L(s) = 1 | + (−90.6 + 90.6i)3-s + (2.97e3 + 2.97e3i)7-s − 9.86e3i·9-s − 6.64e3·11-s + (2.98e4 − 2.98e4i)13-s + (−7.03e4 − 7.03e4i)17-s − 4.10e4i·19-s − 5.38e5·21-s + (3.51e5 − 3.51e5i)23-s + (2.99e5 + 2.99e5i)27-s − 6.59e5i·29-s + 1.00e6·31-s + (6.02e5 − 6.02e5i)33-s + (−1.35e4 − 1.35e4i)37-s + 5.41e6i·39-s + ⋯ |
L(s) = 1 | + (−1.11 + 1.11i)3-s + (1.23 + 1.23i)7-s − 1.50i·9-s − 0.453·11-s + (1.04 − 1.04i)13-s + (−0.842 − 0.842i)17-s − 0.314i·19-s − 2.76·21-s + (1.25 − 1.25i)23-s + (0.563 + 0.563i)27-s − 0.932i·29-s + 1.08·31-s + (0.507 − 0.507i)33-s + (−0.00723 − 0.00723i)37-s + 2.33i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.44992 + 0.334061i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.44992 + 0.334061i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (90.6 - 90.6i)T - 6.56e3iT^{2} \) |
| 7 | \( 1 + (-2.97e3 - 2.97e3i)T + 5.76e6iT^{2} \) |
| 11 | \( 1 + 6.64e3T + 2.14e8T^{2} \) |
| 13 | \( 1 + (-2.98e4 + 2.98e4i)T - 8.15e8iT^{2} \) |
| 17 | \( 1 + (7.03e4 + 7.03e4i)T + 6.97e9iT^{2} \) |
| 19 | \( 1 + 4.10e4iT - 1.69e10T^{2} \) |
| 23 | \( 1 + (-3.51e5 + 3.51e5i)T - 7.83e10iT^{2} \) |
| 29 | \( 1 + 6.59e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 1.00e6T + 8.52e11T^{2} \) |
| 37 | \( 1 + (1.35e4 + 1.35e4i)T + 3.51e12iT^{2} \) |
| 41 | \( 1 - 1.01e6T + 7.98e12T^{2} \) |
| 43 | \( 1 + (2.43e6 - 2.43e6i)T - 1.16e13iT^{2} \) |
| 47 | \( 1 + (-4.91e6 - 4.91e6i)T + 2.38e13iT^{2} \) |
| 53 | \( 1 + (-8.64e6 + 8.64e6i)T - 6.22e13iT^{2} \) |
| 59 | \( 1 + 1.29e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 1.00e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + (-1.52e7 - 1.52e7i)T + 4.06e14iT^{2} \) |
| 71 | \( 1 + 4.11e7T + 6.45e14T^{2} \) |
| 73 | \( 1 + (-1.73e7 + 1.73e7i)T - 8.06e14iT^{2} \) |
| 79 | \( 1 + 2.57e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + (-5.97e7 + 5.97e7i)T - 2.25e15iT^{2} \) |
| 89 | \( 1 - 3.34e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 + (-1.14e7 - 1.14e7i)T + 7.83e15iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.93578665748982620053872405368, −11.18450126311993401077665007446, −10.54164817957009238523169783225, −9.145370008082584329403576800703, −8.179929479442614847586645360910, −6.23902873129341884979238000654, −5.23014076471680839664032507983, −4.56940602775866284210524550293, −2.66643038618818522762890132725, −0.64783316154214908092252421316,
0.990582043582503553331151740618, 1.67716640265380640409091452792, 4.13678787301567945388630939247, 5.38870091320527771260430362979, 6.68793692388971495171107201270, 7.43801494767829180762755713789, 8.613489861990029654750412675017, 10.66594082162401559342812030052, 11.11709446136526672591065898087, 12.04037640815929621177743161841