Properties

Label 100.9.d.c.99.15
Level $100$
Weight $9$
Character 100.99
Analytic conductor $40.738$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(99,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.99"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.15
Character \(\chi\) \(=\) 100.99
Dual form 100.9.d.c.99.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.49522 - 15.3556i) q^{2} -98.1237 q^{3} +(-215.586 + 138.053i) q^{4} +(441.088 + 1506.74i) q^{6} +820.952 q^{7} +(3088.99 + 2689.86i) q^{8} +3067.27 q^{9} -21147.7i q^{11} +(21154.1 - 13546.3i) q^{12} +36649.1i q^{13} +(-3690.36 - 12606.2i) q^{14} +(27418.7 - 59524.7i) q^{16} -110563. i q^{17} +(-13788.0 - 47099.6i) q^{18} -184840. i q^{19} -80554.9 q^{21} +(-324735. + 95063.7i) q^{22} -181906. q^{23} +(-303103. - 263939. i) q^{24} +(562767. - 164746. i) q^{26} +342818. q^{27} +(-176986. + 113335. i) q^{28} +229647. q^{29} -388118. i q^{31} +(-1.03729e6 - 153452. i) q^{32} +2.07510e6i q^{33} +(-1.69776e6 + 497005. i) q^{34} +(-661260. + 423446. i) q^{36} +1.32611e6i q^{37} +(-2.83831e6 + 830894. i) q^{38} -3.59615e6i q^{39} -303036. q^{41} +(362112. + 1.23696e6i) q^{42} -962361. q^{43} +(2.91951e6 + 4.55916e6i) q^{44} +(817709. + 2.79327e6i) q^{46} +8.76124e6 q^{47} +(-2.69042e6 + 5.84078e6i) q^{48} -5.09084e6 q^{49} +1.08489e7i q^{51} +(-5.05952e6 - 7.90103e6i) q^{52} +577555. i q^{53} +(-1.54104e6 - 5.26416e6i) q^{54} +(2.53591e6 + 2.20825e6i) q^{56} +1.81371e7i q^{57} +(-1.03231e6 - 3.52636e6i) q^{58} -4.11725e6i q^{59} +2.10168e7 q^{61} +(-5.95976e6 + 1.74467e6i) q^{62} +2.51808e6 q^{63} +(2.30649e6 + 1.66179e7i) q^{64} +(3.18642e7 - 9.32801e6i) q^{66} -3.85926e7 q^{67} +(1.52636e7 + 2.38359e7i) q^{68} +1.78493e7 q^{69} -2.07744e7i q^{71} +(9.47475e6 + 8.25053e6i) q^{72} +2.70559e7i q^{73} +(2.03632e7 - 5.96116e6i) q^{74} +(2.55177e7 + 3.98488e7i) q^{76} -1.73613e7i q^{77} +(-5.52208e7 + 1.61655e7i) q^{78} +5.62358e7i q^{79} -5.37629e7 q^{81} +(1.36221e6 + 4.65328e6i) q^{82} -6.22189e7 q^{83} +(1.73665e7 - 1.11209e7i) q^{84} +(4.32602e6 + 1.47776e7i) q^{86} -2.25338e7 q^{87} +(5.68845e7 - 6.53251e7i) q^{88} -6.04409e7 q^{89} +3.00871e7i q^{91} +(3.92165e7 - 2.51127e7i) q^{92} +3.80836e7i q^{93} +(-3.93837e7 - 1.34534e8i) q^{94} +(1.01782e8 + 1.50573e7i) q^{96} +1.31334e8i q^{97} +(2.28844e7 + 7.81727e7i) q^{98} -6.48658e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 104 q^{4} + 8736 q^{6} + 77600 q^{9} - 136944 q^{14} - 162848 q^{16} + 828992 q^{21} - 327584 q^{24} + 2074248 q^{26} - 5529792 q^{29} - 7587928 q^{34} - 10937832 q^{36} - 17152896 q^{41} - 33842400 q^{44}+ \cdots - 906779904 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.49522 15.3556i −0.280951 0.959722i
\(3\) −98.1237 −1.21140 −0.605702 0.795692i \(-0.707108\pi\)
−0.605702 + 0.795692i \(0.707108\pi\)
\(4\) −215.586 + 138.053i −0.842133 + 0.539270i
\(5\) 0 0
\(6\) 441.088 + 1506.74i 0.340345 + 1.16261i
\(7\) 820.952 0.341921 0.170960 0.985278i \(-0.445313\pi\)
0.170960 + 0.985278i \(0.445313\pi\)
\(8\) 3088.99 + 2689.86i 0.754148 + 0.656705i
\(9\) 3067.27 0.467500
\(10\) 0 0
\(11\) 21147.7i 1.44442i −0.691674 0.722210i \(-0.743127\pi\)
0.691674 0.722210i \(-0.256873\pi\)
\(12\) 21154.1 13546.3i 1.02016 0.653274i
\(13\) 36649.1i 1.28319i 0.767045 + 0.641593i \(0.221726\pi\)
−0.767045 + 0.641593i \(0.778274\pi\)
\(14\) −3690.36 12606.2i −0.0960630 0.328149i
\(15\) 0 0
\(16\) 27418.7 59524.7i 0.418376 0.908274i
\(17\) 110563.i 1.32378i −0.749603 0.661888i \(-0.769755\pi\)
0.749603 0.661888i \(-0.230245\pi\)
\(18\) −13788.0 47099.6i −0.131345 0.448670i
\(19\) 184840.i 1.41834i −0.705037 0.709170i \(-0.749070\pi\)
0.705037 0.709170i \(-0.250930\pi\)
\(20\) 0 0
\(21\) −80554.9 −0.414204
\(22\) −324735. + 95063.7i −1.38624 + 0.405811i
\(23\) −181906. −0.650035 −0.325017 0.945708i \(-0.605370\pi\)
−0.325017 + 0.945708i \(0.605370\pi\)
\(24\) −303103. 263939.i −0.913577 0.795535i
\(25\) 0 0
\(26\) 562767. 164746.i 1.23150 0.360513i
\(27\) 342818. 0.645073
\(28\) −176986. + 113335.i −0.287943 + 0.184388i
\(29\) 229647. 0.324690 0.162345 0.986734i \(-0.448094\pi\)
0.162345 + 0.986734i \(0.448094\pi\)
\(30\) 0 0
\(31\) 388118.i 0.420259i −0.977674 0.210129i \(-0.932611\pi\)
0.977674 0.210129i \(-0.0673885\pi\)
\(32\) −1.03729e6 153452.i −0.989234 0.146344i
\(33\) 2.07510e6i 1.74978i
\(34\) −1.69776e6 + 497005.i −1.27046 + 0.371916i
\(35\) 0 0
\(36\) −661260. + 423446.i −0.393697 + 0.252109i
\(37\) 1.32611e6i 0.707576i 0.935326 + 0.353788i \(0.115107\pi\)
−0.935326 + 0.353788i \(0.884893\pi\)
\(38\) −2.83831e6 + 830894.i −1.36121 + 0.398484i
\(39\) 3.59615e6i 1.55446i
\(40\) 0 0
\(41\) −303036. −0.107240 −0.0536202 0.998561i \(-0.517076\pi\)
−0.0536202 + 0.998561i \(0.517076\pi\)
\(42\) 362112. + 1.23696e6i 0.116371 + 0.397521i
\(43\) −962361. −0.281491 −0.140745 0.990046i \(-0.544950\pi\)
−0.140745 + 0.990046i \(0.544950\pi\)
\(44\) 2.91951e6 + 4.55916e6i 0.778932 + 1.21639i
\(45\) 0 0
\(46\) 817709. + 2.79327e6i 0.182628 + 0.623853i
\(47\) 8.76124e6 1.79545 0.897727 0.440552i \(-0.145217\pi\)
0.897727 + 0.440552i \(0.145217\pi\)
\(48\) −2.69042e6 + 5.84078e6i −0.506822 + 1.10029i
\(49\) −5.09084e6 −0.883090
\(50\) 0 0
\(51\) 1.08489e7i 1.60363i
\(52\) −5.05952e6 7.90103e6i −0.691984 1.08061i
\(53\) 577555.i 0.0731965i 0.999330 + 0.0365982i \(0.0116522\pi\)
−0.999330 + 0.0365982i \(0.988348\pi\)
\(54\) −1.54104e6 5.26416e6i −0.181234 0.619091i
\(55\) 0 0
\(56\) 2.53591e6 + 2.20825e6i 0.257859 + 0.224541i
\(57\) 1.81371e7i 1.71818i
\(58\) −1.03231e6 3.52636e6i −0.0912220 0.311612i
\(59\) 4.11725e6i 0.339781i −0.985463 0.169891i \(-0.945659\pi\)
0.985463 0.169891i \(-0.0543414\pi\)
\(60\) 0 0
\(61\) 2.10168e7 1.51791 0.758956 0.651142i \(-0.225710\pi\)
0.758956 + 0.651142i \(0.225710\pi\)
\(62\) −5.95976e6 + 1.74467e6i −0.403332 + 0.118072i
\(63\) 2.51808e6 0.159848
\(64\) 2.30649e6 + 1.66179e7i 0.137477 + 0.990505i
\(65\) 0 0
\(66\) 3.18642e7 9.32801e6i 1.67930 0.491601i
\(67\) −3.85926e7 −1.91516 −0.957580 0.288168i \(-0.906954\pi\)
−0.957580 + 0.288168i \(0.906954\pi\)
\(68\) 1.52636e7 + 2.38359e7i 0.713873 + 1.11480i
\(69\) 1.78493e7 0.787455
\(70\) 0 0
\(71\) 2.07744e7i 0.817515i −0.912643 0.408758i \(-0.865962\pi\)
0.912643 0.408758i \(-0.134038\pi\)
\(72\) 9.47475e6 + 8.25053e6i 0.352564 + 0.307009i
\(73\) 2.70559e7i 0.952732i 0.879247 + 0.476366i \(0.158046\pi\)
−0.879247 + 0.476366i \(0.841954\pi\)
\(74\) 2.03632e7 5.96116e6i 0.679077 0.198794i
\(75\) 0 0
\(76\) 2.55177e7 + 3.98488e7i 0.764869 + 1.19443i
\(77\) 1.73613e7i 0.493877i
\(78\) −5.52208e7 + 1.61655e7i −1.49185 + 0.436727i
\(79\) 5.62358e7i 1.44379i 0.692002 + 0.721896i \(0.256729\pi\)
−0.692002 + 0.721896i \(0.743271\pi\)
\(80\) 0 0
\(81\) −5.37629e7 −1.24894
\(82\) 1.36221e6 + 4.65328e6i 0.0301293 + 0.102921i
\(83\) −6.22189e7 −1.31102 −0.655511 0.755186i \(-0.727547\pi\)
−0.655511 + 0.755186i \(0.727547\pi\)
\(84\) 1.73665e7 1.11209e7i 0.348815 0.223368i
\(85\) 0 0
\(86\) 4.32602e6 + 1.47776e7i 0.0790852 + 0.270153i
\(87\) −2.25338e7 −0.393331
\(88\) 5.68845e7 6.53251e7i 0.948557 1.08931i
\(89\) −6.04409e7 −0.963321 −0.481661 0.876358i \(-0.659966\pi\)
−0.481661 + 0.876358i \(0.659966\pi\)
\(90\) 0 0
\(91\) 3.00871e7i 0.438748i
\(92\) 3.92165e7 2.51127e7i 0.547416 0.350544i
\(93\) 3.80836e7i 0.509103i
\(94\) −3.93837e7 1.34534e8i −0.504435 1.72314i
\(95\) 0 0
\(96\) 1.01782e8 + 1.50573e7i 1.19836 + 0.177281i
\(97\) 1.31334e8i 1.48351i 0.670671 + 0.741755i \(0.266006\pi\)
−0.670671 + 0.741755i \(0.733994\pi\)
\(98\) 2.28844e7 + 7.81727e7i 0.248105 + 0.847521i
\(99\) 6.48658e7i 0.675266i
\(100\) 0 0
\(101\) −1.55397e8 −1.49333 −0.746665 0.665200i \(-0.768346\pi\)
−0.746665 + 0.665200i \(0.768346\pi\)
\(102\) 1.66590e8 4.87680e7i 1.53904 0.450541i
\(103\) 3.83213e7 0.340480 0.170240 0.985403i \(-0.445546\pi\)
0.170240 + 0.985403i \(0.445546\pi\)
\(104\) −9.85810e7 + 1.13209e8i −0.842675 + 0.967712i
\(105\) 0 0
\(106\) 8.86868e6 2.59624e6i 0.0702483 0.0205646i
\(107\) −3.36904e7 −0.257022 −0.128511 0.991708i \(-0.541020\pi\)
−0.128511 + 0.991708i \(0.541020\pi\)
\(108\) −7.39068e7 + 4.73271e7i −0.543237 + 0.347869i
\(109\) −1.87899e8 −1.33112 −0.665562 0.746343i \(-0.731808\pi\)
−0.665562 + 0.746343i \(0.731808\pi\)
\(110\) 0 0
\(111\) 1.30123e8i 0.857161i
\(112\) 2.25094e7 4.88669e7i 0.143051 0.310558i
\(113\) 2.44191e8i 1.49767i −0.662757 0.748835i \(-0.730614\pi\)
0.662757 0.748835i \(-0.269386\pi\)
\(114\) 2.78506e8 8.15304e7i 1.64898 0.482726i
\(115\) 0 0
\(116\) −4.95087e7 + 3.17035e7i −0.273432 + 0.175096i
\(117\) 1.12413e8i 0.599889i
\(118\) −6.32226e7 + 1.85079e7i −0.326095 + 0.0954619i
\(119\) 9.07670e7i 0.452627i
\(120\) 0 0
\(121\) −2.32868e8 −1.08635
\(122\) −9.44749e7 3.22724e8i −0.426459 1.45677i
\(123\) 2.97350e7 0.129911
\(124\) 5.35809e7 + 8.36728e7i 0.226633 + 0.353914i
\(125\) 0 0
\(126\) −1.13193e7 3.86665e7i −0.0449095 0.153410i
\(127\) −4.32402e7 −0.166216 −0.0831080 0.996541i \(-0.526485\pi\)
−0.0831080 + 0.996541i \(0.526485\pi\)
\(128\) 2.44809e8 1.10119e8i 0.911985 0.410223i
\(129\) 9.44304e7 0.340999
\(130\) 0 0
\(131\) 3.46986e8i 1.17822i −0.808052 0.589111i \(-0.799478\pi\)
0.808052 0.589111i \(-0.200522\pi\)
\(132\) −2.86473e8 4.47362e8i −0.943602 1.47354i
\(133\) 1.51744e8i 0.484960i
\(134\) 1.73482e8 + 5.92611e8i 0.538066 + 1.83802i
\(135\) 0 0
\(136\) 2.97400e8 3.41528e8i 0.869330 0.998323i
\(137\) 4.54595e8i 1.29045i 0.763991 + 0.645227i \(0.223237\pi\)
−0.763991 + 0.645227i \(0.776763\pi\)
\(138\) −8.02366e7 2.74086e8i −0.221236 0.755738i
\(139\) 1.24500e8i 0.333511i −0.985998 0.166755i \(-0.946671\pi\)
0.985998 0.166755i \(-0.0533290\pi\)
\(140\) 0 0
\(141\) −8.59686e8 −2.17502
\(142\) −3.19003e8 + 9.33856e7i −0.784587 + 0.229682i
\(143\) 7.75046e8 1.85346
\(144\) 8.41003e7 1.82578e8i 0.195590 0.424618i
\(145\) 0 0
\(146\) 4.15459e8 1.21622e8i 0.914358 0.267671i
\(147\) 4.99532e8 1.06978
\(148\) −1.83074e8 2.85891e8i −0.381575 0.595873i
\(149\) 2.17967e8 0.442228 0.221114 0.975248i \(-0.429031\pi\)
0.221114 + 0.975248i \(0.429031\pi\)
\(150\) 0 0
\(151\) 2.00315e8i 0.385306i 0.981267 + 0.192653i \(0.0617091\pi\)
−0.981267 + 0.192653i \(0.938291\pi\)
\(152\) 4.97193e8 5.70967e8i 0.931431 1.06964i
\(153\) 3.39126e8i 0.618865i
\(154\) −2.66592e8 + 7.80427e7i −0.473985 + 0.138755i
\(155\) 0 0
\(156\) 4.96459e8 + 7.75279e8i 0.838272 + 1.30906i
\(157\) 2.01644e7i 0.0331885i −0.999862 0.0165942i \(-0.994718\pi\)
0.999862 0.0165942i \(-0.00528235\pi\)
\(158\) 8.63532e8 2.52792e8i 1.38564 0.405635i
\(159\) 5.66719e7i 0.0886705i
\(160\) 0 0
\(161\) −1.49336e8 −0.222260
\(162\) 2.41676e8 + 8.25560e8i 0.350892 + 1.19864i
\(163\) −1.92932e7 −0.0273309 −0.0136654 0.999907i \(-0.504350\pi\)
−0.0136654 + 0.999907i \(0.504350\pi\)
\(164\) 6.53303e7 4.18350e7i 0.0903107 0.0578315i
\(165\) 0 0
\(166\) 2.79687e8 + 9.55405e8i 0.368333 + 1.25822i
\(167\) 2.03394e8 0.261500 0.130750 0.991415i \(-0.458261\pi\)
0.130750 + 0.991415i \(0.458261\pi\)
\(168\) −2.48833e8 2.16682e8i −0.312371 0.272010i
\(169\) −5.27425e8 −0.646567
\(170\) 0 0
\(171\) 5.66952e8i 0.663074i
\(172\) 2.07472e8 1.32857e8i 0.237053 0.151800i
\(173\) 4.16190e8i 0.464630i 0.972641 + 0.232315i \(0.0746301\pi\)
−0.972641 + 0.232315i \(0.925370\pi\)
\(174\) 1.01294e8 + 3.46019e8i 0.110507 + 0.377488i
\(175\) 0 0
\(176\) −1.25881e9 5.79843e8i −1.31193 0.604310i
\(177\) 4.04000e8i 0.411612i
\(178\) 2.71695e8 + 9.28104e8i 0.270646 + 0.924521i
\(179\) 5.41911e8i 0.527856i 0.964542 + 0.263928i \(0.0850182\pi\)
−0.964542 + 0.263928i \(0.914982\pi\)
\(180\) 0 0
\(181\) −1.43210e9 −1.33432 −0.667159 0.744915i \(-0.732490\pi\)
−0.667159 + 0.744915i \(0.732490\pi\)
\(182\) 4.62005e8 1.35248e8i 0.421076 0.123267i
\(183\) −2.06224e9 −1.83880
\(184\) −5.61907e8 4.89303e8i −0.490222 0.426881i
\(185\) 0 0
\(186\) 5.84794e8 1.71194e8i 0.488598 0.143033i
\(187\) −2.33816e9 −1.91209
\(188\) −1.88880e9 + 1.20952e9i −1.51201 + 0.968235i
\(189\) 2.81437e8 0.220564
\(190\) 0 0
\(191\) 1.75647e9i 1.31980i 0.751355 + 0.659898i \(0.229400\pi\)
−0.751355 + 0.659898i \(0.770600\pi\)
\(192\) −2.26321e8 1.63061e9i −0.166540 1.19990i
\(193\) 6.79519e8i 0.489748i 0.969555 + 0.244874i \(0.0787466\pi\)
−0.969555 + 0.244874i \(0.921253\pi\)
\(194\) 2.01671e9 5.90376e8i 1.42376 0.416794i
\(195\) 0 0
\(196\) 1.09751e9 7.02806e8i 0.743679 0.476224i
\(197\) 4.80726e8i 0.319178i 0.987184 + 0.159589i \(0.0510168\pi\)
−0.987184 + 0.159589i \(0.948983\pi\)
\(198\) −9.96050e8 + 2.91586e8i −0.648067 + 0.189717i
\(199\) 6.20901e8i 0.395922i 0.980210 + 0.197961i \(0.0634320\pi\)
−0.980210 + 0.197961i \(0.936568\pi\)
\(200\) 0 0
\(201\) 3.78685e9 2.32003
\(202\) 6.98541e8 + 2.38620e9i 0.419553 + 1.43318i
\(203\) 1.88529e8 0.111018
\(204\) −1.49772e9 2.33886e9i −0.864788 1.35047i
\(205\) 0 0
\(206\) −1.72263e8 5.88445e8i −0.0956582 0.326766i
\(207\) −5.57955e8 −0.303891
\(208\) 2.18152e9 + 1.00487e9i 1.16549 + 0.536854i
\(209\) −3.90894e9 −2.04868
\(210\) 0 0
\(211\) 2.32298e9i 1.17197i −0.810322 0.585984i \(-0.800708\pi\)
0.810322 0.585984i \(-0.199292\pi\)
\(212\) −7.97333e7 1.24513e8i −0.0394727 0.0616411i
\(213\) 2.03846e9i 0.990341i
\(214\) 1.51446e8 + 5.17334e8i 0.0722107 + 0.246670i
\(215\) 0 0
\(216\) 1.05896e9 + 9.22134e8i 0.486480 + 0.423623i
\(217\) 3.18626e8i 0.143695i
\(218\) 8.44647e8 + 2.88529e9i 0.373981 + 1.27751i
\(219\) 2.65483e9i 1.15414i
\(220\) 0 0
\(221\) 4.05204e9 1.69865
\(222\) −1.99811e9 + 5.84932e8i −0.822636 + 0.240820i
\(223\) −1.52445e9 −0.616446 −0.308223 0.951314i \(-0.599734\pi\)
−0.308223 + 0.951314i \(0.599734\pi\)
\(224\) −8.51563e8 1.25977e8i −0.338240 0.0500379i
\(225\) 0 0
\(226\) −3.74969e9 + 1.09769e9i −1.43735 + 0.420772i
\(227\) −7.14722e8 −0.269174 −0.134587 0.990902i \(-0.542971\pi\)
−0.134587 + 0.990902i \(0.542971\pi\)
\(228\) −2.50389e9 3.91012e9i −0.926565 1.44694i
\(229\) 4.05044e9 1.47286 0.736428 0.676516i \(-0.236511\pi\)
0.736428 + 0.676516i \(0.236511\pi\)
\(230\) 0 0
\(231\) 1.70355e9i 0.598285i
\(232\) 7.09377e8 + 6.17719e8i 0.244864 + 0.213226i
\(233\) 1.91668e9i 0.650318i −0.945659 0.325159i \(-0.894582\pi\)
0.945659 0.325159i \(-0.105418\pi\)
\(234\) 1.72616e9 5.05319e8i 0.575727 0.168540i
\(235\) 0 0
\(236\) 5.68399e8 + 8.87622e8i 0.183234 + 0.286141i
\(237\) 5.51807e9i 1.74901i
\(238\) −1.39378e9 + 4.08017e8i −0.434396 + 0.127166i
\(239\) 3.09701e9i 0.949186i 0.880205 + 0.474593i \(0.157405\pi\)
−0.880205 + 0.474593i \(0.842595\pi\)
\(240\) 0 0
\(241\) −1.93463e9 −0.573496 −0.286748 0.958006i \(-0.592574\pi\)
−0.286748 + 0.958006i \(0.592574\pi\)
\(242\) 1.04679e9 + 3.57582e9i 0.305211 + 1.04259i
\(243\) 3.02619e9 0.867903
\(244\) −4.53092e9 + 2.90143e9i −1.27828 + 0.818564i
\(245\) 0 0
\(246\) −1.33665e8 4.56597e8i −0.0364988 0.124679i
\(247\) 6.77420e9 1.82000
\(248\) 1.04398e9 1.19889e9i 0.275986 0.316937i
\(249\) 6.10515e9 1.58818
\(250\) 0 0
\(251\) 5.70277e9i 1.43678i 0.695639 + 0.718391i \(0.255121\pi\)
−0.695639 + 0.718391i \(0.744879\pi\)
\(252\) −5.42862e8 + 3.47629e8i −0.134613 + 0.0862012i
\(253\) 3.84691e9i 0.938923i
\(254\) 1.94374e8 + 6.63977e8i 0.0466986 + 0.159521i
\(255\) 0 0
\(256\) −2.79140e9 3.26417e9i −0.649924 0.759999i
\(257\) 1.76094e9i 0.403656i 0.979421 + 0.201828i \(0.0646882\pi\)
−0.979421 + 0.201828i \(0.935312\pi\)
\(258\) −4.24485e8 1.45003e9i −0.0958041 0.327264i
\(259\) 1.08867e9i 0.241935i
\(260\) 0 0
\(261\) 7.04389e8 0.151793
\(262\) −5.32816e9 + 1.55978e9i −1.13076 + 0.331023i
\(263\) 2.58682e8 0.0540683 0.0270342 0.999635i \(-0.491394\pi\)
0.0270342 + 0.999635i \(0.491394\pi\)
\(264\) −5.58172e9 + 6.40995e9i −1.14909 + 1.31959i
\(265\) 0 0
\(266\) −2.33012e9 + 6.82124e8i −0.465427 + 0.136250i
\(267\) 5.93069e9 1.16697
\(268\) 8.32003e9 5.32783e9i 1.61282 1.03279i
\(269\) 3.03788e9 0.580178 0.290089 0.957000i \(-0.406315\pi\)
0.290089 + 0.957000i \(0.406315\pi\)
\(270\) 0 0
\(271\) 1.65010e9i 0.305937i 0.988231 + 0.152968i \(0.0488833\pi\)
−0.988231 + 0.152968i \(0.951117\pi\)
\(272\) −6.58123e9 3.03149e9i −1.20235 0.553836i
\(273\) 2.95226e9i 0.531501i
\(274\) 6.98056e9 2.04350e9i 1.23848 0.362554i
\(275\) 0 0
\(276\) −3.84807e9 + 2.46416e9i −0.663141 + 0.424651i
\(277\) 5.17850e9i 0.879599i −0.898096 0.439800i \(-0.855049\pi\)
0.898096 0.439800i \(-0.144951\pi\)
\(278\) −1.91176e9 + 5.59654e8i −0.320078 + 0.0937002i
\(279\) 1.19046e9i 0.196471i
\(280\) 0 0
\(281\) 8.47832e9 1.35983 0.679915 0.733291i \(-0.262017\pi\)
0.679915 + 0.733291i \(0.262017\pi\)
\(282\) 3.86448e9 + 1.32010e10i 0.611075 + 2.08742i
\(283\) 3.20005e8 0.0498898 0.0249449 0.999689i \(-0.492059\pi\)
0.0249449 + 0.999689i \(0.492059\pi\)
\(284\) 2.86798e9 + 4.47868e9i 0.440861 + 0.688456i
\(285\) 0 0
\(286\) −3.48400e9 1.19013e10i −0.520732 1.77881i
\(287\) −2.48778e8 −0.0366677
\(288\) −3.18163e9 4.70679e8i −0.462467 0.0684156i
\(289\) −5.24844e9 −0.752383
\(290\) 0 0
\(291\) 1.28870e10i 1.79713i
\(292\) −3.73516e9 5.83288e9i −0.513780 0.802327i
\(293\) 7.87248e9i 1.06817i −0.845430 0.534086i \(-0.820656\pi\)
0.845430 0.534086i \(-0.179344\pi\)
\(294\) −2.24551e9 7.67059e9i −0.300556 1.02669i
\(295\) 0 0
\(296\) −3.56706e9 + 4.09634e9i −0.464669 + 0.533617i
\(297\) 7.24983e9i 0.931756i
\(298\) −9.79811e8 3.34701e9i −0.124245 0.424416i
\(299\) 6.66670e9i 0.834116i
\(300\) 0 0
\(301\) −7.90052e8 −0.0962475
\(302\) 3.07595e9 9.00459e8i 0.369786 0.108252i
\(303\) 1.52481e10 1.80903
\(304\) −1.10025e10 5.06805e9i −1.28824 0.593399i
\(305\) 0 0
\(306\) −5.20747e9 + 1.52445e9i −0.593938 + 0.173871i
\(307\) −1.47434e10 −1.65976 −0.829881 0.557941i \(-0.811592\pi\)
−0.829881 + 0.557941i \(0.811592\pi\)
\(308\) 2.39678e9 + 3.74285e9i 0.266333 + 0.415910i
\(309\) −3.76023e9 −0.412459
\(310\) 0 0
\(311\) 6.36308e9i 0.680184i 0.940392 + 0.340092i \(0.110458\pi\)
−0.940392 + 0.340092i \(0.889542\pi\)
\(312\) 9.67314e9 1.11085e10i 1.02082 1.17229i
\(313\) 4.35717e9i 0.453970i −0.973898 0.226985i \(-0.927113\pi\)
0.973898 0.226985i \(-0.0728869\pi\)
\(314\) −3.09636e8 + 9.06435e7i −0.0318517 + 0.00932434i
\(315\) 0 0
\(316\) −7.76353e9 1.21237e10i −0.778594 1.21586i
\(317\) 1.02074e9i 0.101083i −0.998722 0.0505413i \(-0.983905\pi\)
0.998722 0.0505413i \(-0.0160947\pi\)
\(318\) −8.70228e8 + 2.54752e8i −0.0850990 + 0.0249121i
\(319\) 4.85652e9i 0.468989i
\(320\) 0 0
\(321\) 3.30583e9 0.311358
\(322\) 6.71299e8 + 2.29314e9i 0.0624443 + 0.213308i
\(323\) −2.04364e10 −1.87757
\(324\) 1.15905e10 7.42214e9i 1.05178 0.673518i
\(325\) 0 0
\(326\) 8.67271e7 + 2.96258e8i 0.00767865 + 0.0262301i
\(327\) 1.84373e10 1.61253
\(328\) −9.36074e8 8.15125e8i −0.0808751 0.0704253i
\(329\) 7.19256e9 0.613903
\(330\) 0 0
\(331\) 1.01219e10i 0.843235i −0.906774 0.421617i \(-0.861463\pi\)
0.906774 0.421617i \(-0.138537\pi\)
\(332\) 1.34135e10 8.58951e9i 1.10405 0.706995i
\(333\) 4.06754e9i 0.330792i
\(334\) −9.14299e8 3.12322e9i −0.0734687 0.250967i
\(335\) 0 0
\(336\) −2.20871e9 + 4.79500e9i −0.173293 + 0.376211i
\(337\) 1.94388e9i 0.150713i −0.997157 0.0753563i \(-0.975991\pi\)
0.997157 0.0753563i \(-0.0240094\pi\)
\(338\) 2.37089e9 + 8.09890e9i 0.181654 + 0.620525i
\(339\) 2.39609e10i 1.81428i
\(340\) 0 0
\(341\) −8.20782e9 −0.607030
\(342\) −8.70586e9 + 2.54857e9i −0.636367 + 0.186291i
\(343\) −8.91196e9 −0.643868
\(344\) −2.97272e9 2.58862e9i −0.212286 0.184856i
\(345\) 0 0
\(346\) 6.39083e9 1.87087e9i 0.445916 0.130538i
\(347\) −2.15696e10 −1.48773 −0.743865 0.668330i \(-0.767009\pi\)
−0.743865 + 0.668330i \(0.767009\pi\)
\(348\) 4.85798e9 3.11087e9i 0.331237 0.212112i
\(349\) −1.37934e10 −0.929760 −0.464880 0.885374i \(-0.653903\pi\)
−0.464880 + 0.885374i \(0.653903\pi\)
\(350\) 0 0
\(351\) 1.25640e10i 0.827749i
\(352\) −3.24517e9 + 2.19363e10i −0.211382 + 1.42887i
\(353\) 1.69884e10i 1.09409i 0.837102 + 0.547047i \(0.184248\pi\)
−0.837102 + 0.547047i \(0.815752\pi\)
\(354\) 6.20364e9 1.81607e9i 0.395033 0.115643i
\(355\) 0 0
\(356\) 1.30302e10 8.34406e9i 0.811244 0.519490i
\(357\) 8.90639e9i 0.548314i
\(358\) 8.32134e9 2.43601e9i 0.506595 0.148302i
\(359\) 1.35600e10i 0.816358i 0.912902 + 0.408179i \(0.133836\pi\)
−0.912902 + 0.408179i \(0.866164\pi\)
\(360\) 0 0
\(361\) −1.71821e10 −1.01169
\(362\) 6.43761e9 + 2.19907e10i 0.374878 + 1.28057i
\(363\) 2.28499e10 1.31601
\(364\) −4.15362e9 6.48637e9i −0.236604 0.369484i
\(365\) 0 0
\(366\) 9.27023e9 + 3.16669e10i 0.516614 + 1.76474i
\(367\) −9.93203e9 −0.547487 −0.273743 0.961803i \(-0.588262\pi\)
−0.273743 + 0.961803i \(0.588262\pi\)
\(368\) −4.98763e9 + 1.08279e10i −0.271959 + 0.590410i
\(369\) −9.29491e8 −0.0501349
\(370\) 0 0
\(371\) 4.74145e8i 0.0250274i
\(372\) −5.25756e9 8.21028e9i −0.274544 0.428733i
\(373\) 2.08933e10i 1.07937i −0.841867 0.539686i \(-0.818543\pi\)
0.841867 0.539686i \(-0.181457\pi\)
\(374\) 1.05105e10 + 3.59037e10i 0.537203 + 1.83507i
\(375\) 0 0
\(376\) 2.70634e10 + 2.35666e10i 1.35404 + 1.17908i
\(377\) 8.41636e9i 0.416638i
\(378\) −1.26512e9 4.32162e9i −0.0619677 0.211680i
\(379\) 2.78733e10i 1.35093i −0.737394 0.675463i \(-0.763944\pi\)
0.737394 0.675463i \(-0.236056\pi\)
\(380\) 0 0
\(381\) 4.24289e9 0.201355
\(382\) 2.69715e10 7.89571e9i 1.26664 0.370798i
\(383\) −3.14260e10 −1.46048 −0.730238 0.683193i \(-0.760591\pi\)
−0.730238 + 0.683193i \(0.760591\pi\)
\(384\) −2.40216e10 + 1.08052e10i −1.10478 + 0.496946i
\(385\) 0 0
\(386\) 1.04344e10 3.05459e9i 0.470022 0.137595i
\(387\) −2.95182e9 −0.131597
\(388\) −1.81311e10 2.83138e10i −0.800013 1.24931i
\(389\) 2.45574e10 1.07247 0.536233 0.844070i \(-0.319847\pi\)
0.536233 + 0.844070i \(0.319847\pi\)
\(390\) 0 0
\(391\) 2.01121e10i 0.860500i
\(392\) −1.57255e10 1.36937e10i −0.665980 0.579930i
\(393\) 3.40476e10i 1.42730i
\(394\) 7.38181e9 2.16097e9i 0.306322 0.0896733i
\(395\) 0 0
\(396\) 8.95492e9 + 1.39842e10i 0.364151 + 0.568663i
\(397\) 3.64363e10i 1.46681i 0.679794 + 0.733403i \(0.262069\pi\)
−0.679794 + 0.733403i \(0.737931\pi\)
\(398\) 9.53428e9 2.79109e9i 0.379975 0.111235i
\(399\) 1.48897e10i 0.587483i
\(400\) 0 0
\(401\) −1.07267e10 −0.414847 −0.207423 0.978251i \(-0.566508\pi\)
−0.207423 + 0.978251i \(0.566508\pi\)
\(402\) −1.70227e10 5.81492e10i −0.651816 2.22659i
\(403\) 1.42242e10 0.539270
\(404\) 3.35013e10 2.14530e10i 1.25758 0.805308i
\(405\) 0 0
\(406\) −8.47480e8 2.89497e9i −0.0311907 0.106547i
\(407\) 2.80443e10 1.02204
\(408\) −2.91820e10 + 3.35120e10i −1.05311 + 1.20937i
\(409\) 3.91731e7 0.00139989 0.000699947 1.00000i \(-0.499777\pi\)
0.000699947 1.00000i \(0.499777\pi\)
\(410\) 0 0
\(411\) 4.46066e10i 1.56326i
\(412\) −8.26154e9 + 5.29038e9i −0.286729 + 0.183611i
\(413\) 3.38006e9i 0.116178i
\(414\) 2.50813e9 + 8.56771e9i 0.0853785 + 0.291651i
\(415\) 0 0
\(416\) 5.62389e9 3.80156e10i 0.187786 1.26937i
\(417\) 1.22164e10i 0.404016i
\(418\) 1.75715e10 + 6.00239e10i 0.575579 + 1.96616i
\(419\) 3.53613e10i 1.14729i −0.819105 0.573644i \(-0.805529\pi\)
0.819105 0.573644i \(-0.194471\pi\)
\(420\) 0 0
\(421\) 9.81579e9 0.312462 0.156231 0.987721i \(-0.450066\pi\)
0.156231 + 0.987721i \(0.450066\pi\)
\(422\) −3.56707e10 + 1.04423e10i −1.12476 + 0.329266i
\(423\) 2.68731e10 0.839375
\(424\) −1.55354e9 + 1.78406e9i −0.0480685 + 0.0552009i
\(425\) 0 0
\(426\) 3.13018e10 9.16334e9i 0.950452 0.278237i
\(427\) 1.72537e10 0.519005
\(428\) 7.26317e9 4.65106e9i 0.216447 0.138604i
\(429\) −7.60504e10 −2.24529
\(430\) 0 0
\(431\) 9.11726e9i 0.264214i 0.991235 + 0.132107i \(0.0421742\pi\)
−0.991235 + 0.132107i \(0.957826\pi\)
\(432\) 9.39962e9 2.04061e10i 0.269883 0.585903i
\(433\) 4.67005e9i 0.132852i −0.997791 0.0664262i \(-0.978840\pi\)
0.997791 0.0664262i \(-0.0211597\pi\)
\(434\) −4.89268e9 + 1.43229e9i −0.137907 + 0.0403713i
\(435\) 0 0
\(436\) 4.05084e10 2.59400e10i 1.12098 0.717835i
\(437\) 3.36235e10i 0.921970i
\(438\) −4.07664e10 + 1.19340e10i −1.10766 + 0.324258i
\(439\) 3.39406e10i 0.913822i −0.889512 0.456911i \(-0.848956\pi\)
0.889512 0.456911i \(-0.151044\pi\)
\(440\) 0 0
\(441\) −1.56150e10 −0.412844
\(442\) −1.82148e10 6.22213e10i −0.477238 1.63023i
\(443\) 7.20845e9 0.187166 0.0935830 0.995611i \(-0.470168\pi\)
0.0935830 + 0.995611i \(0.470168\pi\)
\(444\) 1.79639e10 + 2.80527e10i 0.462241 + 0.721843i
\(445\) 0 0
\(446\) 6.85276e9 + 2.34088e10i 0.173191 + 0.591617i
\(447\) −2.13878e10 −0.535717
\(448\) 1.89351e9 + 1.36425e10i 0.0470063 + 0.338674i
\(449\) 2.32977e10 0.573229 0.286614 0.958046i \(-0.407470\pi\)
0.286614 + 0.958046i \(0.407470\pi\)
\(450\) 0 0
\(451\) 6.40852e9i 0.154900i
\(452\) 3.37113e10 + 5.26442e10i 0.807648 + 1.26124i
\(453\) 1.96556e10i 0.466761i
\(454\) 3.21283e9 + 1.09749e10i 0.0756248 + 0.258333i
\(455\) 0 0
\(456\) −4.87864e10 + 5.60254e10i −1.12834 + 1.29576i
\(457\) 1.72652e10i 0.395829i 0.980219 + 0.197915i \(0.0634168\pi\)
−0.980219 + 0.197915i \(0.936583\pi\)
\(458\) −1.82076e10 6.21967e10i −0.413800 1.41353i
\(459\) 3.79030e10i 0.853932i
\(460\) 0 0
\(461\) −5.65725e10 −1.25257 −0.626285 0.779594i \(-0.715425\pi\)
−0.626285 + 0.779594i \(0.715425\pi\)
\(462\) 2.61590e10 7.65785e9i 0.574187 0.168089i
\(463\) −7.57511e10 −1.64841 −0.824205 0.566292i \(-0.808377\pi\)
−0.824205 + 0.566292i \(0.808377\pi\)
\(464\) 6.29662e9 1.36697e10i 0.135842 0.294908i
\(465\) 0 0
\(466\) −2.94317e10 + 8.61589e9i −0.624124 + 0.182708i
\(467\) −5.63076e10 −1.18386 −0.591929 0.805990i \(-0.701633\pi\)
−0.591929 + 0.805990i \(0.701633\pi\)
\(468\) −1.55189e10 2.42346e10i −0.323502 0.505187i
\(469\) −3.16827e10 −0.654833
\(470\) 0 0
\(471\) 1.97861e9i 0.0402046i
\(472\) 1.10748e10 1.27181e10i 0.223136 0.256245i
\(473\) 2.03518e10i 0.406591i
\(474\) −8.47330e10 + 2.48049e10i −1.67857 + 0.491388i
\(475\) 0 0
\(476\) 1.25307e10 + 1.95681e10i 0.244088 + 0.381172i
\(477\) 1.77152e9i 0.0342193i
\(478\) 4.75563e10 1.39218e10i 0.910955 0.266675i
\(479\) 8.37112e10i 1.59016i 0.606502 + 0.795082i \(0.292572\pi\)
−0.606502 + 0.795082i \(0.707428\pi\)
\(480\) 0 0
\(481\) −4.86008e10 −0.907952
\(482\) 8.69659e9 + 2.97073e10i 0.161124 + 0.550397i
\(483\) 1.46534e10 0.269247
\(484\) 5.02031e10 3.21482e10i 0.914849 0.585835i
\(485\) 0 0
\(486\) −1.36034e10 4.64688e10i −0.243838 0.832945i
\(487\) 3.58034e10 0.636514 0.318257 0.948004i \(-0.396902\pi\)
0.318257 + 0.948004i \(0.396902\pi\)
\(488\) 6.49205e10 + 5.65322e10i 1.14473 + 0.996820i
\(489\) 1.89312e9 0.0331088
\(490\) 0 0
\(491\) 5.45993e10i 0.939423i −0.882820 0.469712i \(-0.844358\pi\)
0.882820 0.469712i \(-0.155642\pi\)
\(492\) −6.41045e9 + 4.10501e9i −0.109403 + 0.0700574i
\(493\) 2.53905e10i 0.429817i
\(494\) −3.04515e10 1.04022e11i −0.511330 1.74669i
\(495\) 0 0
\(496\) −2.31026e10 1.06417e10i −0.381710 0.175826i
\(497\) 1.70548e10i 0.279525i
\(498\) −2.74440e10 9.37479e10i −0.446200 1.52421i
\(499\) 6.97805e10i 1.12547i 0.826639 + 0.562733i \(0.190250\pi\)
−0.826639 + 0.562733i \(0.809750\pi\)
\(500\) 0 0
\(501\) −1.99578e10 −0.316782
\(502\) 8.75692e10 2.56352e10i 1.37891 0.403666i
\(503\) 6.40878e10 1.00116 0.500580 0.865691i \(-0.333120\pi\)
0.500580 + 0.865691i \(0.333120\pi\)
\(504\) 7.77831e9 + 6.77329e9i 0.120549 + 0.104973i
\(505\) 0 0
\(506\) 5.90714e10 1.72927e10i 0.901105 0.263791i
\(507\) 5.17529e10 0.783254
\(508\) 9.32198e9 5.96944e9i 0.139976 0.0896353i
\(509\) 1.03640e11 1.54402 0.772012 0.635608i \(-0.219250\pi\)
0.772012 + 0.635608i \(0.219250\pi\)
\(510\) 0 0
\(511\) 2.22116e10i 0.325759i
\(512\) −3.75752e10 + 5.75367e10i −0.546791 + 0.837269i
\(513\) 6.33664e10i 0.914933i
\(514\) 2.70402e10 7.91580e9i 0.387398 0.113408i
\(515\) 0 0
\(516\) −2.03579e10 + 1.30364e10i −0.287166 + 0.183891i
\(517\) 1.85281e11i 2.59339i
\(518\) 1.67172e10 4.89383e9i 0.232190 0.0679719i
\(519\) 4.08382e10i 0.562855i
\(520\) 0 0
\(521\) −3.35410e10 −0.455225 −0.227612 0.973752i \(-0.573092\pi\)
−0.227612 + 0.973752i \(0.573092\pi\)
\(522\) −3.16638e9 1.08163e10i −0.0426463 0.145679i
\(523\) −3.32143e10 −0.443934 −0.221967 0.975054i \(-0.571248\pi\)
−0.221967 + 0.975054i \(0.571248\pi\)
\(524\) 4.79025e10 + 7.48053e10i 0.635379 + 0.992219i
\(525\) 0 0
\(526\) −1.16283e9 3.97220e9i −0.0151906 0.0518906i
\(527\) −4.29115e10 −0.556329
\(528\) 1.23519e11 + 5.68963e10i 1.58928 + 0.732063i
\(529\) −4.52211e10 −0.577455
\(530\) 0 0
\(531\) 1.26287e10i 0.158848i
\(532\) 2.09488e10 + 3.27140e10i 0.261524 + 0.408401i
\(533\) 1.11060e10i 0.137609i
\(534\) −2.66597e10 9.10690e10i −0.327862 1.11997i
\(535\) 0 0
\(536\) −1.19212e11 1.03809e11i −1.44431 1.25769i
\(537\) 5.31743e10i 0.639447i
\(538\) −1.36559e10 4.66483e10i −0.163002 0.556810i
\(539\) 1.07660e11i 1.27555i
\(540\) 0 0
\(541\) 1.39040e11 1.62312 0.811562 0.584266i \(-0.198618\pi\)
0.811562 + 0.584266i \(0.198618\pi\)
\(542\) 2.53381e10 7.41754e9i 0.293614 0.0859533i
\(543\) 1.40523e11 1.61640
\(544\) −1.69662e10 + 1.14686e11i −0.193726 + 1.30952i
\(545\) 0 0
\(546\) −4.53336e10 + 1.32711e10i −0.510093 + 0.149326i
\(547\) −7.05870e10 −0.788452 −0.394226 0.919013i \(-0.628987\pi\)
−0.394226 + 0.919013i \(0.628987\pi\)
\(548\) −6.27583e10 9.80043e10i −0.695903 1.08673i
\(549\) 6.44640e10 0.709623
\(550\) 0 0
\(551\) 4.24479e10i 0.460521i
\(552\) 5.51364e10 + 4.80123e10i 0.593857 + 0.517125i
\(553\) 4.61669e10i 0.493662i
\(554\) −7.95187e10 + 2.32785e10i −0.844171 + 0.247124i
\(555\) 0 0
\(556\) 1.71876e10 + 2.68404e10i 0.179852 + 0.280860i
\(557\) 1.36274e11i 1.41577i 0.706328 + 0.707884i \(0.250350\pi\)
−0.706328 + 0.707884i \(0.749650\pi\)
\(558\) −1.82802e10 + 5.35138e9i −0.188557 + 0.0551987i
\(559\) 3.52696e10i 0.361205i
\(560\) 0 0
\(561\) 2.29429e11 2.31631
\(562\) −3.81119e10 1.30189e11i −0.382046 1.30506i
\(563\) −9.28198e10 −0.923862 −0.461931 0.886916i \(-0.652843\pi\)
−0.461931 + 0.886916i \(0.652843\pi\)
\(564\) 1.85336e11 1.18682e11i 1.83166 1.17292i
\(565\) 0 0
\(566\) −1.43849e9 4.91386e9i −0.0140166 0.0478803i
\(567\) −4.41368e10 −0.427040
\(568\) 5.58804e10 6.41720e10i 0.536866 0.616527i
\(569\) 3.45537e10 0.329644 0.164822 0.986323i \(-0.447295\pi\)
0.164822 + 0.986323i \(0.447295\pi\)
\(570\) 0 0
\(571\) 9.27891e10i 0.872876i 0.899734 + 0.436438i \(0.143760\pi\)
−0.899734 + 0.436438i \(0.856240\pi\)
\(572\) −1.67089e11 + 1.06997e11i −1.56086 + 0.999515i
\(573\) 1.72351e11i 1.59881i
\(574\) 1.11831e9 + 3.82012e9i 0.0103018 + 0.0351908i
\(575\) 0 0
\(576\) 7.07460e9 + 5.09716e10i 0.0642706 + 0.463061i
\(577\) 3.75444e10i 0.338721i −0.985554 0.169361i \(-0.945830\pi\)
0.985554 0.169361i \(-0.0541702\pi\)
\(578\) 2.35929e10 + 8.05927e10i 0.211383 + 0.722079i
\(579\) 6.66770e10i 0.593282i
\(580\) 0 0
\(581\) −5.10787e10 −0.448266
\(582\) −1.97887e11 + 5.79299e10i −1.72475 + 0.504906i
\(583\) 1.22140e10 0.105726
\(584\) −7.27767e10 + 8.35754e10i −0.625664 + 0.718501i
\(585\) 0 0
\(586\) −1.20886e11 + 3.53885e10i −1.02515 + 0.300104i
\(587\) 2.66542e10 0.224498 0.112249 0.993680i \(-0.464195\pi\)
0.112249 + 0.993680i \(0.464195\pi\)
\(588\) −1.07692e11 + 6.89620e10i −0.900896 + 0.576900i
\(589\) −7.17395e10 −0.596070
\(590\) 0 0
\(591\) 4.71706e10i 0.386653i
\(592\) 7.89363e10 + 3.63602e10i 0.642673 + 0.296033i
\(593\) 1.07542e11i 0.869681i 0.900508 + 0.434840i \(0.143195\pi\)
−0.900508 + 0.434840i \(0.856805\pi\)
\(594\) −1.11325e11 + 3.25896e10i −0.894227 + 0.261778i
\(595\) 0 0
\(596\) −4.69907e10 + 3.00911e10i −0.372415 + 0.238480i
\(597\) 6.09251e10i 0.479622i
\(598\) −1.02371e11 + 2.99683e10i −0.800519 + 0.234346i
\(599\) 5.10104e10i 0.396234i −0.980178 0.198117i \(-0.936517\pi\)
0.980178 0.198117i \(-0.0634825\pi\)
\(600\) 0 0
\(601\) 1.64304e11 1.25936 0.629681 0.776854i \(-0.283186\pi\)
0.629681 + 0.776854i \(0.283186\pi\)
\(602\) 3.55146e9 + 1.21317e10i 0.0270409 + 0.0923709i
\(603\) −1.18374e11 −0.895337
\(604\) −2.76541e10 4.31851e10i −0.207784 0.324479i
\(605\) 0 0
\(606\) −6.85435e10 2.34143e11i −0.508248 1.73616i
\(607\) 2.64985e11 1.95194 0.975969 0.217909i \(-0.0699235\pi\)
0.975969 + 0.217909i \(0.0699235\pi\)
\(608\) −2.83641e10 + 1.91732e11i −0.207565 + 1.40307i
\(609\) −1.84992e10 −0.134488
\(610\) 0 0
\(611\) 3.21092e11i 2.30390i
\(612\) 4.68175e10 + 7.31109e10i 0.333735 + 0.521167i
\(613\) 2.58975e11i 1.83407i 0.398804 + 0.917036i \(0.369425\pi\)
−0.398804 + 0.917036i \(0.630575\pi\)
\(614\) 6.62750e10 + 2.26394e11i 0.466312 + 1.59291i
\(615\) 0 0
\(616\) 4.66995e10 5.36288e10i 0.324331 0.372456i
\(617\) 2.43563e10i 0.168063i 0.996463 + 0.0840313i \(0.0267796\pi\)
−0.996463 + 0.0840313i \(0.973220\pi\)
\(618\) 1.69031e10 + 5.77404e10i 0.115881 + 0.395846i
\(619\) 6.16901e10i 0.420197i −0.977680 0.210098i \(-0.932622\pi\)
0.977680 0.210098i \(-0.0673784\pi\)
\(620\) 0 0
\(621\) −6.23608e10 −0.419320
\(622\) 9.77087e10 2.86035e10i 0.652787 0.191098i
\(623\) −4.96191e10 −0.329380
\(624\) −2.14059e11 9.86015e10i −1.41187 0.650347i
\(625\) 0 0
\(626\) −6.69068e10 + 1.95864e10i −0.435685 + 0.127543i
\(627\) 3.83560e11 2.48178
\(628\) 2.78376e9 + 4.34717e9i 0.0178975 + 0.0279491i
\(629\) 1.46619e11 0.936673
\(630\) 0 0
\(631\) 2.91259e10i 0.183722i 0.995772 + 0.0918611i \(0.0292816\pi\)
−0.995772 + 0.0918611i \(0.970718\pi\)
\(632\) −1.51267e11 + 1.73712e11i −0.948145 + 1.08883i
\(633\) 2.27940e11i 1.41973i
\(634\) −1.56740e10 + 4.58844e9i −0.0970113 + 0.0283993i
\(635\) 0 0
\(636\) 7.82373e9 + 1.22177e10i 0.0478173 + 0.0746723i
\(637\) 1.86575e11i 1.13317i
\(638\) −7.45745e10 + 2.18311e10i −0.450099 + 0.131763i
\(639\) 6.37207e10i 0.382188i
\(640\) 0 0
\(641\) 2.97316e11 1.76111 0.880555 0.473943i \(-0.157170\pi\)
0.880555 + 0.473943i \(0.157170\pi\)
\(642\) −1.48604e10 5.07628e10i −0.0874764 0.298817i
\(643\) 2.02204e11 1.18289 0.591447 0.806344i \(-0.298557\pi\)
0.591447 + 0.806344i \(0.298557\pi\)
\(644\) 3.21948e10 2.06163e10i 0.187173 0.119858i
\(645\) 0 0
\(646\) 9.18663e10 + 3.13813e11i 0.527504 + 1.80194i
\(647\) −2.98562e11 −1.70380 −0.851898 0.523708i \(-0.824548\pi\)
−0.851898 + 0.523708i \(0.824548\pi\)
\(648\) −1.66073e11 1.44615e11i −0.941888 0.820188i
\(649\) −8.70705e10 −0.490786
\(650\) 0 0
\(651\) 3.12648e10i 0.174073i
\(652\) 4.15934e9 2.66349e9i 0.0230162 0.0147387i
\(653\) 3.34280e10i 0.183847i −0.995766 0.0919237i \(-0.970698\pi\)
0.995766 0.0919237i \(-0.0293016\pi\)
\(654\) −8.28799e10 2.83116e11i −0.453042 1.54758i
\(655\) 0 0
\(656\) −8.30883e9 + 1.80381e10i −0.0448668 + 0.0974037i
\(657\) 8.29877e10i 0.445402i
\(658\) −3.23321e10 1.10446e11i −0.172477 0.589176i
\(659\) 7.70116e10i 0.408333i −0.978936 0.204166i \(-0.934552\pi\)
0.978936 0.204166i \(-0.0654484\pi\)
\(660\) 0 0
\(661\) −2.47987e11 −1.29904 −0.649520 0.760344i \(-0.725030\pi\)
−0.649520 + 0.760344i \(0.725030\pi\)
\(662\) −1.55427e11 + 4.55000e10i −0.809271 + 0.236908i
\(663\) −3.97601e11 −2.05775
\(664\) −1.92193e11 1.67360e11i −0.988704 0.860954i
\(665\) 0 0
\(666\) 6.24593e10 1.82845e10i 0.317468 0.0929363i
\(667\) −4.17743e10 −0.211060
\(668\) −4.38488e10 + 2.80791e10i −0.220218 + 0.141019i
\(669\) 1.49585e11 0.746765
\(670\) 0 0
\(671\) 4.44457e11i 2.19250i
\(672\) 8.35585e10 + 1.23613e10i 0.409745 + 0.0606161i
\(673\) 1.03219e11i 0.503151i −0.967838 0.251576i \(-0.919051\pi\)
0.967838 0.251576i \(-0.0809487\pi\)
\(674\) −2.98493e10 + 8.73816e9i −0.144642 + 0.0423429i
\(675\) 0 0
\(676\) 1.13705e11 7.28127e10i 0.544496 0.348674i
\(677\) 3.83549e10i 0.182585i −0.995824 0.0912926i \(-0.970900\pi\)
0.995824 0.0912926i \(-0.0290999\pi\)
\(678\) 3.67933e11 1.07710e11i 1.74121 0.509725i
\(679\) 1.07819e11i 0.507243i
\(680\) 0 0
\(681\) 7.01312e10 0.326079
\(682\) 3.68959e10 + 1.26036e11i 0.170546 + 0.582580i
\(683\) 2.47284e10 0.113635 0.0568177 0.998385i \(-0.481905\pi\)
0.0568177 + 0.998385i \(0.481905\pi\)
\(684\) 7.82695e10 + 1.22227e11i 0.357576 + 0.558396i
\(685\) 0 0
\(686\) 4.00612e10 + 1.36848e11i 0.180895 + 0.617934i
\(687\) −3.97444e11 −1.78422
\(688\) −2.63866e10 + 5.72842e10i −0.117769 + 0.255671i
\(689\) −2.11669e10 −0.0939247
\(690\) 0 0
\(691\) 3.63864e10i 0.159598i 0.996811 + 0.0797988i \(0.0254278\pi\)
−0.996811 + 0.0797988i \(0.974572\pi\)
\(692\) −5.74564e10 8.97248e10i −0.250561 0.391281i
\(693\) 5.32517e10i 0.230887i
\(694\) 9.69601e10 + 3.31213e11i 0.417979 + 1.42781i
\(695\) 0 0
\(696\) −6.96067e10 6.06129e10i −0.296629 0.258302i
\(697\) 3.35046e10i 0.141962i
\(698\) 6.20045e10 + 2.11806e11i 0.261217 + 0.892311i
\(699\) 1.88072e11i 0.787797i
\(700\) 0 0
\(701\) 1.36852e11 0.566732 0.283366 0.959012i \(-0.408549\pi\)
0.283366 + 0.959012i \(0.408549\pi\)
\(702\) 1.92927e11 5.64778e10i 0.794409 0.232557i
\(703\) 2.45118e11 1.00358
\(704\) 3.51431e11 4.87770e10i 1.43070 0.198575i
\(705\) 0 0
\(706\) 2.60867e11 7.63667e10i 1.05003 0.307387i
\(707\) −1.27573e11 −0.510601
\(708\) −5.57735e10 8.70967e10i −0.221970 0.346632i
\(709\) −1.84677e11 −0.730848 −0.365424 0.930841i \(-0.619076\pi\)
−0.365424 + 0.930841i \(0.619076\pi\)
\(710\) 0 0
\(711\) 1.72490e11i 0.674972i
\(712\) −1.86701e11 1.62578e11i −0.726486 0.632618i
\(713\) 7.06011e10i 0.273183i
\(714\) 1.36763e11 4.00362e10i 0.526229 0.154049i
\(715\) 0 0
\(716\) −7.48125e10 1.16828e11i −0.284657 0.444525i
\(717\) 3.03890e11i 1.14985i
\(718\) 2.08221e11 6.09550e10i 0.783477 0.229357i
\(719\) 2.26289e11i 0.846735i 0.905958 + 0.423368i \(0.139152\pi\)
−0.905958 + 0.423368i \(0.860848\pi\)
\(720\) 0 0
\(721\) 3.14600e10 0.116417
\(722\) 7.72373e10 + 2.63841e11i 0.284235 + 0.970941i
\(723\) 1.89833e11 0.694735
\(724\) 3.08741e11 1.97706e11i 1.12367 0.719558i
\(725\) 0 0
\(726\) −1.02715e11 3.50873e11i −0.369733 1.26300i
\(727\) 6.89485e10 0.246824 0.123412 0.992356i \(-0.460616\pi\)
0.123412 + 0.992356i \(0.460616\pi\)
\(728\) −8.09303e10 + 9.29388e10i −0.288128 + 0.330881i
\(729\) 5.57976e10 0.197563
\(730\) 0 0
\(731\) 1.06402e11i 0.372631i
\(732\) 4.44591e11 2.84699e11i 1.54852 0.991612i
\(733\) 3.05441e11i 1.05806i −0.848603 0.529031i \(-0.822556\pi\)
0.848603 0.529031i \(-0.177444\pi\)
\(734\) 4.46466e10 + 1.52512e11i 0.153817 + 0.525435i
\(735\) 0 0
\(736\) 1.88689e11 + 2.79140e10i 0.643036 + 0.0951284i
\(737\) 8.16147e11i 2.76629i
\(738\) 4.17827e9 + 1.42729e10i 0.0140854 + 0.0481155i
\(739\) 3.94495e11i 1.32271i 0.750074 + 0.661354i \(0.230018\pi\)
−0.750074 + 0.661354i \(0.769982\pi\)
\(740\) 0 0
\(741\) −6.64710e11 −2.20475
\(742\) 7.28076e9 2.13139e9i 0.0240193 0.00703147i
\(743\) −5.69341e10 −0.186817 −0.0934086 0.995628i \(-0.529776\pi\)
−0.0934086 + 0.995628i \(0.529776\pi\)
\(744\) −1.02440e11 + 1.17640e11i −0.334331 + 0.383939i
\(745\) 0 0
\(746\) −3.20828e11 + 9.39198e10i −1.03590 + 0.303251i
\(747\) −1.90842e11 −0.612902
\(748\) 5.04075e11 3.22790e11i 1.61023 1.03113i
\(749\) −2.76582e10 −0.0878813
\(750\) 0 0
\(751\) 2.12038e11i 0.666583i −0.942824 0.333292i \(-0.891841\pi\)
0.942824 0.333292i \(-0.108159\pi\)
\(752\) 2.40222e11 5.21510e11i 0.751174 1.63076i
\(753\) 5.59577e11i 1.74052i
\(754\) 1.29238e11 3.78334e10i 0.399856 0.117055i
\(755\) 0 0
\(756\) −6.06739e10 + 3.88533e10i −0.185744 + 0.118943i
\(757\) 6.46697e10i 0.196933i −0.995140 0.0984663i \(-0.968606\pi\)
0.995140 0.0984663i \(-0.0313937\pi\)
\(758\) −4.28010e11 + 1.25297e11i −1.29651 + 0.379544i
\(759\) 3.77473e11i 1.13741i
\(760\) 0 0
\(761\) −2.88384e11 −0.859869 −0.429935 0.902860i \(-0.641463\pi\)
−0.429935 + 0.902860i \(0.641463\pi\)
\(762\) −1.90727e10 6.51519e10i −0.0565708 0.193245i
\(763\) −1.54256e11 −0.455139
\(764\) −2.42486e11 3.78670e11i −0.711726 1.11144i
\(765\) 0 0
\(766\) 1.41267e11 + 4.82564e11i 0.410322 + 1.40165i
\(767\) 1.50893e11 0.436002
\(768\) 2.73903e11 + 3.20293e11i 0.787320 + 0.920666i
\(769\) −3.09585e11 −0.885267 −0.442633 0.896703i \(-0.645956\pi\)
−0.442633 + 0.896703i \(0.645956\pi\)
\(770\) 0 0
\(771\) 1.72790e11i 0.488991i
\(772\) −9.38097e10 1.46495e11i −0.264106 0.412433i
\(773\) 5.21097e11i 1.45949i −0.683721 0.729744i \(-0.739639\pi\)
0.683721 0.729744i \(-0.260361\pi\)
\(774\) 1.32691e10 + 4.53268e10i 0.0369723 + 0.126296i
\(775\) 0 0
\(776\) −3.53271e11 + 4.05690e11i −0.974229 + 1.11879i
\(777\) 1.06825e11i 0.293081i
\(778\) −1.10391e11 3.77092e11i −0.301311 1.02927i
\(779\) 5.60130e10i 0.152103i
\(780\) 0 0
\(781\) −4.39332e11 −1.18083
\(782\) 3.08833e11 9.04084e10i 0.825841 0.241759i
\(783\) 7.87272e10 0.209449
\(784\) −1.39584e11 + 3.03030e11i −0.369463 + 0.802088i
\(785\) 0 0
\(786\) 5.22819e11 1.53051e11i 1.36981 0.401002i
\(787\) 5.00687e11 1.30517 0.652585 0.757715i \(-0.273684\pi\)
0.652585 + 0.757715i \(0.273684\pi\)
\(788\) −6.63657e10 1.03638e11i −0.172123 0.268790i
\(789\) −2.53828e10 −0.0654986
\(790\) 0 0
\(791\) 2.00469e11i 0.512084i
\(792\) 1.74480e11 2.00370e11i 0.443450 0.509250i
\(793\) 7.70245e11i 1.94776i
\(794\) 5.59500e11 1.63789e11i 1.40773 0.412101i
\(795\) 0 0
\(796\) −8.57173e10 1.33858e11i −0.213509 0.333419i
\(797\) 4.22774e11i 1.04779i 0.851783 + 0.523896i \(0.175522\pi\)
−0.851783 + 0.523896i \(0.824478\pi\)
\(798\) 2.28640e11 6.69326e10i 0.563820 0.165054i
\(799\) 9.68670e11i 2.37678i
\(800\) 0 0
\(801\) −1.85388e11 −0.450352
\(802\) 4.82187e10 + 1.64714e11i 0.116552 + 0.398137i
\(803\) 5.72172e11 1.37615
\(804\) −8.16392e11 + 5.22787e11i −1.95378 + 1.25112i
\(805\) 0 0
\(806\) −6.39407e10 2.18420e11i −0.151509 0.517550i
\(807\) −2.98088e11 −0.702830
\(808\) −4.80018e11 4.17996e11i −1.12619 0.980677i
\(809\) −1.06326e9 −0.00248226 −0.00124113 0.999999i \(-0.500395\pi\)
−0.00124113 + 0.999999i \(0.500395\pi\)
\(810\) 0 0
\(811\) 2.59999e11i 0.601020i −0.953779 0.300510i \(-0.902843\pi\)
0.953779 0.300510i \(-0.0971569\pi\)
\(812\) −4.06443e10 + 2.60270e10i −0.0934921 + 0.0598688i
\(813\) 1.61913e11i 0.370613i
\(814\) −1.26065e11 4.30635e11i −0.287142 0.980871i
\(815\) 0 0
\(816\) 6.45775e11 + 2.97461e11i 1.45653 + 0.670919i
\(817\) 1.77882e11i 0.399250i
\(818\) −1.76092e8 6.01525e8i −0.000393302 0.00134351i
\(819\) 9.22853e10i 0.205115i
\(820\) 0 0
\(821\) −2.68005e11 −0.589889 −0.294944 0.955514i \(-0.595301\pi\)
−0.294944 + 0.955514i \(0.595301\pi\)
\(822\) −6.84958e11 + 2.00516e11i −1.50030 + 0.439200i
\(823\) 8.13596e10 0.177341 0.0886705 0.996061i \(-0.471738\pi\)
0.0886705 + 0.996061i \(0.471738\pi\)
\(824\) 1.18374e11 + 1.03079e11i 0.256772 + 0.223595i
\(825\) 0 0
\(826\) −5.19027e10 + 1.51941e10i −0.111499 + 0.0326404i
\(827\) 3.60895e11 0.771540 0.385770 0.922595i \(-0.373936\pi\)
0.385770 + 0.922595i \(0.373936\pi\)
\(828\) 1.20287e11 7.70275e10i 0.255917 0.163879i
\(829\) −3.75987e11 −0.796077 −0.398038 0.917369i \(-0.630309\pi\)
−0.398038 + 0.917369i \(0.630309\pi\)
\(830\) 0 0
\(831\) 5.08134e11i 1.06555i
\(832\) −6.09031e11 + 8.45306e10i −1.27100 + 0.176409i
\(833\) 5.62859e11i 1.16901i
\(834\) 1.87589e11 5.49154e10i 0.387743 0.113509i
\(835\) 0 0
\(836\) 8.42713e11 5.39641e11i 1.72526 1.10479i
\(837\) 1.33054e11i 0.271098i
\(838\) −5.42993e11 + 1.58957e11i −1.10108 + 0.322332i
\(839\) 3.78533e11i 0.763935i 0.924176 + 0.381967i \(0.124753\pi\)
−0.924176 + 0.381967i \(0.875247\pi\)
\(840\) 0 0
\(841\) −4.47509e11 −0.894576
\(842\) −4.41241e10 1.50727e11i −0.0877865 0.299876i
\(843\) −8.31925e11 −1.64730
\(844\) 3.20695e11 + 5.00802e11i 0.632008 + 0.986953i
\(845\) 0 0
\(846\) −1.20800e11 4.12651e11i −0.235823 0.805566i
\(847\) −1.91174e11 −0.371445
\(848\) 3.43788e10 + 1.58358e10i 0.0664825 + 0.0306236i
\(849\) −3.14001e10 −0.0604366
\(850\) 0 0
\(851\) 2.41228e11i 0.459949i
\(852\) −2.81416e11 4.39464e11i −0.534061 0.833999i
\(853\) 3.42638e11i 0.647202i 0.946194 + 0.323601i \(0.104894\pi\)
−0.946194 + 0.323601i \(0.895106\pi\)
\(854\) −7.75594e10 2.64941e11i −0.145815 0.498101i
\(855\) 0 0
\(856\) −1.04069e11 9.06225e10i −0.193833 0.168788i
\(857\) 3.33508e11i 0.618277i −0.951017 0.309138i \(-0.899959\pi\)
0.951017 0.309138i \(-0.100041\pi\)
\(858\) 3.41863e11 + 1.16780e12i 0.630816 + 2.15485i
\(859\) 1.00496e12i 1.84576i −0.385084 0.922881i \(-0.625828\pi\)
0.385084 0.922881i \(-0.374172\pi\)
\(860\) 0 0
\(861\) 2.44110e10 0.0444194
\(862\) 1.40001e11 4.09841e10i 0.253572 0.0742312i
\(863\) 4.79204e11 0.863928 0.431964 0.901891i \(-0.357821\pi\)
0.431964 + 0.901891i \(0.357821\pi\)
\(864\) −3.55601e11 5.26063e10i −0.638128 0.0944023i
\(865\) 0 0
\(866\) −7.17111e10 + 2.09929e10i −0.127501 + 0.0373251i
\(867\) 5.14997e11 0.911440
\(868\) 4.39873e10 + 6.86913e10i 0.0774905 + 0.121010i
\(869\) 1.18926e12 2.08544
\(870\) 0 0
\(871\) 1.41438e12i 2.45751i
\(872\) −5.80418e11 5.05422e11i −1.00386 0.874155i
\(873\) 4.02837e11i 0.693541i
\(874\) 5.16307e11 1.51145e11i 0.884835 0.259029i
\(875\) 0 0
\(876\) 3.66507e11 + 5.72344e11i 0.622395 + 0.971943i
\(877\) 4.59890e11i 0.777420i 0.921360 + 0.388710i \(0.127079\pi\)
−0.921360 + 0.388710i \(0.872921\pi\)
\(878\) −5.21177e11 + 1.52570e11i −0.877015 + 0.256739i
\(879\) 7.72477e11i 1.29399i
\(880\) 0 0
\(881\) 7.20232e11 1.19555 0.597777 0.801663i \(-0.296051\pi\)
0.597777 + 0.801663i \(0.296051\pi\)
\(882\) 7.01927e10 + 2.39776e11i 0.115989 + 0.396216i
\(883\) −8.35891e11 −1.37501 −0.687507 0.726178i \(-0.741295\pi\)
−0.687507 + 0.726178i \(0.741295\pi\)
\(884\) −8.73563e11 + 5.59396e11i −1.43049 + 0.916032i
\(885\) 0 0
\(886\) −3.24036e10 1.10690e11i −0.0525845 0.179627i
\(887\) −2.07019e11 −0.334439 −0.167219 0.985920i \(-0.553479\pi\)
−0.167219 + 0.985920i \(0.553479\pi\)
\(888\) 3.50013e11 4.01949e11i 0.562902 0.646426i
\(889\) −3.54981e10 −0.0568327
\(890\) 0 0
\(891\) 1.13696e12i 1.80400i
\(892\) 3.28651e11 2.10456e11i 0.519129 0.332431i
\(893\) 1.61942e12i 2.54657i
\(894\) 9.61427e10 + 3.28421e11i 0.150510 + 0.514140i
\(895\) 0 0
\(896\) 2.00976e11 9.04020e10i 0.311827 0.140264i
\(897\) 6.54162e11i 1.01045i
\(898\) −1.04728e11 3.57749e11i −0.161049 0.550140i
\(899\) 8.91301e10i 0.136454i
\(900\) 0 0
\(901\) 6.38563e10 0.0968957
\(902\) 9.84064e10 2.88077e10i 0.148661 0.0435194i
\(903\) 7.75228e10 0.116595
\(904\) 6.56841e11 7.54303e11i 0.983527 1.12946i
\(905\) 0 0
\(906\) −3.01823e11 + 8.83564e10i −0.447961 + 0.131137i
\(907\) −1.16689e12 −1.72426 −0.862128 0.506690i \(-0.830869\pi\)
−0.862128 + 0.506690i \(0.830869\pi\)
\(908\) 1.54084e11 9.86696e10i 0.226681 0.145158i
\(909\) −4.76643e11 −0.698132
\(910\) 0 0
\(911\) 1.15580e12i 1.67806i 0.544084 + 0.839031i \(0.316877\pi\)
−0.544084 + 0.839031i \(0.683123\pi\)
\(912\) 1.07961e12 + 4.97296e11i 1.56058 + 0.718846i
\(913\) 1.31579e12i 1.89366i
\(914\) 2.65117e11 7.76110e10i 0.379886 0.111209i
\(915\) 0 0
\(916\) −8.73218e11 + 5.59176e11i −1.24034 + 0.794267i
\(917\) 2.84859e11i 0.402858i
\(918\) −5.82022e11 + 1.70382e11i −0.819537 + 0.239913i
\(919\) 1.20572e11i 0.169038i 0.996422 + 0.0845192i \(0.0269354\pi\)
−0.996422 + 0.0845192i \(0.973065\pi\)
\(920\) 0 0
\(921\) 1.44668e12 2.01064
\(922\) 2.54306e11 + 8.68702e11i 0.351911 + 1.20212i
\(923\) 7.61364e11 1.04902
\(924\) −2.35181e11 3.67262e11i −0.322637 0.503835i
\(925\) 0 0
\(926\) 3.40518e11 + 1.16320e12i 0.463123 + 1.58201i
\(927\) 1.17542e11 0.159174
\(928\) −2.38210e11 3.52399e10i −0.321194 0.0475163i
\(929\) −7.85328e11 −1.05436 −0.527179 0.849754i \(-0.676750\pi\)
−0.527179 + 0.849754i \(0.676750\pi\)
\(930\) 0 0
\(931\) 9.40988e11i 1.25252i
\(932\) 2.64603e11 + 4.13209e11i 0.350697 + 0.547654i
\(933\) 6.24370e11i 0.823977i
\(934\) 2.53115e11 + 8.64635e11i 0.332606 + 1.13617i
\(935\) 0 0
\(936\) −3.02374e11 + 3.47241e11i −0.393950 + 0.452405i
\(937\) 4.90137e11i 0.635856i −0.948115 0.317928i \(-0.897013\pi\)
0.948115 0.317928i \(-0.102987\pi\)
\(938\) 1.42421e11 + 4.86505e11i 0.183976 + 0.628458i
\(939\) 4.27542e11i 0.549941i
\(940\) 0 0
\(941\) 5.66225e11 0.722155 0.361077 0.932536i \(-0.382409\pi\)
0.361077 + 0.932536i \(0.382409\pi\)
\(942\) 3.03826e10 8.89428e9i 0.0385853 0.0112955i
\(943\) 5.51241e10 0.0697100
\(944\) −2.45078e11 1.12889e11i −0.308614 0.142156i
\(945\) 0 0
\(946\) 3.12513e11 9.14856e10i 0.390214 0.114232i
\(947\) −3.38620e10 −0.0421029 −0.0210515 0.999778i \(-0.506701\pi\)
−0.0210515 + 0.999778i \(0.506701\pi\)
\(948\) 7.61786e11 + 1.18962e12i 0.943191 + 1.47290i
\(949\) −9.91575e11 −1.22253
\(950\) 0 0
\(951\) 1.00159e11i 0.122452i
\(952\) 2.44151e11 2.80378e11i 0.297242 0.341347i
\(953\) 2.54903e11i 0.309032i 0.987990 + 0.154516i \(0.0493819\pi\)
−0.987990 + 0.154516i \(0.950618\pi\)
\(954\) 2.72026e10 7.96335e9i 0.0328410 0.00961396i
\(955\) 0 0
\(956\) −4.27552e11 6.67673e11i −0.511868 0.799341i
\(957\) 4.76540e11i 0.568135i
\(958\) 1.28543e12 3.76300e11i 1.52611 0.446758i
\(959\) 3.73201e11i 0.441233i
\(960\) 0 0
\(961\) 7.02256e11 0.823383
\(962\) 2.18471e11 + 7.46292e11i 0.255090 + 0.871382i
\(963\) −1.03337e11 −0.120158
\(964\) 4.17080e11 2.67082e11i 0.482960 0.309269i
\(965\) 0 0
\(966\) −6.58704e10 2.25012e11i −0.0756453 0.258402i
\(967\) 9.19624e11 1.05173 0.525865 0.850568i \(-0.323742\pi\)
0.525865 + 0.850568i \(0.323742\pi\)
\(968\) −7.19327e11 6.26384e11i −0.819266 0.713410i
\(969\) 2.00530e12 2.27449
\(970\) 0 0
\(971\) 1.35436e12i 1.52355i −0.647840 0.761776i \(-0.724328\pi\)
0.647840 0.761776i \(-0.275672\pi\)
\(972\) −6.52404e11 + 4.17775e11i −0.730889 + 0.468034i
\(973\) 1.02208e11i 0.114034i
\(974\) −1.60944e11 5.49781e11i −0.178829 0.610877i
\(975\) 0 0
\(976\) 5.76251e11 1.25102e12i 0.635057 1.37868i
\(977\) 1.38499e12i 1.52008i −0.649874 0.760042i \(-0.725178\pi\)
0.649874 0.760042i \(-0.274822\pi\)
\(978\) −8.50999e9 2.90699e10i −0.00930194 0.0317752i
\(979\) 1.27819e12i 1.39144i
\(980\) 0 0
\(981\) −5.76336e11 −0.622300
\(982\) −8.38403e11 + 2.45436e11i −0.901585 + 0.263932i
\(983\) −1.57780e12 −1.68981 −0.844905 0.534916i \(-0.820343\pi\)
−0.844905 + 0.534916i \(0.820343\pi\)
\(984\) 9.18511e10 + 7.99831e10i 0.0979724 + 0.0853135i
\(985\) 0 0
\(986\) −3.89885e11 + 1.14136e11i −0.412505 + 0.120758i
\(987\) −7.05761e11 −0.743685
\(988\) −1.46042e12 + 9.35200e11i −1.53268 + 0.981469i
\(989\) 1.75060e11 0.182979
\(990\) 0 0
\(991\) 1.83814e11i 0.190583i 0.995449 + 0.0952917i \(0.0303784\pi\)
−0.995449 + 0.0952917i \(0.969622\pi\)
\(992\) −5.95576e10 + 4.02590e11i −0.0615022 + 0.415734i
\(993\) 9.93195e11i 1.02150i
\(994\) −2.61886e11 + 7.66651e10i −0.268267 + 0.0785330i
\(995\) 0 0
\(996\) −1.31618e12 + 8.42835e11i −1.33746 + 0.856456i
\(997\) 2.34014e11i 0.236844i −0.992963 0.118422i \(-0.962217\pi\)
0.992963 0.118422i \(-0.0377835\pi\)
\(998\) 1.07152e12 3.13679e11i 1.08013 0.316201i
\(999\) 4.54615e11i 0.456438i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.d.c.99.15 32
4.3 odd 2 inner 100.9.d.c.99.17 32
5.2 odd 4 100.9.b.d.51.15 16
5.3 odd 4 20.9.b.a.11.2 yes 16
5.4 even 2 inner 100.9.d.c.99.18 32
15.8 even 4 180.9.c.a.91.15 16
20.3 even 4 20.9.b.a.11.1 16
20.7 even 4 100.9.b.d.51.16 16
20.19 odd 2 inner 100.9.d.c.99.16 32
40.3 even 4 320.9.b.d.191.4 16
40.13 odd 4 320.9.b.d.191.13 16
60.23 odd 4 180.9.c.a.91.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.1 16 20.3 even 4
20.9.b.a.11.2 yes 16 5.3 odd 4
100.9.b.d.51.15 16 5.2 odd 4
100.9.b.d.51.16 16 20.7 even 4
100.9.d.c.99.15 32 1.1 even 1 trivial
100.9.d.c.99.16 32 20.19 odd 2 inner
100.9.d.c.99.17 32 4.3 odd 2 inner
100.9.d.c.99.18 32 5.4 even 2 inner
180.9.c.a.91.15 16 15.8 even 4
180.9.c.a.91.16 16 60.23 odd 4
320.9.b.d.191.4 16 40.3 even 4
320.9.b.d.191.13 16 40.13 odd 4