Properties

Label 100.9.f.c.57.1
Level $100$
Weight $9$
Character 100.57
Analytic conductor $40.738$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(57,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.57"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 8 x^{10} + 1412 x^{9} + 550393 x^{8} - 1456736 x^{7} + 2420672 x^{6} + \cdots + 547748010000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{6}\cdot 5^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.1
Root \(-16.9725 + 16.9725i\) of defining polynomial
Character \(\chi\) \(=\) 100.57
Dual form 100.9.f.c.93.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-90.6200 + 90.6200i) q^{3} +(2970.95 + 2970.95i) q^{7} -9862.98i q^{9} -6646.99 q^{11} +(29865.6 - 29865.6i) q^{13} +(-70342.7 - 70342.7i) q^{17} -41039.9i q^{19} -538454. q^{21} +(351512. - 351512. i) q^{23} +(299225. + 299225. i) q^{27} -659291. i q^{29} +1.00223e6 q^{31} +(602350. - 602350. i) q^{33} +(-13566.3 - 13566.3i) q^{37} +5.41284e6i q^{39} +1.01834e6 q^{41} +(-2.43704e6 + 2.43704e6i) q^{43} +(4.91560e6 + 4.91560e6i) q^{47} +1.18882e7i q^{49} +1.27489e7 q^{51} +(8.64186e6 - 8.64186e6i) q^{53} +(3.71903e6 + 3.71903e6i) q^{57} -1.29676e7i q^{59} -1.00542e7 q^{61} +(2.93024e7 - 2.93024e7i) q^{63} +(1.52513e7 + 1.52513e7i) q^{67} +6.37081e7i q^{69} -4.11270e7 q^{71} +(1.73470e7 - 1.73470e7i) q^{73} +(-1.97478e7 - 1.97478e7i) q^{77} -2.57526e7i q^{79} +1.04794e7 q^{81} +(5.97228e7 - 5.97228e7i) q^{83} +(5.97449e7 + 5.97449e7i) q^{87} +3.34415e7i q^{89} +1.77458e8 q^{91} +(-9.08221e7 + 9.08221e7i) q^{93} +(1.14246e7 + 1.14246e7i) q^{97} +6.55590e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 420 q^{11} - 921168 q^{21} + 3833112 q^{31} + 3587532 q^{41} + 46092564 q^{51} + 31354704 q^{61} - 29589384 q^{71} + 104018868 q^{81} + 433229088 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −90.6200 + 90.6200i −1.11877 + 1.11877i −0.126843 + 0.991923i \(0.540484\pi\)
−0.991923 + 0.126843i \(0.959516\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2970.95 + 2970.95i 1.23738 + 1.23738i 0.961069 + 0.276310i \(0.0891116\pi\)
0.276310 + 0.961069i \(0.410888\pi\)
\(8\) 0 0
\(9\) 9862.98i 1.50327i
\(10\) 0 0
\(11\) −6646.99 −0.453998 −0.226999 0.973895i \(-0.572891\pi\)
−0.226999 + 0.973895i \(0.572891\pi\)
\(12\) 0 0
\(13\) 29865.6 29865.6i 1.04568 1.04568i 0.0467719 0.998906i \(-0.485107\pi\)
0.998906 0.0467719i \(-0.0148934\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −70342.7 70342.7i −0.842216 0.842216i 0.146931 0.989147i \(-0.453060\pi\)
−0.989147 + 0.146931i \(0.953060\pi\)
\(18\) 0 0
\(19\) 41039.9i 0.314914i −0.987526 0.157457i \(-0.949670\pi\)
0.987526 0.157457i \(-0.0503295\pi\)
\(20\) 0 0
\(21\) −538454. −2.76867
\(22\) 0 0
\(23\) 351512. 351512.i 1.25611 1.25611i 0.303181 0.952933i \(-0.401951\pi\)
0.952933 0.303181i \(-0.0980486\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 299225. + 299225.i 0.563045 + 0.563045i
\(28\) 0 0
\(29\) 659291.i 0.932148i −0.884746 0.466074i \(-0.845668\pi\)
0.884746 0.466074i \(-0.154332\pi\)
\(30\) 0 0
\(31\) 1.00223e6 1.08523 0.542613 0.839983i \(-0.317435\pi\)
0.542613 + 0.839983i \(0.317435\pi\)
\(32\) 0 0
\(33\) 602350. 602350.i 0.507917 0.507917i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −13566.3 13566.3i −0.00723862 0.00723862i 0.703478 0.710717i \(-0.251629\pi\)
−0.710717 + 0.703478i \(0.751629\pi\)
\(38\) 0 0
\(39\) 5.41284e6i 2.33974i
\(40\) 0 0
\(41\) 1.01834e6 0.360376 0.180188 0.983632i \(-0.442329\pi\)
0.180188 + 0.983632i \(0.442329\pi\)
\(42\) 0 0
\(43\) −2.43704e6 + 2.43704e6i −0.712836 + 0.712836i −0.967128 0.254292i \(-0.918158\pi\)
0.254292 + 0.967128i \(0.418158\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.91560e6 + 4.91560e6i 1.00736 + 1.00736i 0.999973 + 0.00738753i \(0.00235155\pi\)
0.00738753 + 0.999973i \(0.497648\pi\)
\(48\) 0 0
\(49\) 1.18882e7i 2.06221i
\(50\) 0 0
\(51\) 1.27489e7 1.88448
\(52\) 0 0
\(53\) 8.64186e6 8.64186e6i 1.09523 1.09523i 0.100265 0.994961i \(-0.468031\pi\)
0.994961 0.100265i \(-0.0319691\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.71903e6 + 3.71903e6i 0.352315 + 0.352315i
\(58\) 0 0
\(59\) 1.29676e7i 1.07017i −0.844799 0.535084i \(-0.820280\pi\)
0.844799 0.535084i \(-0.179720\pi\)
\(60\) 0 0
\(61\) −1.00542e7 −0.726150 −0.363075 0.931760i \(-0.618273\pi\)
−0.363075 + 0.931760i \(0.618273\pi\)
\(62\) 0 0
\(63\) 2.93024e7 2.93024e7i 1.86012 1.86012i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.52513e7 + 1.52513e7i 0.756849 + 0.756849i 0.975748 0.218899i \(-0.0702465\pi\)
−0.218899 + 0.975748i \(0.570246\pi\)
\(68\) 0 0
\(69\) 6.37081e7i 2.81059i
\(70\) 0 0
\(71\) −4.11270e7 −1.61843 −0.809215 0.587513i \(-0.800107\pi\)
−0.809215 + 0.587513i \(0.800107\pi\)
\(72\) 0 0
\(73\) 1.73470e7 1.73470e7i 0.610847 0.610847i −0.332320 0.943167i \(-0.607831\pi\)
0.943167 + 0.332320i \(0.107831\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.97478e7 1.97478e7i −0.561767 0.561767i
\(78\) 0 0
\(79\) 2.57526e7i 0.661170i −0.943776 0.330585i \(-0.892754\pi\)
0.943776 0.330585i \(-0.107246\pi\)
\(80\) 0 0
\(81\) 1.04794e7 0.243443
\(82\) 0 0
\(83\) 5.97228e7 5.97228e7i 1.25843 1.25843i 0.306583 0.951844i \(-0.400814\pi\)
0.951844 0.306583i \(-0.0991856\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.97449e7 + 5.97449e7i 1.04286 + 1.04286i
\(88\) 0 0
\(89\) 3.34415e7i 0.532999i 0.963835 + 0.266499i \(0.0858670\pi\)
−0.963835 + 0.266499i \(0.914133\pi\)
\(90\) 0 0
\(91\) 1.77458e8 2.58780
\(92\) 0 0
\(93\) −9.08221e7 + 9.08221e7i −1.21411 + 1.21411i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.14246e7 + 1.14246e7i 0.129048 + 0.129048i 0.768681 0.639633i \(-0.220913\pi\)
−0.639633 + 0.768681i \(0.720913\pi\)
\(98\) 0 0
\(99\) 6.55590e7i 0.682483i
\(100\) 0 0
\(101\) −7.74199e7 −0.743990 −0.371995 0.928235i \(-0.621326\pi\)
−0.371995 + 0.928235i \(0.621326\pi\)
\(102\) 0 0
\(103\) −1.14727e8 + 1.14727e8i −1.01933 + 1.01933i −0.0195251 + 0.999809i \(0.506215\pi\)
−0.999809 + 0.0195251i \(0.993785\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.49269e7 1.49269e7i −0.113877 0.113877i 0.647872 0.761749i \(-0.275659\pi\)
−0.761749 + 0.647872i \(0.775659\pi\)
\(108\) 0 0
\(109\) 6.68163e7i 0.473344i 0.971590 + 0.236672i \(0.0760567\pi\)
−0.971590 + 0.236672i \(0.923943\pi\)
\(110\) 0 0
\(111\) 2.45876e6 0.0161966
\(112\) 0 0
\(113\) 766402. 766402.i 0.00470048 0.00470048i −0.704753 0.709453i \(-0.748942\pi\)
0.709453 + 0.704753i \(0.248942\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.94564e8 2.94564e8i −1.57194 1.57194i
\(118\) 0 0
\(119\) 4.17969e8i 2.08428i
\(120\) 0 0
\(121\) −1.70176e8 −0.793886
\(122\) 0 0
\(123\) −9.22817e7 + 9.22817e7i −0.403176 + 0.403176i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.69873e7 + 1.69873e7i 0.0652995 + 0.0652995i 0.739002 0.673703i \(-0.235297\pi\)
−0.673703 + 0.739002i \(0.735297\pi\)
\(128\) 0 0
\(129\) 4.41690e8i 1.59499i
\(130\) 0 0
\(131\) −5.31061e6 −0.0180326 −0.00901631 0.999959i \(-0.502870\pi\)
−0.00901631 + 0.999959i \(0.502870\pi\)
\(132\) 0 0
\(133\) 1.21927e8 1.21927e8i 0.389668 0.389668i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.84377e8 + 3.84377e8i 1.09113 + 1.09113i 0.995408 + 0.0957180i \(0.0305147\pi\)
0.0957180 + 0.995408i \(0.469485\pi\)
\(138\) 0 0
\(139\) 5.67954e8i 1.52144i −0.649082 0.760719i \(-0.724847\pi\)
0.649082 0.760719i \(-0.275153\pi\)
\(140\) 0 0
\(141\) −8.90903e8 −2.25400
\(142\) 0 0
\(143\) −1.98516e8 + 1.98516e8i −0.474736 + 0.474736i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.07731e9 1.07731e9i −2.30713 2.30713i
\(148\) 0 0
\(149\) 9.53258e7i 0.193404i −0.995313 0.0967020i \(-0.969171\pi\)
0.995313 0.0967020i \(-0.0308294\pi\)
\(150\) 0 0
\(151\) −4.08318e7 −0.0785400 −0.0392700 0.999229i \(-0.512503\pi\)
−0.0392700 + 0.999229i \(0.512503\pi\)
\(152\) 0 0
\(153\) −6.93788e8 + 6.93788e8i −1.26608 + 1.26608i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.50691e8 + 2.50691e8i 0.412610 + 0.412610i 0.882647 0.470037i \(-0.155759\pi\)
−0.470037 + 0.882647i \(0.655759\pi\)
\(158\) 0 0
\(159\) 1.56625e9i 2.45060i
\(160\) 0 0
\(161\) 2.08865e9 3.10858
\(162\) 0 0
\(163\) 2.05019e8 2.05019e8i 0.290431 0.290431i −0.546819 0.837251i \(-0.684162\pi\)
0.837251 + 0.546819i \(0.184162\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.22941e7 + 2.22941e7i 0.0286632 + 0.0286632i 0.721293 0.692630i \(-0.243548\pi\)
−0.692630 + 0.721293i \(0.743548\pi\)
\(168\) 0 0
\(169\) 9.68177e8i 1.18688i
\(170\) 0 0
\(171\) −4.04775e8 −0.473401
\(172\) 0 0
\(173\) −7.67051e8 + 7.67051e8i −0.856327 + 0.856327i −0.990903 0.134576i \(-0.957033\pi\)
0.134576 + 0.990903i \(0.457033\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.17513e9 + 1.17513e9i 1.19727 + 1.19727i
\(178\) 0 0
\(179\) 1.91640e8i 0.186670i 0.995635 + 0.0933348i \(0.0297527\pi\)
−0.995635 + 0.0933348i \(0.970247\pi\)
\(180\) 0 0
\(181\) 1.05009e8 0.0978388 0.0489194 0.998803i \(-0.484422\pi\)
0.0489194 + 0.998803i \(0.484422\pi\)
\(182\) 0 0
\(183\) 9.11108e8 9.11108e8i 0.812391 0.812391i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.67567e8 + 4.67567e8i 0.382364 + 0.382364i
\(188\) 0 0
\(189\) 1.77796e9i 1.39340i
\(190\) 0 0
\(191\) 1.09356e9 0.821689 0.410845 0.911705i \(-0.365234\pi\)
0.410845 + 0.911705i \(0.365234\pi\)
\(192\) 0 0
\(193\) 6.30439e8 6.30439e8i 0.454374 0.454374i −0.442429 0.896804i \(-0.645883\pi\)
0.896804 + 0.442429i \(0.145883\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.16879e8 + 5.16879e8i 0.343182 + 0.343182i 0.857562 0.514380i \(-0.171978\pi\)
−0.514380 + 0.857562i \(0.671978\pi\)
\(198\) 0 0
\(199\) 5.34647e8i 0.340922i 0.985364 + 0.170461i \(0.0545257\pi\)
−0.985364 + 0.170461i \(0.945474\pi\)
\(200\) 0 0
\(201\) −2.76416e9 −1.69347
\(202\) 0 0
\(203\) 1.95872e9 1.95872e9i 1.15342 1.15342i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3.46696e9 3.46696e9i −1.88828 1.88828i
\(208\) 0 0
\(209\) 2.72791e8i 0.142970i
\(210\) 0 0
\(211\) 4.52826e8 0.228456 0.114228 0.993455i \(-0.463561\pi\)
0.114228 + 0.993455i \(0.463561\pi\)
\(212\) 0 0
\(213\) 3.72693e9 3.72693e9i 1.81064 1.81064i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.97757e9 + 2.97757e9i 1.34284 + 1.34284i
\(218\) 0 0
\(219\) 3.14397e9i 1.36679i
\(220\) 0 0
\(221\) −4.20165e9 −1.76137
\(222\) 0 0
\(223\) 3.39101e8 3.39101e8i 0.137123 0.137123i −0.635214 0.772336i \(-0.719088\pi\)
0.772336 + 0.635214i \(0.219088\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.03987e9 + 2.03987e9i 0.768243 + 0.768243i 0.977797 0.209554i \(-0.0672013\pi\)
−0.209554 + 0.977797i \(0.567201\pi\)
\(228\) 0 0
\(229\) 2.53791e9i 0.922856i −0.887178 0.461428i \(-0.847337\pi\)
0.887178 0.461428i \(-0.152663\pi\)
\(230\) 0 0
\(231\) 3.57910e9 1.25697
\(232\) 0 0
\(233\) −8.40808e8 + 8.40808e8i −0.285281 + 0.285281i −0.835211 0.549930i \(-0.814655\pi\)
0.549930 + 0.835211i \(0.314655\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.33370e9 + 2.33370e9i 0.739695 + 0.739695i
\(238\) 0 0
\(239\) 4.00576e9i 1.22770i −0.789421 0.613852i \(-0.789619\pi\)
0.789421 0.613852i \(-0.210381\pi\)
\(240\) 0 0
\(241\) 3.32963e9 0.987026 0.493513 0.869739i \(-0.335713\pi\)
0.493513 + 0.869739i \(0.335713\pi\)
\(242\) 0 0
\(243\) −2.91286e9 + 2.91286e9i −0.835400 + 0.835400i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.22568e9 1.22568e9i −0.329298 0.329298i
\(248\) 0 0
\(249\) 1.08242e10i 2.81577i
\(250\) 0 0
\(251\) 6.75867e9 1.70281 0.851405 0.524508i \(-0.175751\pi\)
0.851405 + 0.524508i \(0.175751\pi\)
\(252\) 0 0
\(253\) −2.33650e9 + 2.33650e9i −0.570273 + 0.570273i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.27842e9 4.27842e9i −0.980733 0.980733i 0.0190845 0.999818i \(-0.493925\pi\)
−0.999818 + 0.0190845i \(0.993925\pi\)
\(258\) 0 0
\(259\) 8.06097e7i 0.0179138i
\(260\) 0 0
\(261\) −6.50257e9 −1.40127
\(262\) 0 0
\(263\) 4.95060e9 4.95060e9i 1.03475 1.03475i 0.0353742 0.999374i \(-0.488738\pi\)
0.999374 0.0353742i \(-0.0112623\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.03047e9 3.03047e9i −0.596301 0.596301i
\(268\) 0 0
\(269\) 2.68957e9i 0.513658i −0.966457 0.256829i \(-0.917322\pi\)
0.966457 0.256829i \(-0.0826778\pi\)
\(270\) 0 0
\(271\) 3.72670e9 0.690951 0.345476 0.938428i \(-0.387718\pi\)
0.345476 + 0.938428i \(0.387718\pi\)
\(272\) 0 0
\(273\) −1.60813e10 + 1.60813e10i −2.89514 + 2.89514i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.02673e9 + 1.02673e9i 0.174396 + 0.174396i 0.788908 0.614512i \(-0.210647\pi\)
−0.614512 + 0.788908i \(0.710647\pi\)
\(278\) 0 0
\(279\) 9.88497e9i 1.63139i
\(280\) 0 0
\(281\) −3.84428e9 −0.616580 −0.308290 0.951292i \(-0.599757\pi\)
−0.308290 + 0.951292i \(0.599757\pi\)
\(282\) 0 0
\(283\) −3.44897e7 + 3.44897e7i −0.00537704 + 0.00537704i −0.709790 0.704413i \(-0.751210\pi\)
0.704413 + 0.709790i \(0.251210\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.02542e9 + 3.02542e9i 0.445922 + 0.445922i
\(288\) 0 0
\(289\) 2.92043e9i 0.418655i
\(290\) 0 0
\(291\) −2.07059e9 −0.288750
\(292\) 0 0
\(293\) 3.52777e9 3.52777e9i 0.478663 0.478663i −0.426041 0.904704i \(-0.640092\pi\)
0.904704 + 0.426041i \(0.140092\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.98894e9 1.98894e9i −0.255621 0.255621i
\(298\) 0 0
\(299\) 2.09962e10i 2.62698i
\(300\) 0 0
\(301\) −1.44807e10 −1.76410
\(302\) 0 0
\(303\) 7.01579e9 7.01579e9i 0.832350 0.832350i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6.32942e9 6.32942e9i −0.712541 0.712541i 0.254525 0.967066i \(-0.418081\pi\)
−0.967066 + 0.254525i \(0.918081\pi\)
\(308\) 0 0
\(309\) 2.07931e10i 2.28079i
\(310\) 0 0
\(311\) −1.39821e7 −0.00149462 −0.000747308 1.00000i \(-0.500238\pi\)
−0.000747308 1.00000i \(0.500238\pi\)
\(312\) 0 0
\(313\) −3.09559e9 + 3.09559e9i −0.322527 + 0.322527i −0.849736 0.527209i \(-0.823239\pi\)
0.527209 + 0.849736i \(0.323239\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.00493e9 8.00493e9i −0.792721 0.792721i 0.189214 0.981936i \(-0.439406\pi\)
−0.981936 + 0.189214i \(0.939406\pi\)
\(318\) 0 0
\(319\) 4.38229e9i 0.423193i
\(320\) 0 0
\(321\) 2.70535e9 0.254803
\(322\) 0 0
\(323\) −2.88686e9 + 2.88686e9i −0.265225 + 0.265225i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.05490e9 6.05490e9i −0.529561 0.529561i
\(328\) 0 0
\(329\) 2.92079e10i 2.49297i
\(330\) 0 0
\(331\) −4.90966e9 −0.409015 −0.204507 0.978865i \(-0.565559\pi\)
−0.204507 + 0.978865i \(0.565559\pi\)
\(332\) 0 0
\(333\) −1.33804e8 + 1.33804e8i −0.0108816 + 0.0108816i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.36565e10 + 1.36565e10i 1.05882 + 1.05882i 0.998159 + 0.0606590i \(0.0193202\pi\)
0.0606590 + 0.998159i \(0.480680\pi\)
\(338\) 0 0
\(339\) 1.38903e8i 0.0105175i
\(340\) 0 0
\(341\) −6.66181e9 −0.492691
\(342\) 0 0
\(343\) −1.81924e10 + 1.81924e10i −1.31436 + 1.31436i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.54109e10 1.54109e10i −1.06294 1.06294i −0.997881 0.0650602i \(-0.979276\pi\)
−0.0650602 0.997881i \(-0.520724\pi\)
\(348\) 0 0
\(349\) 1.18288e10i 0.797333i −0.917096 0.398666i \(-0.869473\pi\)
0.917096 0.398666i \(-0.130527\pi\)
\(350\) 0 0
\(351\) 1.78731e10 1.17753
\(352\) 0 0
\(353\) −3.49848e9 + 3.49848e9i −0.225310 + 0.225310i −0.810730 0.585420i \(-0.800930\pi\)
0.585420 + 0.810730i \(0.300930\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.78763e10 + 3.78763e10i 2.33182 + 2.33182i
\(358\) 0 0
\(359\) 2.51731e10i 1.51551i 0.652541 + 0.757754i \(0.273703\pi\)
−0.652541 + 0.757754i \(0.726297\pi\)
\(360\) 0 0
\(361\) 1.52993e10 0.900829
\(362\) 0 0
\(363\) 1.54214e10 1.54214e10i 0.888172 0.888172i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 5.63577e9 + 5.63577e9i 0.310662 + 0.310662i 0.845166 0.534504i \(-0.179501\pi\)
−0.534504 + 0.845166i \(0.679501\pi\)
\(368\) 0 0
\(369\) 1.00438e10i 0.541744i
\(370\) 0 0
\(371\) 5.13490e10 2.71042
\(372\) 0 0
\(373\) 2.56465e10 2.56465e10i 1.32493 1.32493i 0.415199 0.909731i \(-0.363712\pi\)
0.909731 0.415199i \(-0.136288\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.96901e10 1.96901e10i −0.974726 0.974726i
\(378\) 0 0
\(379\) 3.39594e10i 1.64590i 0.568113 + 0.822950i \(0.307673\pi\)
−0.568113 + 0.822950i \(0.692327\pi\)
\(380\) 0 0
\(381\) −3.07878e9 −0.146110
\(382\) 0 0
\(383\) −1.53625e10 + 1.53625e10i −0.713946 + 0.713946i −0.967358 0.253412i \(-0.918447\pi\)
0.253412 + 0.967358i \(0.418447\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.40365e10 + 2.40365e10i 1.07159 + 1.07159i
\(388\) 0 0
\(389\) 8.40830e9i 0.367206i 0.983000 + 0.183603i \(0.0587761\pi\)
−0.983000 + 0.183603i \(0.941224\pi\)
\(390\) 0 0
\(391\) −4.94526e10 −2.11584
\(392\) 0 0
\(393\) 4.81247e8 4.81247e8i 0.0201743 0.0201743i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.21861e10 2.21861e10i −0.893138 0.893138i 0.101679 0.994817i \(-0.467578\pi\)
−0.994817 + 0.101679i \(0.967578\pi\)
\(398\) 0 0
\(399\) 2.20981e10i 0.871893i
\(400\) 0 0
\(401\) 1.96181e10 0.758717 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(402\) 0 0
\(403\) 2.99322e10 2.99322e10i 1.13480 1.13480i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.01752e7 + 9.01752e7i 0.00328632 + 0.00328632i
\(408\) 0 0
\(409\) 3.43621e9i 0.122797i 0.998113 + 0.0613984i \(0.0195560\pi\)
−0.998113 + 0.0613984i \(0.980444\pi\)
\(410\) 0 0
\(411\) −6.96645e10 −2.44143
\(412\) 0 0
\(413\) 3.85261e10 3.85261e10i 1.32420 1.32420i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.14680e10 + 5.14680e10i 1.70213 + 1.70213i
\(418\) 0 0
\(419\) 7.44102e9i 0.241422i 0.992688 + 0.120711i \(0.0385174\pi\)
−0.992688 + 0.120711i \(0.961483\pi\)
\(420\) 0 0
\(421\) −3.89651e10 −1.24036 −0.620180 0.784460i \(-0.712940\pi\)
−0.620180 + 0.784460i \(0.712940\pi\)
\(422\) 0 0
\(423\) 4.84824e10 4.84824e10i 1.51434 1.51434i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.98703e10 2.98703e10i −0.898522 0.898522i
\(428\) 0 0
\(429\) 3.59791e10i 1.06224i
\(430\) 0 0
\(431\) 1.07978e10 0.312914 0.156457 0.987685i \(-0.449993\pi\)
0.156457 + 0.987685i \(0.449993\pi\)
\(432\) 0 0
\(433\) −4.40971e10 + 4.40971e10i −1.25446 + 1.25446i −0.300766 + 0.953698i \(0.597242\pi\)
−0.953698 + 0.300766i \(0.902758\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.44260e10 1.44260e10i −0.395568 0.395568i
\(438\) 0 0
\(439\) 1.45300e9i 0.0391207i 0.999809 + 0.0195604i \(0.00622665\pi\)
−0.999809 + 0.0195604i \(0.993773\pi\)
\(440\) 0 0
\(441\) 1.17253e11 3.10007
\(442\) 0 0
\(443\) −2.28542e9 + 2.28542e9i −0.0593404 + 0.0593404i −0.736154 0.676814i \(-0.763360\pi\)
0.676814 + 0.736154i \(0.263360\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8.63843e9 + 8.63843e9i 0.216374 + 0.216374i
\(448\) 0 0
\(449\) 3.16339e10i 0.778336i −0.921167 0.389168i \(-0.872763\pi\)
0.921167 0.389168i \(-0.127237\pi\)
\(450\) 0 0
\(451\) −6.76887e9 −0.163610
\(452\) 0 0
\(453\) 3.70018e9 3.70018e9i 0.0878679 0.0878679i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.76578e10 + 3.76578e10i 0.863356 + 0.863356i 0.991726 0.128371i \(-0.0409747\pi\)
−0.128371 + 0.991726i \(0.540975\pi\)
\(458\) 0 0
\(459\) 4.20966e10i 0.948410i
\(460\) 0 0
\(461\) −2.10491e9 −0.0466048 −0.0233024 0.999728i \(-0.507418\pi\)
−0.0233024 + 0.999728i \(0.507418\pi\)
\(462\) 0 0
\(463\) −3.32456e10 + 3.32456e10i −0.723453 + 0.723453i −0.969307 0.245854i \(-0.920932\pi\)
0.245854 + 0.969307i \(0.420932\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.58121e10 1.58121e10i −0.332446 0.332446i 0.521069 0.853515i \(-0.325533\pi\)
−0.853515 + 0.521069i \(0.825533\pi\)
\(468\) 0 0
\(469\) 9.06219e10i 1.87302i
\(470\) 0 0
\(471\) −4.54352e10 −0.923228
\(472\) 0 0
\(473\) 1.61990e10 1.61990e10i 0.323626 0.323626i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −8.52344e10 8.52344e10i −1.64642 1.64642i
\(478\) 0 0
\(479\) 8.68402e9i 0.164960i −0.996593 0.0824800i \(-0.973716\pi\)
0.996593 0.0824800i \(-0.0262841\pi\)
\(480\) 0 0
\(481\) −8.10333e8 −0.0151385
\(482\) 0 0
\(483\) −1.89273e11 + 1.89273e11i −3.47777 + 3.47777i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7.63087e10 + 7.63087e10i 1.35662 + 1.35662i 0.878050 + 0.478570i \(0.158845\pi\)
0.478570 + 0.878050i \(0.341155\pi\)
\(488\) 0 0
\(489\) 3.71576e10i 0.649849i
\(490\) 0 0
\(491\) 3.56179e10 0.612834 0.306417 0.951897i \(-0.400870\pi\)
0.306417 + 0.951897i \(0.400870\pi\)
\(492\) 0 0
\(493\) −4.63763e10 + 4.63763e10i −0.785070 + 0.785070i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.22186e11 1.22186e11i −2.00261 2.00261i
\(498\) 0 0
\(499\) 2.89181e10i 0.466410i −0.972428 0.233205i \(-0.925079\pi\)
0.972428 0.233205i \(-0.0749213\pi\)
\(500\) 0 0
\(501\) −4.04059e9 −0.0641348
\(502\) 0 0
\(503\) 7.36803e10 7.36803e10i 1.15101 1.15101i 0.164660 0.986350i \(-0.447347\pi\)
0.986350 0.164660i \(-0.0526528\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 8.77362e10 + 8.77362e10i 1.32784 + 1.32784i
\(508\) 0 0
\(509\) 5.71815e10i 0.851892i −0.904749 0.425946i \(-0.859941\pi\)
0.904749 0.425946i \(-0.140059\pi\)
\(510\) 0 0
\(511\) 1.03074e11 1.51170
\(512\) 0 0
\(513\) 1.22802e10 1.22802e10i 0.177311 0.177311i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −3.26739e10 3.26739e10i −0.457340 0.457340i
\(518\) 0 0
\(519\) 1.39020e11i 1.91606i
\(520\) 0 0
\(521\) −2.35052e10 −0.319016 −0.159508 0.987197i \(-0.550991\pi\)
−0.159508 + 0.987197i \(0.550991\pi\)
\(522\) 0 0
\(523\) −3.78984e10 + 3.78984e10i −0.506540 + 0.506540i −0.913463 0.406923i \(-0.866602\pi\)
0.406923 + 0.913463i \(0.366602\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.04995e10 7.04995e10i −0.913995 0.913995i
\(528\) 0 0
\(529\) 1.68811e11i 2.15564i
\(530\) 0 0
\(531\) −1.27899e11 −1.60875
\(532\) 0 0
\(533\) 3.04132e10 3.04132e10i 0.376837 0.376837i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.73664e10 1.73664e10i −0.208839 0.208839i
\(538\) 0 0
\(539\) 7.90209e10i 0.936240i
\(540\) 0 0
\(541\) −1.19351e11 −1.39327 −0.696637 0.717423i \(-0.745321\pi\)
−0.696637 + 0.717423i \(0.745321\pi\)
\(542\) 0 0
\(543\) −9.51589e9 + 9.51589e9i −0.109459 + 0.109459i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.33612e10 + 9.33612e10i 1.04284 + 1.04284i 0.999040 + 0.0437983i \(0.0139459\pi\)
0.0437983 + 0.999040i \(0.486054\pi\)
\(548\) 0 0
\(549\) 9.91639e10i 1.09160i
\(550\) 0 0
\(551\) −2.70572e10 −0.293546
\(552\) 0 0
\(553\) 7.65097e10 7.65097e10i 0.818118 0.818118i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.81494e10 4.81494e10i −0.500231 0.500231i 0.411279 0.911510i \(-0.365082\pi\)
−0.911510 + 0.411279i \(0.865082\pi\)
\(558\) 0 0
\(559\) 1.45568e11i 1.49079i
\(560\) 0 0
\(561\) −8.47418e10 −0.855552
\(562\) 0 0
\(563\) 7.09654e10 7.09654e10i 0.706339 0.706339i −0.259424 0.965763i \(-0.583533\pi\)
0.965763 + 0.259424i \(0.0835328\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.11338e10 + 3.11338e10i 0.301231 + 0.301231i
\(568\) 0 0
\(569\) 3.39381e10i 0.323772i −0.986810 0.161886i \(-0.948242\pi\)
0.986810 0.161886i \(-0.0517576\pi\)
\(570\) 0 0
\(571\) −1.14297e11 −1.07520 −0.537602 0.843198i \(-0.680670\pi\)
−0.537602 + 0.843198i \(0.680670\pi\)
\(572\) 0 0
\(573\) −9.90981e10 + 9.90981e10i −0.919277 + 0.919277i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8.05524e10 8.05524e10i −0.726734 0.726734i 0.243234 0.969968i \(-0.421792\pi\)
−0.969968 + 0.243234i \(0.921792\pi\)
\(578\) 0 0
\(579\) 1.14261e11i 1.01668i
\(580\) 0 0
\(581\) 3.54867e11 3.11430
\(582\) 0 0
\(583\) −5.74423e10 + 5.74423e10i −0.497230 + 0.497230i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.91168e9 + 5.91168e9i 0.0497919 + 0.0497919i 0.731564 0.681772i \(-0.238791\pi\)
−0.681772 + 0.731564i \(0.738791\pi\)
\(588\) 0 0
\(589\) 4.11314e10i 0.341753i
\(590\) 0 0
\(591\) −9.36792e10 −0.767880
\(592\) 0 0
\(593\) 5.91467e10 5.91467e10i 0.478312 0.478312i −0.426279 0.904592i \(-0.640176\pi\)
0.904592 + 0.426279i \(0.140176\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.84498e10 4.84498e10i −0.381412 0.381412i
\(598\) 0 0
\(599\) 1.36683e10i 0.106171i 0.998590 + 0.0530857i \(0.0169057\pi\)
−0.998590 + 0.0530857i \(0.983094\pi\)
\(600\) 0 0
\(601\) 1.11154e10 0.0851972 0.0425986 0.999092i \(-0.486436\pi\)
0.0425986 + 0.999092i \(0.486436\pi\)
\(602\) 0 0
\(603\) 1.50424e11 1.50424e11i 1.13775 1.13775i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.63338e11 + 1.63338e11i 1.20319 + 1.20319i 0.973191 + 0.229997i \(0.0738717\pi\)
0.229997 + 0.973191i \(0.426128\pi\)
\(608\) 0 0
\(609\) 3.54998e11i 2.58081i
\(610\) 0 0
\(611\) 2.93614e11 2.10675
\(612\) 0 0
\(613\) 6.60222e10 6.60222e10i 0.467571 0.467571i −0.433555 0.901127i \(-0.642741\pi\)
0.901127 + 0.433555i \(0.142741\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.82679e11 + 1.82679e11i 1.26052 + 1.26052i 0.950843 + 0.309673i \(0.100220\pi\)
0.309673 + 0.950843i \(0.399780\pi\)
\(618\) 0 0
\(619\) 1.49534e11i 1.01854i −0.860607 0.509270i \(-0.829915\pi\)
0.860607 0.509270i \(-0.170085\pi\)
\(620\) 0 0
\(621\) 2.10362e11 1.41450
\(622\) 0 0
\(623\) −9.93530e10 + 9.93530e10i −0.659521 + 0.659521i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −2.47204e10 2.47204e10i −0.159950 0.159950i
\(628\) 0 0
\(629\) 1.90859e9i 0.0121930i
\(630\) 0 0
\(631\) 3.42950e10 0.216329 0.108164 0.994133i \(-0.465503\pi\)
0.108164 + 0.994133i \(0.465503\pi\)
\(632\) 0 0
\(633\) −4.10351e10 + 4.10351e10i −0.255588 + 0.255588i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.55049e11 + 3.55049e11i 2.15641 + 2.15641i
\(638\) 0 0
\(639\) 4.05635e11i 2.43294i
\(640\) 0 0
\(641\) 1.61952e11 0.959301 0.479651 0.877460i \(-0.340763\pi\)
0.479651 + 0.877460i \(0.340763\pi\)
\(642\) 0 0
\(643\) −1.41082e11 + 1.41082e11i −0.825328 + 0.825328i −0.986866 0.161538i \(-0.948355\pi\)
0.161538 + 0.986866i \(0.448355\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.34609e11 1.34609e11i −0.768171 0.768171i 0.209614 0.977784i \(-0.432779\pi\)
−0.977784 + 0.209614i \(0.932779\pi\)
\(648\) 0 0
\(649\) 8.61955e10i 0.485854i
\(650\) 0 0
\(651\) −5.39655e11 −3.00464
\(652\) 0 0
\(653\) 9.46722e10 9.46722e10i 0.520678 0.520678i −0.397098 0.917776i \(-0.629983\pi\)
0.917776 + 0.397098i \(0.129983\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.71093e11 1.71093e11i −0.918269 0.918269i
\(658\) 0 0
\(659\) 3.61317e9i 0.0191579i −0.999954 0.00957893i \(-0.996951\pi\)
0.999954 0.00957893i \(-0.00304911\pi\)
\(660\) 0 0
\(661\) −4.66817e10 −0.244535 −0.122267 0.992497i \(-0.539017\pi\)
−0.122267 + 0.992497i \(0.539017\pi\)
\(662\) 0 0
\(663\) 3.80754e11 3.80754e11i 1.97056 1.97056i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.31749e11 2.31749e11i −1.17088 1.17088i
\(668\) 0 0
\(669\) 6.14586e10i 0.306816i
\(670\) 0 0
\(671\) 6.68298e10 0.329671
\(672\) 0 0
\(673\) 2.73169e11 2.73169e11i 1.33159 1.33159i 0.427647 0.903946i \(-0.359343\pi\)
0.903946 0.427647i \(-0.140657\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.25095e10 3.25095e10i −0.154759 0.154759i 0.625481 0.780240i \(-0.284903\pi\)
−0.780240 + 0.625481i \(0.784903\pi\)
\(678\) 0 0
\(679\) 6.78835e10i 0.319363i
\(680\) 0 0
\(681\) −3.69706e11 −1.71897
\(682\) 0 0
\(683\) −6.40148e10 + 6.40148e10i −0.294169 + 0.294169i −0.838725 0.544556i \(-0.816698\pi\)
0.544556 + 0.838725i \(0.316698\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.29985e11 + 2.29985e11i 1.03246 + 1.03246i
\(688\) 0 0
\(689\) 5.16189e11i 2.29051i
\(690\) 0 0
\(691\) 1.11602e11 0.489509 0.244754 0.969585i \(-0.421293\pi\)
0.244754 + 0.969585i \(0.421293\pi\)
\(692\) 0 0
\(693\) −1.94772e11 + 1.94772e11i −0.844490 + 0.844490i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −7.16325e10 7.16325e10i −0.303514 0.303514i
\(698\) 0 0
\(699\) 1.52388e11i 0.638326i
\(700\) 0 0
\(701\) 3.83506e11 1.58818 0.794090 0.607800i \(-0.207948\pi\)
0.794090 + 0.607800i \(0.207948\pi\)
\(702\) 0 0
\(703\) −5.56761e8 + 5.56761e8i −0.00227954 + 0.00227954i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.30010e11 2.30010e11i −0.920597 0.920597i
\(708\) 0 0
\(709\) 3.77851e11i 1.49532i −0.664079 0.747662i \(-0.731176\pi\)
0.664079 0.747662i \(-0.268824\pi\)
\(710\) 0 0
\(711\) −2.53998e11 −0.993920
\(712\) 0 0
\(713\) 3.52296e11 3.52296e11i 1.36317 1.36317i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.63002e11 + 3.63002e11i 1.37351 + 1.37351i
\(718\) 0 0
\(719\) 5.07005e11i 1.89713i 0.316583 + 0.948565i \(0.397465\pi\)
−0.316583 + 0.948565i \(0.602535\pi\)
\(720\) 0 0
\(721\) −6.81695e11 −2.52261
\(722\) 0 0
\(723\) −3.01732e11 + 3.01732e11i −1.10425 + 1.10425i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.65494e11 + 2.65494e11i 0.950424 + 0.950424i 0.998828 0.0484043i \(-0.0154136\pi\)
−0.0484043 + 0.998828i \(0.515414\pi\)
\(728\) 0 0
\(729\) 4.59172e11i 1.62579i
\(730\) 0 0
\(731\) 3.42856e11 1.20072
\(732\) 0 0
\(733\) −2.64181e11 + 2.64181e11i −0.915136 + 0.915136i −0.996670 0.0815349i \(-0.974018\pi\)
0.0815349 + 0.996670i \(0.474018\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.01375e11 1.01375e11i −0.343608 0.343608i
\(738\) 0 0
\(739\) 8.68176e9i 0.0291092i −0.999894 0.0145546i \(-0.995367\pi\)
0.999894 0.0145546i \(-0.00463304\pi\)
\(740\) 0 0
\(741\) 2.22142e11 0.736815
\(742\) 0 0
\(743\) 3.15796e9 3.15796e9i 0.0103622 0.0103622i −0.701907 0.712269i \(-0.747668\pi\)
0.712269 + 0.701907i \(0.247668\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.89045e11 5.89045e11i −1.89176 1.89176i
\(748\) 0 0
\(749\) 8.86941e10i 0.281817i
\(750\) 0 0
\(751\) 2.93351e11 0.922204 0.461102 0.887347i \(-0.347454\pi\)
0.461102 + 0.887347i \(0.347454\pi\)
\(752\) 0 0
\(753\) −6.12471e11 + 6.12471e11i −1.90505 + 1.90505i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −5.15795e10 5.15795e10i −0.157070 0.157070i 0.624197 0.781267i \(-0.285426\pi\)
−0.781267 + 0.624197i \(0.785426\pi\)
\(758\) 0 0
\(759\) 4.23467e11i 1.27600i
\(760\) 0 0
\(761\) −5.97828e11 −1.78253 −0.891266 0.453480i \(-0.850182\pi\)
−0.891266 + 0.453480i \(0.850182\pi\)
\(762\) 0 0
\(763\) −1.98508e11 + 1.98508e11i −0.585706 + 0.585706i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.87285e11 3.87285e11i −1.11905 1.11905i
\(768\) 0 0
\(769\) 5.99304e11i 1.71373i 0.515543 + 0.856864i \(0.327590\pi\)
−0.515543 + 0.856864i \(0.672410\pi\)
\(770\) 0 0
\(771\) 7.75421e11 2.19442
\(772\) 0 0
\(773\) −2.84108e11 + 2.84108e11i −0.795730 + 0.795730i −0.982419 0.186689i \(-0.940224\pi\)
0.186689 + 0.982419i \(0.440224\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 7.30485e9 + 7.30485e9i 0.0200414 + 0.0200414i
\(778\) 0 0
\(779\) 4.17924e10i 0.113487i
\(780\) 0 0
\(781\) 2.73371e11 0.734764
\(782\) 0 0
\(783\) 1.97276e11 1.97276e11i 0.524841 0.524841i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 2.28710e11 + 2.28710e11i 0.596192 + 0.596192i 0.939297 0.343105i \(-0.111479\pi\)
−0.343105 + 0.939297i \(0.611479\pi\)
\(788\) 0 0
\(789\) 8.97247e11i 2.31528i
\(790\) 0 0
\(791\) 4.55387e9 0.0116326
\(792\) 0 0
\(793\) −3.00273e11 + 3.00273e11i −0.759318 + 0.759318i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.96930e11 1.96930e11i −0.488065 0.488065i 0.419630 0.907695i \(-0.362160\pi\)
−0.907695 + 0.419630i \(0.862160\pi\)
\(798\) 0 0
\(799\) 6.91553e11i 1.69683i
\(800\) 0 0
\(801\) 3.29833e11 0.801243
\(802\) 0 0
\(803\) −1.15305e11 + 1.15305e11i −0.277323 + 0.277323i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.43729e11 + 2.43729e11i 0.574663 + 0.574663i
\(808\) 0 0
\(809\) 3.96404e11i 0.925432i −0.886507 0.462716i \(-0.846875\pi\)
0.886507 0.462716i \(-0.153125\pi\)
\(810\) 0 0
\(811\) −5.68736e11 −1.31470 −0.657351 0.753585i \(-0.728323\pi\)
−0.657351 + 0.753585i \(0.728323\pi\)
\(812\) 0 0
\(813\) −3.37714e11 + 3.37714e11i −0.773013 + 0.773013i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.00016e11 + 1.00016e11i 0.224482 + 0.224482i
\(818\) 0 0
\(819\) 1.75027e12i 3.89017i
\(820\) 0 0
\(821\) −7.39178e11 −1.62696 −0.813479 0.581595i \(-0.802429\pi\)
−0.813479 + 0.581595i \(0.802429\pi\)
\(822\) 0 0
\(823\) 2.44251e11 2.44251e11i 0.532399 0.532399i −0.388887 0.921286i \(-0.627140\pi\)
0.921286 + 0.388887i \(0.127140\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.78370e11 + 2.78370e11i 0.595115 + 0.595115i 0.939009 0.343893i \(-0.111746\pi\)
−0.343893 + 0.939009i \(0.611746\pi\)
\(828\) 0 0
\(829\) 4.66722e11i 0.988190i 0.869408 + 0.494095i \(0.164500\pi\)
−0.869408 + 0.494095i \(0.835500\pi\)
\(830\) 0 0
\(831\) −1.86084e11 −0.390216
\(832\) 0 0
\(833\) 8.36251e11 8.36251e11i 1.73683 1.73683i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.99892e11 + 2.99892e11i 0.611031 + 0.611031i
\(838\) 0 0
\(839\) 2.02414e11i 0.408501i 0.978919 + 0.204250i \(0.0654757\pi\)
−0.978919 + 0.204250i \(0.934524\pi\)
\(840\) 0 0
\(841\) 6.55823e10 0.131100
\(842\) 0 0
\(843\) 3.48369e11 3.48369e11i 0.689809 0.689809i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5.05585e11 5.05585e11i −0.982337 0.982337i
\(848\) 0 0
\(849\) 6.25091e9i 0.0120313i
\(850\) 0 0
\(851\) −9.53746e9 −0.0181851
\(852\) 0 0
\(853\) −8.15896e10 + 8.15896e10i −0.154113 + 0.154113i −0.779952 0.625839i \(-0.784757\pi\)
0.625839 + 0.779952i \(0.284757\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.44457e11 1.44457e11i −0.267803 0.267803i 0.560411 0.828215i \(-0.310643\pi\)
−0.828215 + 0.560411i \(0.810643\pi\)
\(858\) 0 0
\(859\) 8.76933e11i 1.61062i 0.592852 + 0.805312i \(0.298002\pi\)
−0.592852 + 0.805312i \(0.701998\pi\)
\(860\) 0 0
\(861\) −5.48328e11 −0.997763
\(862\) 0 0
\(863\) 3.51189e11 3.51189e11i 0.633138 0.633138i −0.315716 0.948854i \(-0.602245\pi\)
0.948854 + 0.315716i \(0.102245\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2.64650e11 2.64650e11i −0.468376 0.468376i
\(868\) 0 0
\(869\) 1.71177e11i 0.300170i
\(870\) 0 0
\(871\) 9.10981e11 1.58284
\(872\) 0 0
\(873\) 1.12680e11 1.12680e11i 0.193995 0.193995i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.46416e11 6.46416e11i −1.09273 1.09273i −0.995236 0.0974969i \(-0.968916\pi\)
−0.0974969 0.995236i \(-0.531084\pi\)
\(878\) 0 0
\(879\) 6.39374e11i 1.07102i
\(880\) 0 0
\(881\) −5.80336e11 −0.963332 −0.481666 0.876355i \(-0.659968\pi\)
−0.481666 + 0.876355i \(0.659968\pi\)
\(882\) 0 0
\(883\) 1.18221e11 1.18221e11i 0.194470 0.194470i −0.603155 0.797624i \(-0.706090\pi\)
0.797624 + 0.603155i \(0.206090\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.34202e11 2.34202e11i −0.378352 0.378352i 0.492156 0.870507i \(-0.336209\pi\)
−0.870507 + 0.492156i \(0.836209\pi\)
\(888\) 0 0
\(889\) 1.00937e11i 0.161600i
\(890\) 0 0
\(891\) −6.96566e10 −0.110523
\(892\) 0 0
\(893\) 2.01735e11 2.01735e11i 0.317232 0.317232i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.90268e12 + 1.90268e12i 2.93897 + 2.93897i
\(898\) 0 0
\(899\) 6.60761e11i 1.01159i
\(900\) 0 0
\(901\) −1.21578e12 −1.84483
\(902\) 0 0
\(903\) 1.31224e12 1.31224e12i 1.97361 1.97361i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.81328e11 + 1.81328e11i 0.267939 + 0.267939i 0.828269 0.560330i \(-0.189326\pi\)
−0.560330 + 0.828269i \(0.689326\pi\)
\(908\) 0 0
\(909\) 7.63590e11i 1.11842i
\(910\) 0 0
\(911\) 1.27141e12 1.84592 0.922959 0.384899i \(-0.125764\pi\)
0.922959 + 0.384899i \(0.125764\pi\)
\(912\) 0 0
\(913\) −3.96977e11 + 3.96977e11i −0.571323 + 0.571323i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.57775e10 1.57775e10i −0.0223132 0.0223132i
\(918\) 0 0
\(919\) 1.32316e12i 1.85503i 0.373788 + 0.927514i \(0.378059\pi\)
−0.373788 + 0.927514i \(0.621941\pi\)
\(920\) 0 0
\(921\) 1.14714e12 1.59433
\(922\) 0 0
\(923\) −1.22828e12 + 1.22828e12i −1.69236 + 1.69236i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.13155e12 + 1.13155e12i 1.53234 + 1.53234i
\(928\) 0 0
\(929\) 7.15235e11i 0.960254i 0.877199 + 0.480127i \(0.159409\pi\)
−0.877199 + 0.480127i \(0.840591\pi\)
\(930\) 0 0
\(931\) 4.87892e11 0.649419
\(932\) 0 0
\(933\) 1.26705e9 1.26705e9i 0.00167213 0.00167213i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.49769e11 6.49769e11i −0.842948 0.842948i 0.146294 0.989241i \(-0.453266\pi\)
−0.989241 + 0.146294i \(0.953266\pi\)
\(938\) 0 0
\(939\) 5.61046e11i 0.721665i
\(940\) 0 0
\(941\) 5.55246e11 0.708153 0.354077 0.935216i \(-0.384795\pi\)
0.354077 + 0.935216i \(0.384795\pi\)
\(942\) 0 0
\(943\) 3.57958e11 3.57958e11i 0.452673 0.452673i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.35027e11 + 6.35027e11i 0.789573 + 0.789573i 0.981424 0.191851i \(-0.0614491\pi\)
−0.191851 + 0.981424i \(0.561449\pi\)
\(948\) 0 0
\(949\) 1.03616e12i 1.27750i
\(950\) 0 0
\(951\) 1.45081e12 1.77374
\(952\) 0 0
\(953\) −5.80327e11 + 5.80327e11i −0.703560 + 0.703560i −0.965173 0.261613i \(-0.915746\pi\)
0.261613 + 0.965173i \(0.415746\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −3.97124e11 3.97124e11i −0.473454 0.473454i
\(958\) 0 0
\(959\) 2.28393e12i 2.70027i
\(960\) 0 0
\(961\) 1.51573e11 0.177717
\(962\) 0 0
\(963\) −1.47224e11 + 1.47224e11i −0.171188 + 0.171188i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.57587e11 + 2.57587e11i 0.294590 + 0.294590i 0.838890 0.544300i \(-0.183205\pi\)
−0.544300 + 0.838890i \(0.683205\pi\)
\(968\) 0 0
\(969\) 5.23214e11i 0.593450i
\(970\) 0 0
\(971\) −9.36458e11 −1.05344 −0.526722 0.850038i \(-0.676579\pi\)
−0.526722 + 0.850038i \(0.676579\pi\)
\(972\) 0 0
\(973\) 1.68736e12 1.68736e12i 1.88259 1.88259i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.59705e11 + 3.59705e11i 0.394791 + 0.394791i 0.876391 0.481600i \(-0.159944\pi\)
−0.481600 + 0.876391i \(0.659944\pi\)
\(978\) 0 0
\(979\) 2.22285e11i 0.241980i
\(980\) 0 0
\(981\) 6.59008e11 0.711565
\(982\) 0 0
\(983\) −8.01741e10 + 8.01741e10i −0.0858657 + 0.0858657i −0.748735 0.662869i \(-0.769338\pi\)
0.662869 + 0.748735i \(0.269338\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.64682e12 2.64682e12i −2.78905 2.78905i
\(988\) 0 0
\(989\) 1.71330e12i 1.79081i
\(990\) 0 0
\(991\) −7.86576e11 −0.815541 −0.407771 0.913084i \(-0.633694\pi\)
−0.407771 + 0.913084i \(0.633694\pi\)
\(992\) 0 0
\(993\) 4.44913e11 4.44913e11i 0.457592 0.457592i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.16753e12 + 1.16753e12i 1.18164 + 1.18164i 0.979319 + 0.202324i \(0.0648493\pi\)
0.202324 + 0.979319i \(0.435151\pi\)
\(998\) 0 0
\(999\) 8.11877e9i 0.00815133i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.f.c.57.1 12
5.2 odd 4 inner 100.9.f.c.93.6 yes 12
5.3 odd 4 inner 100.9.f.c.93.1 yes 12
5.4 even 2 inner 100.9.f.c.57.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.9.f.c.57.1 12 1.1 even 1 trivial
100.9.f.c.57.6 yes 12 5.4 even 2 inner
100.9.f.c.93.1 yes 12 5.3 odd 4 inner
100.9.f.c.93.6 yes 12 5.2 odd 4 inner