(599\) 30.2376 1.23547 0.617737 0.786385i \(-0.288050\pi\)
0.617737 + 0.786385i \(0.288050\pi\)
\(600\) 0 0
\(601\) 47.2925 1.92910 0.964551 0.263895i \(-0.0850073\pi\)
0.964551 + 0.263895i \(0.0850073\pi\)
\(602\) −3.59940 + 14.2839i −0.146701 + 0.582170i
\(603\) 1.64511 + 0.534527i 0.0669939 + 0.0217676i
\(604\) 35.5714 + 19.1428i 1.44738 + 0.778908i
\(605\) 0 0
\(606\) −24.8345 + 39.5230i −1.00883 + 1.60551i
\(607\) 13.6800 0.555252 0.277626 0.960689i \(-0.410452\pi\)
0.277626 + 0.960689i \(0.410452\pi\)
\(608\) 21.9446 + 28.8245i 0.889971 + 1.16899i
\(609\) 20.4740 + 14.8753i 0.829650 + 0.602776i
\(610\) 0 0
\(611\) −1.82059 2.50583i −0.0736533 0.101375i
\(612\) −5.34124 + 5.10653i −0.215907 + 0.206419i
\(613\) −9.34518 + 12.8625i −0.377448 + 0.519513i −0.954906 0.296907i \(-0.904045\pi\)
0.577458 + 0.816420i \(0.304045\pi\)
\(614\) −1.29262 + 5.12968i −0.0521661 + 0.207017i
\(615\) 0 0
\(616\) 2.26409 20.0885i 0.0912228 0.809389i
\(617\) 3.25933 + 10.0312i 0.131216 + 0.403840i 0.994982 0.100052i \(-0.0319009\pi\)
−0.863767 + 0.503892i \(0.831901\pi\)
\(618\) −8.79667 + 7.34382i −0.353854 + 0.295412i
\(619\) 25.5938 8.31591i 1.02870 0.334245i 0.254424 0.967093i \(-0.418114\pi\)
0.774276 + 0.632848i \(0.218114\pi\)
\(620\) 0 0
\(621\) −1.10580 0.359295i −0.0443740 0.0144180i
\(622\) 14.7477 5.91554i 0.591329 0.237192i
\(623\) 12.6180 9.16751i 0.505529 0.367288i
\(624\) 23.0253 + 8.64266i 0.921748 + 0.345983i
\(625\) 0 0
\(626\) 5.96869 + 7.14949i 0.238557 + 0.285751i
\(627\) −38.8102 53.4176i −1.54993 2.13330i
\(628\) 20.2556 37.6392i 0.808286 1.50197i
\(629\) 18.2919 + 5.94341i 0.729348 + 0.236979i
\(630\) 0 0
\(631\) 0.0360428 + 0.110928i 0.00143484 + 0.00441599i 0.951771 0.306808i \(-0.0992610\pi\)
−0.950337 + 0.311224i \(0.899261\pi\)
\(632\) −3.03946 + 1.72452i −0.120903 + 0.0685978i
\(633\) −17.3552 53.4138i −0.689808 2.12301i
\(634\) 28.5330 1.92344i 1.13319 0.0763895i
\(635\) 0 0
\(636\) 5.73247 + 11.9043i 0.227307 + 0.472035i
\(637\) −9.24049 + 12.7184i −0.366121 + 0.503923i
\(638\) −4.52959 67.1937i −0.179328 2.66022i
\(639\) −11.8753 + 8.62793i −0.469781 + 0.341316i
\(640\) 0 0
\(641\) 8.56388 + 6.22202i 0.338253 + 0.245755i 0.743924 0.668264i \(-0.232962\pi\)
−0.405672 + 0.914019i \(0.632962\pi\)
\(642\) 20.2645 32.2500i 0.799776 1.27281i
\(643\) 7.74220i 0.305323i −0.988279 0.152661i \(-0.951216\pi\)
0.988279 0.152661i \(-0.0487844\pi\)
\(644\) 0.786098 0.106467i 0.0309766 0.00419538i
\(645\) 0 0
\(646\) 12.8714 + 32.0888i 0.506417 + 1.26252i
\(647\) 7.01014 21.5750i 0.275597 0.848200i −0.713464 0.700692i \(-0.752875\pi\)
0.989061 0.147508i \(-0.0471253\pi\)
\(648\) −12.8290 + 28.2416i −0.503972 + 1.10943i
\(649\) 9.26619 0.363730
\(650\) 0 0
\(651\) 12.3573i 0.484322i
\(652\) −22.8563 + 11.0064i −0.895122 + 0.431044i
\(653\) 29.4214 + 9.55959i 1.15135 + 0.374096i 0.821651 0.569991i \(-0.193053\pi\)
0.329697 + 0.944087i \(0.393053\pi\)
\(654\) −26.2359 + 10.5237i −1.02591 + 0.411508i
\(655\) 0 0
\(656\) −0.729441 + 16.2266i −0.0284799 + 0.633544i
\(657\) −11.3291 −0.441992
\(658\) −1.04261 + 1.65927i −0.0406453 + 0.0646850i
\(659\) −13.3643 + 18.3944i −0.520601 + 0.716545i −0.985662 0.168733i \(-0.946032\pi\)
0.465061 + 0.885279i \(0.346032\pi\)
\(660\) 0 0
\(661\) −9.06815 12.4812i −0.352710 0.485464i 0.595389 0.803437i \(-0.296998\pi\)
−0.948100 + 0.317973i \(0.896998\pi\)
\(662\) −30.1155 + 2.03011i −1.17047 + 0.0789025i
\(663\) 18.9888 + 13.7962i 0.737465 + 0.535800i
\(664\) −10.8198 4.91501i −0.419890 0.190739i
\(665\) 0 0
\(666\) −6.88057 + 0.463826i −0.266617 + 0.0179729i
\(667\) 2.51336 0.816640i 0.0973176 0.0316204i
\(668\) 3.28606 18.1055i 0.127142 0.700522i
\(669\) −31.3445 + 10.1845i −1.21185 + 0.393754i
\(670\) 0 0
\(671\) 3.56091 10.9594i 0.137467 0.423081i
\(672\) −0.348297 15.5561i −0.0134359 0.600090i
\(673\) −18.7118 + 13.5949i −0.721288 + 0.524046i −0.886795 0.462162i \(-0.847074\pi\)
0.165507 + 0.986209i \(0.447074\pi\)
\(674\) 15.0910 + 18.0765i 0.581286 + 0.696283i
\(675\) 0 0
\(676\) −1.24024 + 6.83346i −0.0477017 + 0.262825i
\(677\) 1.93729 + 2.66645i 0.0744561 + 0.102480i 0.844621 0.535365i \(-0.179826\pi\)
−0.770165 + 0.637845i \(0.779826\pi\)
\(678\) −9.97646 24.8717i −0.383144 0.955194i
\(679\) −2.08812 + 6.42658i −0.0801348 + 0.246629i
\(680\) 0 0
\(681\) 7.58734 + 23.3514i 0.290747 + 0.894829i
\(682\) 25.2439 21.0746i 0.966637 0.806989i
\(683\) 13.9624 4.53666i 0.534257 0.173591i −0.0294489 0.999566i \(-0.509375\pi\)
0.563706 + 0.825976i \(0.309375\pi\)
\(684\) −8.56670 8.96045i −0.327556 0.342611i
\(685\) 0 0
\(686\) 22.9004 + 5.77066i 0.874341 + 0.220325i
\(687\) −18.2656 13.2708i −0.696877 0.506311i
\(688\) 25.1815 16.6206i 0.960036 0.633655i
\(689\) 8.28182 6.01710i 0.315512 0.229233i
\(690\) 0 0
\(691\) −0.529926 + 0.729380i −0.0201593 + 0.0277469i −0.818978 0.573825i \(-0.805459\pi\)
0.798818 + 0.601572i \(0.205459\pi\)
\(692\) −5.23425 38.6470i −0.198976 1.46914i
\(693\) 6.91764i 0.262779i
\(694\) −18.9933 11.9346i −0.720975 0.453029i
\(695\) 0 0
\(696\) −10.3962 50.7831i −0.394066 1.92493i
\(697\) −4.79030 + 14.7430i −0.181446 + 0.558433i
\(698\) 4.12760 16.3800i 0.156232 0.619994i
\(699\) 12.8289i 0.485232i
\(700\) 0 0
\(701\) 25.3479i 0.957379i −0.877984 0.478689i \(-0.841112\pi\)
0.877984 0.478689i \(-0.158888\pi\)
\(702\) 17.1343 + 4.31766i 0.646692 + 0.162960i
\(703\) −9.97065 + 30.6865i −0.376050 + 1.15736i
\(704\) −31.1844 + 27.2415i −1.17531 + 1.02670i
\(705\) 0 0
\(706\) 3.78538 6.02426i 0.142465 0.226726i
\(707\) 22.8809i 0.860526i
\(708\) 7.06765 0.957223i 0.265619 0.0359746i
\(709\) −3.03019 + 4.17070i −0.113801 + 0.156634i −0.862118 0.506708i \(-0.830862\pi\)
0.748317 + 0.663342i \(0.230862\pi\)
\(710\) 0 0
\(711\) 0.967444 0.702889i 0.0362820 0.0263604i
\(712\) −31.7453 3.57788i −1.18971 0.134087i
\(713\) 1.04396 + 0.758482i 0.0390966 + 0.0284054i
\(714\) 3.62859 14.3998i 0.135796 0.538897i
\(715\) 0 0
\(716\) 4.58555 + 4.79632i 0.171370 + 0.179247i
\(717\) −3.99063 + 1.29663i −0.149033 + 0.0484237i
\(718\) 4.94815 + 5.92705i 0.184663 + 0.221196i
\(719\) −5.09933 15.6941i −0.190173 0.585292i 0.809826 0.586670i \(-0.199561\pi\)
−0.999999 + 0.00137806i \(0.999561\pi\)
\(720\) 0 0
\(721\) 1.73580 5.34224i 0.0646445 0.198955i
\(722\) −28.8935 + 11.5897i −1.07531 + 0.431322i
\(723\) −24.9003 34.2724i −0.926053 1.27460i
\(724\) 9.70320 + 1.76109i 0.360617 + 0.0654503i
\(725\) 0 0
\(726\) 34.1462 28.5067i 1.26729 1.05798i
\(727\) −18.6402 + 13.5429i −0.691326 + 0.502278i −0.877096 0.480315i \(-0.840522\pi\)
0.185770 + 0.982593i \(0.440522\pi\)
\(728\) −11.8107 + 2.41785i −0.437733 + 0.0896114i
\(729\) −4.19500 + 12.9109i −0.155370 + 0.478181i
\(730\) 0 0
\(731\) 27.3858 8.89818i 1.01290 0.329111i
\(732\) 1.58390 8.72695i 0.0585427 0.322557i
\(733\) −36.4467 + 11.8423i −1.34619 + 0.437404i −0.891409 0.453200i \(-0.850282\pi\)
−0.454781 + 0.890603i \(0.650282\pi\)
\(734\) 1.43864 + 21.3414i 0.0531012 + 0.787724i
\(735\) 0 0
\(736\) −1.33558 0.925397i −0.0492300 0.0341106i
\(737\) 7.48373 + 5.43724i 0.275667 + 0.200283i
\(738\) −0.373837 5.54564i −0.0137611 0.204138i
\(739\) −5.15085 7.08954i −0.189477 0.260793i 0.703701 0.710497i \(-0.251530\pi\)
−0.893178 + 0.449704i \(0.851530\pi\)
\(740\) 0 0
\(741\) −23.1444 + 31.8556i −0.850233 + 1.17024i
\(742\) −5.48391 3.44585i −0.201321 0.126501i
\(743\) 7.97007 0.292393 0.146197 0.989256i \(-0.453297\pi\)
0.146197 + 0.989256i \(0.453297\pi\)
\(744\) 17.0773 18.6821i 0.626085 0.684920i
\(745\) 0 0
\(746\) 17.0446 + 42.4929i 0.624046 + 1.55577i
\(747\) 3.86752 + 1.25663i 0.141505 + 0.0459778i
\(748\) −35.6045 + 17.1453i −1.30183 + 0.626894i
\(749\) 18.6704i 0.682202i
\(750\) 0 0
\(751\) 1.54105 0.0562339 0.0281169 0.999605i \(-0.491049\pi\)
0.0281169 + 0.999605i \(0.491049\pi\)
\(752\) 3.86929 1.06768i 0.141099 0.0389342i
\(753\) −10.7708 + 33.1490i −0.392508 + 1.20802i
\(754\) −37.2750 + 14.9516i −1.35748 + 0.544506i
\(755\) 0 0
\(756\) −1.50041 11.0782i −0.0545692 0.402911i
\(757\) 20.8270i 0.756971i 0.925607 + 0.378485i \(0.123555\pi\)
−0.925607 + 0.378485i \(0.876445\pi\)
\(758\) −15.5812 9.79056i −0.565935 0.355609i
\(759\) 2.39585 + 1.74069i 0.0869640 + 0.0631831i
\(760\) 0 0
\(761\) −7.81874 + 5.68064i −0.283429 + 0.205923i −0.720412 0.693547i \(-0.756047\pi\)
0.436983 + 0.899470i \(0.356047\pi\)
\(762\) 23.5401 1.58686i 0.852768 0.0574859i
\(763\) 8.14469 11.2102i 0.294858 0.405837i
\(764\) −0.583170 1.21103i −0.0210983 0.0438136i
\(765\) 0 0
\(766\) −1.34148 19.9000i −0.0484695 0.719015i
\(767\) −1.70759 5.25543i −0.0616576 0.189763i
\(768\) −20.9714 + 23.9995i −0.756739 + 0.866007i
\(769\) 1.06128 + 3.26628i 0.0382706 + 0.117785i 0.968367 0.249532i \(-0.0802766\pi\)
−0.930096 + 0.367316i \(0.880277\pi\)
\(770\) 0 0
\(771\) −54.4630 17.6961i −1.96144 0.637309i
\(772\) 8.37431 + 4.50664i 0.301398 + 0.162198i
\(773\) 4.01412 + 5.52497i 0.144378 + 0.198719i 0.875081 0.483976i \(-0.160808\pi\)
−0.730703 + 0.682695i \(0.760808\pi\)
\(774\) −7.92572 + 6.61672i −0.284884 + 0.237833i
\(775\) 0 0
\(776\) 12.0382 6.83017i 0.432145 0.245189i
\(777\) 11.2117 8.14579i 0.402218 0.292229i
\(778\) −10.4282 25.9980i −0.373870 0.932074i
\(779\) −24.7329 8.03620i −0.886147 0.287927i
\(780\) 0 0
\(781\) −74.6564 + 24.2573i −2.67142 + 0.867996i
\(782\) −0.993789 1.19039i −0.0355378 0.0425684i
\(783\) −11.5086 35.4200i −0.411286 1.26581i
\(784\) −11.2225 17.0030i −0.400804 0.607249i
\(785\) 0 0
\(786\) 24.7466 + 6.23589i 0.882683 + 0.222427i
\(787\) −2.61029 + 3.59275i −0.0930467 + 0.128068i −0.853002 0.521907i \(-0.825221\pi\)
0.759956 + 0.649975i \(0.225221\pi\)
\(788\) −7.76298 8.11979i −0.276545 0.289256i
\(789\) −24.5965 33.8542i −0.875658 1.20524i
\(790\) 0 0
\(791\) 10.6273 + 7.72119i 0.377864 + 0.274534i
\(792\) 9.55991 10.4583i 0.339697 0.371619i
\(793\) −6.87195 −0.244030
\(794\) −12.6137 7.92591i −0.447644 0.281280i
\(795\) 0 0
\(796\) −6.27598 3.37742i −0.222446 0.119710i
\(797\) 14.0380 + 4.56123i 0.497252 + 0.161567i 0.546897 0.837200i \(-0.315809\pi\)
−0.0496450 + 0.998767i \(0.515809\pi\)
\(798\) 24.1570 + 6.08731i 0.855148 + 0.215488i
\(799\) 3.83071 0.135521
\(800\) 0 0
\(801\) 10.9318 0.386255
\(802\) 19.9294 + 5.02201i 0.703733 + 0.177333i
\(803\) −57.6204 18.7220i −2.03338 0.660685i
\(804\) 6.26979 + 3.37409i 0.221118 + 0.118995i
\(805\) 0 0
\(806\) −16.6047 10.4337i −0.584877 0.367511i
\(807\) −31.5828 −1.11177
\(808\) −31.6205 + 34.5920i −1.11241 + 1.21694i
\(809\) −14.9496 10.8616i −0.525601 0.381872i 0.293108 0.956079i \(-0.405310\pi\)
−0.818710 + 0.574207i \(0.805310\pi\)
\(810\) 0 0
\(811\) 15.6070 + 21.4812i 0.548036 + 0.754307i 0.989744 0.142852i \(-0.0456274\pi\)
−0.441708 + 0.897159i \(0.645627\pi\)
\(812\) 17.5592 + 18.3663i 0.616207 + 0.644530i
\(813\) 34.7779 47.8677i 1.21971 1.67879i
\(814\) −35.7613 9.01148i −1.25343 0.315852i
\(815\) 0 0
\(816\) −25.3857 + 16.7554i −0.888677 + 0.586555i
\(817\) 14.9276 + 45.9423i 0.522249 + 1.60732i
\(818\) −22.7445 27.2441i −0.795243 0.952568i
\(819\) 3.92343 1.27480i 0.137096 0.0445451i
\(820\) 0 0
\(821\) 41.8393 + 13.5944i 1.46020 + 0.474448i 0.928132 0.372252i \(-0.121414\pi\)
0.532070 + 0.846700i \(0.321414\pi\)
\(822\) −0.729808 1.81944i −0.0254550 0.0634603i
\(823\) −19.7653 + 14.3603i −0.688975 + 0.500569i −0.876323 0.481724i \(-0.840011\pi\)
0.187348 + 0.982294i \(0.440011\pi\)
\(824\) −10.0070 + 5.67774i −0.348610 + 0.197793i
\(825\) 0 0
\(826\) −2.68380 + 2.24054i −0.0933812 + 0.0779585i
\(827\) 28.0505 + 38.6082i 0.975412 + 1.34254i 0.939265 + 0.343192i \(0.111508\pi\)
0.0361465 + 0.999347i \(0.488492\pi\)
\(828\) 0.489613 + 0.263486i 0.0170152 + 0.00915676i
\(829\) −22.8468 7.42337i −0.793502 0.257824i −0.115907 0.993260i \(-0.536978\pi\)
−0.677595 + 0.735436i \(0.736978\pi\)
\(830\) 0 0
\(831\) 0.670362 + 2.06316i 0.0232546 + 0.0715703i
\(832\) 21.1971 + 12.6665i 0.734876 + 0.439133i
\(833\) −6.00819 18.4913i −0.208172 0.640686i
\(834\) 2.01623 + 29.9096i 0.0698164 + 1.03568i
\(835\) 0 0
\(836\) −28.7629 59.7301i −0.994785 2.06581i
\(837\) 10.6891 14.7122i 0.369468 0.508529i
\(838\) 1.08014 0.0728130i 0.0373127 0.00251528i
\(839\) −13.1474 + 9.55211i −0.453897 + 0.329776i −0.791132 0.611645i \(-0.790508\pi\)
0.337235 + 0.941420i \(0.390508\pi\)
\(840\) 0 0
\(841\) 45.0210 + 32.7096i 1.55245 + 1.12792i
\(842\) 14.0114 + 8.80415i 0.482864 + 0.303411i
\(843\) 50.6604i 1.74484i
\(844\) −7.56816 55.8794i −0.260507 1.92345i
\(845\) 0 0
\(846\) −1.27479 + 0.511340i −0.0438282 + 0.0175802i
\(847\) −6.73789 + 20.7371i −0.231517 + 0.712535i
\(848\) 3.52869 + 12.7881i 0.121176 + 0.439144i
\(849\) 49.9824 1.71539
\(850\) 0 0
\(851\) 1.44716i 0.0496081i
\(852\) −54.4372 + 26.2141i −1.86499 + 0.898082i
\(853\) 44.2323 + 14.3719i 1.51449 + 0.492086i 0.944203 0.329363i \(-0.106834\pi\)
0.570282 + 0.821449i \(0.306834\pi\)
\(854\) 1.61859 + 4.03522i 0.0553870 + 0.138082i
\(855\) 0 0
\(856\) 25.8018 28.2264i 0.881886 0.964759i
\(857\) 34.8114 1.18913 0.594567 0.804046i \(-0.297323\pi\)
0.594567 + 0.804046i \(0.297323\pi\)
\(858\) −38.1073 23.9450i −1.30096 0.817468i
\(859\) 23.5563 32.4224i 0.803730 1.10624i −0.188531 0.982067i \(-0.560373\pi\)
0.992261 0.124172i \(-0.0396275\pi\)
\(860\) 0 0
\(861\) 6.56539 + 9.03648i 0.223748 + 0.307963i
\(862\) −2.06836 30.6828i −0.0704485 1.04506i
\(863\) 41.3205 + 30.0211i 1.40657 + 1.02193i 0.993811 + 0.111087i \(0.0354334\pi\)
0.412755 + 0.910842i \(0.364567\pi\)
\(864\) −13.0413 + 18.8219i −0.443675 + 0.640333i
\(865\) 0 0
\(866\) 0.349691 + 5.18745i 0.0118830 + 0.176277i
\(867\) 4.59793 1.49396i 0.156154 0.0507375i
\(868\) −2.21567 + 12.2078i −0.0752046 + 0.414360i
\(869\) 6.08201 1.97617i 0.206318 0.0670368i
\(870\) 0 0
\(871\) 1.70468 5.24648i 0.0577610 0.177770i
\(872\) −27.8054 + 5.69225i −0.941611 + 0.192764i
\(873\) −3.83168 + 2.78388i −0.129683 + 0.0942200i
\(874\) 1.99700 1.66718i 0.0675495 0.0563931i
\(875\) 0 0
\(876\) −45.8832 8.32759i −1.55025 0.281363i
\(877\) 10.3254 + 14.2117i 0.348664 + 0.479894i 0.946947 0.321390i \(-0.104150\pi\)
−0.598283 + 0.801285i \(0.704150\pi\)
\(878\) −3.07829 + 1.23475i −0.103887 + 0.0416709i
\(879\) 19.4797 59.9522i 0.657033 2.02214i
\(880\) 0 0
\(881\) 2.27227 + 6.99332i 0.0765546 + 0.235611i 0.982009 0.188832i \(-0.0604701\pi\)
−0.905455 + 0.424443i \(0.860470\pi\)
\(882\) 4.46771 + 5.35157i 0.150436 + 0.180197i
\(883\) −42.5583 + 13.8280i −1.43220 + 0.465350i −0.919457 0.393191i \(-0.871371\pi\)
−0.512745 + 0.858541i \(0.671371\pi\)
\(884\) 16.2854 + 17.0340i 0.547739 + 0.572915i
\(885\) 0 0
\(886\) 0.334936 1.32917i 0.0112524 0.0446543i
\(887\) −30.3347 22.0394i −1.01854 0.740012i −0.0525565 0.998618i \(-0.516737\pi\)
−0.965983 + 0.258606i \(0.916737\pi\)
\(888\) −28.2073 3.17913i −0.946577 0.106685i
\(889\) −9.35651 + 6.79790i −0.313807 + 0.227994i
\(890\) 0 0
\(891\) 33.3647 45.9226i 1.11776 1.53846i
\(892\) −32.7914 + 4.44118i −1.09794 + 0.148702i
\(893\) 6.42640i 0.215051i
\(894\) −4.82925 + 7.68552i −0.161514 + 0.257042i
\(895\) 0 0
\(896\) 2.44512 15.4304i 0.0816859 0.515492i
\(897\) 0.545741 1.67962i 0.0182218 0.0560808i
\(898\) 47.0700 + 11.8612i 1.57075 + 0.395812i
\(899\) 41.3333i 1.37854i
\(900\) 0 0
\(901\) 12.6606i 0.421785i
\(902\) 7.26312 28.8231i 0.241835 0.959704i
\(903\) 6.41154 19.7327i 0.213363 0.656663i
\(904\) −5.39627 26.3596i −0.179477 0.876708i
\(905\) 0 0
\(906\) −48.1761 30.2718i −1.60054 1.00571i
\(907\) 9.10715i 0.302398i 0.988503 + 0.151199i \(0.0483134\pi\)
−0.988503 + 0.151199i \(0.951687\pi\)
\(908\) 3.30864 + 24.4293i 0.109801 + 0.810716i
\(909\) 9.42650 12.9745i 0.312657 0.430336i
\(910\) 0 0
\(911\) 4.83681 3.51415i 0.160251 0.116429i −0.504770 0.863254i \(-0.668423\pi\)
0.665021 + 0.746825i \(0.268423\pi\)
\(912\) −28.1088 42.5870i −0.930774 1.41020i
\(913\) 17.5937 + 12.7825i 0.582265 + 0.423040i
\(914\) −47.2187 11.8986i −1.56186 0.393571i
\(915\) 0 0
\(916\) −15.6652 16.3852i −0.517593 0.541384i
\(917\) −11.8974 + 3.86572i −0.392888 + 0.127657i
\(918\) −16.7758 + 14.0052i −0.553685 + 0.462239i
\(919\) −5.41966 16.6800i −0.178778 0.550222i 0.821008 0.570917i \(-0.193412\pi\)
−0.999786 + 0.0206948i \(0.993412\pi\)
\(920\) 0 0
\(921\) 2.30252 7.08644i 0.0758708 0.233506i
\(922\) −19.5676 48.7829i −0.644425 1.60658i
\(923\) 27.5157 + 37.8721i 0.905690 + 1.24658i
\(924\) −5.08488 + 28.0165i −0.167280 + 0.921676i
\(925\) 0 0
\(926\) 13.0774 + 15.6645i 0.429750 + 0.514769i
\(927\) 3.18517 2.31416i 0.104615 0.0760070i
\(928\) −1.16500 52.0328i −0.0382430 1.70806i
\(929\) 8.23207 25.3357i 0.270085 0.831237i −0.720393 0.693566i \(-0.756038\pi\)
0.990478 0.137671i \(-0.0439616\pi\)
\(930\) 0 0
\(931\) 31.0210 10.0793i 1.01667 0.330337i
\(932\) 2.30021 12.6737i 0.0753460 0.415140i
\(933\) −21.2858 + 6.91618i −0.696866 + 0.226425i
\(934\) 15.8175 1.06627i 0.517563 0.0348894i
\(935\) 0 0
\(936\) −7.69326 3.49475i −0.251462 0.114229i
\(937\) −7.91482 5.75045i −0.258566 0.187859i 0.450949 0.892550i \(-0.351086\pi\)
−0.709515 + 0.704691i \(0.751086\pi\)
\(938\) −3.48225 + 0.234742i −0.113699 + 0.00766458i
\(939\) −7.71069 10.6129i −0.251629 0.346337i
\(940\) 0 0
\(941\) 0.184526 0.253979i 0.00601539 0.00827947i −0.805999 0.591917i \(-0.798371\pi\)
0.812014 + 0.583638i \(0.198371\pi\)
\(942\) −32.0316 + 50.9767i −1.04364 + 1.66091i
\(943\) 1.16639 0.0379829
\(944\) 7.15378 + 0.321586i 0.232836 + 0.0104667i
\(945\) 0 0
\(946\) −51.2449 + 20.5552i −1.66612 + 0.668306i
\(947\) 44.4410 + 14.4398i 1.44414 + 0.469229i 0.923185 0.384356i \(-0.125576\pi\)
0.520954 + 0.853585i \(0.325576\pi\)
\(948\) 4.43483 2.13558i 0.144036 0.0693605i
\(949\) 36.1303i 1.17284i
\(950\) 0 0
\(951\) −40.2806 −1.30619
\(952\) 6.16656 13.5749i 0.199859 0.439967i
\(953\) 10.2909 31.6721i 0.333354 1.02596i −0.634173 0.773191i \(-0.718659\pi\)
0.967527 0.252768i \(-0.0813408\pi\)
\(954\) −1.68999 4.21321i −0.0547153 0.136408i
\(955\) 0 0
\(956\) −4.17484 + 0.565429i −0.135024 + 0.0182873i
\(957\) 94.8585i 3.06634i
\(958\) 3.57865 5.69525i 0.115621 0.184005i
\(959\) 0.777419 + 0.564828i 0.0251042 + 0.0182393i
\(960\) 0 0
\(961\) 8.75140 6.35826i 0.282303 0.205105i
\(962\) 1.47921 + 21.9431i 0.0476915 + 0.707475i
\(963\) −7.69184 + 10.5869i −0.247866 + 0.341159i
\(964\) −18.4541 38.3224i −0.594365 1.23428i
\(965\) 0 0
\(966\) −1.11481 + 0.0751506i −0.0358686 + 0.00241793i
\(967\) 9.27626 + 28.5494i 0.298304 + 0.918087i 0.982091 + 0.188405i \(0.0603318\pi\)
−0.683787 + 0.729682i \(0.739668\pi\)
\(968\) 38.8444 22.0394i 1.24851 0.708373i
\(969\) −15.0486 46.3148i −0.483431 1.48785i
\(970\) 0 0
\(971\) −12.0721 3.92245i −0.387411 0.125878i 0.108834 0.994060i \(-0.465288\pi\)
−0.496245 + 0.868182i \(0.665288\pi\)
\(972\) 9.19498 17.0862i 0.294929 0.548042i
\(973\) −8.63727 11.8882i −0.276898 0.381118i
\(974\) 12.0575 + 14.4429i 0.386348 + 0.462781i
\(975\) 0 0
\(976\) 3.12948 8.33737i 0.100172 0.266873i
\(977\) −41.0078 + 29.7939i −1.31196 + 0.953191i −0.311960 + 0.950095i \(0.600986\pi\)
−0.999995 + 0.00309631i \(0.999014\pi\)
\(978\) 33.1634 13.3024i 1.06045 0.425363i
\(979\) 55.5993 + 18.0653i 1.77696 + 0.577370i
\(980\) 0 0
\(981\) 9.23677 3.00121i 0.294907 0.0958213i
\(982\) −19.2758 + 16.0922i −0.615116 + 0.513524i
\(983\) 16.3872 + 50.4346i 0.522671 + 1.60862i 0.768876 + 0.639397i \(0.220816\pi\)
−0.246206 + 0.969218i \(0.579184\pi\)
\(984\) 2.56233 22.7347i 0.0816842 0.724756i
\(985\) 0 0
\(986\) 12.1371 48.1650i 0.386523 1.53388i
\(987\) 1.62241 2.23305i 0.0516418 0.0710788i
\(988\) −28.5762 + 27.3204i −0.909129 + 0.869178i
\(989\) −1.27351 1.75283i −0.0404951 0.0557368i
\(990\) 0 0
\(991\) 1.47581 + 1.07224i 0.0468808 + 0.0340609i 0.610979 0.791647i \(-0.290776\pi\)
−0.564098 + 0.825708i \(0.690776\pi\)
\(992\) 20.2204 15.3942i 0.641999 0.488765i
\(993\) 42.5146 1.34916
\(994\) 15.7576 25.0775i 0.499801 0.795409i
\(995\) 0 0
\(996\) 14.7398 + 7.93223i 0.467048 + 0.251342i
\(997\) 15.5130 + 5.04048i 0.491302 + 0.159634i 0.544182 0.838967i \(-0.316840\pi\)
−0.0528802 + 0.998601i \(0.516840\pi\)
\(998\) 5.39697 21.4175i 0.170838 0.677958i
\(999\) −20.3944 −0.645250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.t.b.301.5 224
5.2 odd 4 200.2.o.a.189.18 yes 112
5.3 odd 4 1000.2.o.a.949.11 112
5.4 even 2 inner 1000.2.t.b.301.52 224
8.5 even 2 inner 1000.2.t.b.301.27 224
20.7 even 4 800.2.be.a.689.7 112
25.9 even 10 inner 1000.2.t.b.701.30 224
25.12 odd 20 1000.2.o.a.549.28 112
25.13 odd 20 200.2.o.a.109.1 112
25.16 even 5 inner 1000.2.t.b.701.27 224
40.13 odd 4 1000.2.o.a.949.28 112
40.27 even 4 800.2.be.a.689.22 112
40.29 even 2 inner 1000.2.t.b.301.30 224
40.37 odd 4 200.2.o.a.189.1 yes 112
100.63 even 20 800.2.be.a.209.22 112
200.13 odd 20 200.2.o.a.109.18 yes 112
200.37 odd 20 1000.2.o.a.549.11 112
200.109 even 10 inner 1000.2.t.b.701.52 224
200.141 even 10 inner 1000.2.t.b.701.5 224
200.163 even 20 800.2.be.a.209.7 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.1 112 25.13 odd 20
200.2.o.a.109.18 yes 112 200.13 odd 20
200.2.o.a.189.1 yes 112 40.37 odd 4
200.2.o.a.189.18 yes 112 5.2 odd 4
800.2.be.a.209.7 112 200.163 even 20
800.2.be.a.209.22 112 100.63 even 20
800.2.be.a.689.7 112 20.7 even 4
800.2.be.a.689.22 112 40.27 even 4
1000.2.o.a.549.11 112 200.37 odd 20
1000.2.o.a.549.28 112 25.12 odd 20
1000.2.o.a.949.11 112 5.3 odd 4
1000.2.o.a.949.28 112 40.13 odd 4
1000.2.t.b.301.5 224 1.1 even 1 trivial
1000.2.t.b.301.27 224 8.5 even 2 inner
1000.2.t.b.301.30 224 40.29 even 2 inner
1000.2.t.b.301.52 224 5.4 even 2 inner
1000.2.t.b.701.5 224 200.141 even 10 inner
1000.2.t.b.701.27 224 25.16 even 5 inner
1000.2.t.b.701.30 224 25.9 even 10 inner
1000.2.t.b.701.52 224 200.109 even 10 inner