Properties

Label 320.9.b.d.191.13
Level $320$
Weight $9$
Character 320.191
Analytic conductor $130.361$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,9,Mod(191,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.191"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 320.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-38800] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(130.361155220\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 26 x^{14} - 834 x^{13} + 4390 x^{12} - 61783 x^{11} + 466168 x^{10} + \cdots + 206161212459445 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{120}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.13
Root \(9.29581 + 2.24761i\) of defining polynomial
Character \(\chi\) \(=\) 320.191
Dual form 320.9.b.d.191.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+98.1237i q^{3} -279.508 q^{5} -820.952i q^{7} -3067.27 q^{9} +21147.7i q^{11} +36649.1 q^{13} -27426.4i q^{15} -110563. q^{17} -184840. i q^{19} +80554.9 q^{21} -181906. i q^{23} +78125.0 q^{25} +342818. i q^{27} +229647. q^{29} -388118. i q^{31} -2.07510e6 q^{33} +229463. i q^{35} -1.32611e6 q^{37} +3.59615e6i q^{39} -303036. q^{41} +962361. i q^{43} +857327. q^{45} -8.76124e6i q^{47} +5.09084e6 q^{49} -1.08489e7i q^{51} +577555. q^{53} -5.91097e6i q^{55} +1.81371e7 q^{57} -4.11725e6i q^{59} -2.10168e7 q^{61} +2.51808e6i q^{63} -1.02437e7 q^{65} -3.85926e7i q^{67} +1.78493e7 q^{69} -2.07744e7i q^{71} -2.70559e7 q^{73} +7.66592e6i q^{75} +1.73613e7 q^{77} -5.62358e7i q^{79} -5.37629e7 q^{81} +6.22189e7i q^{83} +3.09033e7 q^{85} +2.25338e7i q^{87} +6.04409e7 q^{89} -3.00871e7i q^{91} +3.80836e7 q^{93} +5.16642e7i q^{95} +1.31334e8 q^{97} -6.48658e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 38800 q^{9} - 51392 q^{13} + 27552 q^{17} - 414496 q^{21} + 1250000 q^{25} - 2764896 q^{29} - 5521600 q^{33} - 9009472 q^{37} - 8576448 q^{41} - 1580000 q^{45} - 32803600 q^{49} - 2452032 q^{53}+ \cdots + 171851232 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 98.1237i 1.21140i 0.795692 + 0.605702i \(0.207108\pi\)
−0.795692 + 0.605702i \(0.792892\pi\)
\(4\) 0 0
\(5\) −279.508 −0.447214
\(6\) 0 0
\(7\) − 820.952i − 0.341921i −0.985278 0.170960i \(-0.945313\pi\)
0.985278 0.170960i \(-0.0546870\pi\)
\(8\) 0 0
\(9\) −3067.27 −0.467500
\(10\) 0 0
\(11\) 21147.7i 1.44442i 0.691674 + 0.722210i \(0.256873\pi\)
−0.691674 + 0.722210i \(0.743127\pi\)
\(12\) 0 0
\(13\) 36649.1 1.28319 0.641593 0.767045i \(-0.278274\pi\)
0.641593 + 0.767045i \(0.278274\pi\)
\(14\) 0 0
\(15\) − 27426.4i − 0.541756i
\(16\) 0 0
\(17\) −110563. −1.32378 −0.661888 0.749603i \(-0.730245\pi\)
−0.661888 + 0.749603i \(0.730245\pi\)
\(18\) 0 0
\(19\) − 184840.i − 1.41834i −0.705037 0.709170i \(-0.749070\pi\)
0.705037 0.709170i \(-0.250930\pi\)
\(20\) 0 0
\(21\) 80554.9 0.414204
\(22\) 0 0
\(23\) − 181906.i − 0.650035i −0.945708 0.325017i \(-0.894630\pi\)
0.945708 0.325017i \(-0.105370\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 0 0
\(27\) 342818.i 0.645073i
\(28\) 0 0
\(29\) 229647. 0.324690 0.162345 0.986734i \(-0.448094\pi\)
0.162345 + 0.986734i \(0.448094\pi\)
\(30\) 0 0
\(31\) − 388118.i − 0.420259i −0.977674 0.210129i \(-0.932611\pi\)
0.977674 0.210129i \(-0.0673885\pi\)
\(32\) 0 0
\(33\) −2.07510e6 −1.74978
\(34\) 0 0
\(35\) 229463.i 0.152912i
\(36\) 0 0
\(37\) −1.32611e6 −0.707576 −0.353788 0.935326i \(-0.615107\pi\)
−0.353788 + 0.935326i \(0.615107\pi\)
\(38\) 0 0
\(39\) 3.59615e6i 1.55446i
\(40\) 0 0
\(41\) −303036. −0.107240 −0.0536202 0.998561i \(-0.517076\pi\)
−0.0536202 + 0.998561i \(0.517076\pi\)
\(42\) 0 0
\(43\) 962361.i 0.281491i 0.990046 + 0.140745i \(0.0449499\pi\)
−0.990046 + 0.140745i \(0.955050\pi\)
\(44\) 0 0
\(45\) 857327. 0.209072
\(46\) 0 0
\(47\) − 8.76124e6i − 1.79545i −0.440552 0.897727i \(-0.645217\pi\)
0.440552 0.897727i \(-0.354783\pi\)
\(48\) 0 0
\(49\) 5.09084e6 0.883090
\(50\) 0 0
\(51\) − 1.08489e7i − 1.60363i
\(52\) 0 0
\(53\) 577555. 0.0731965 0.0365982 0.999330i \(-0.488348\pi\)
0.0365982 + 0.999330i \(0.488348\pi\)
\(54\) 0 0
\(55\) − 5.91097e6i − 0.645964i
\(56\) 0 0
\(57\) 1.81371e7 1.71818
\(58\) 0 0
\(59\) − 4.11725e6i − 0.339781i −0.985463 0.169891i \(-0.945659\pi\)
0.985463 0.169891i \(-0.0543414\pi\)
\(60\) 0 0
\(61\) −2.10168e7 −1.51791 −0.758956 0.651142i \(-0.774290\pi\)
−0.758956 + 0.651142i \(0.774290\pi\)
\(62\) 0 0
\(63\) 2.51808e6i 0.159848i
\(64\) 0 0
\(65\) −1.02437e7 −0.573858
\(66\) 0 0
\(67\) − 3.85926e7i − 1.91516i −0.288168 0.957580i \(-0.593046\pi\)
0.288168 0.957580i \(-0.406954\pi\)
\(68\) 0 0
\(69\) 1.78493e7 0.787455
\(70\) 0 0
\(71\) − 2.07744e7i − 0.817515i −0.912643 0.408758i \(-0.865962\pi\)
0.912643 0.408758i \(-0.134038\pi\)
\(72\) 0 0
\(73\) −2.70559e7 −0.952732 −0.476366 0.879247i \(-0.658046\pi\)
−0.476366 + 0.879247i \(0.658046\pi\)
\(74\) 0 0
\(75\) 7.66592e6i 0.242281i
\(76\) 0 0
\(77\) 1.73613e7 0.493877
\(78\) 0 0
\(79\) − 5.62358e7i − 1.44379i −0.692002 0.721896i \(-0.743271\pi\)
0.692002 0.721896i \(-0.256729\pi\)
\(80\) 0 0
\(81\) −5.37629e7 −1.24894
\(82\) 0 0
\(83\) 6.22189e7i 1.31102i 0.755186 + 0.655511i \(0.227547\pi\)
−0.755186 + 0.655511i \(0.772453\pi\)
\(84\) 0 0
\(85\) 3.09033e7 0.592011
\(86\) 0 0
\(87\) 2.25338e7i 0.393331i
\(88\) 0 0
\(89\) 6.04409e7 0.963321 0.481661 0.876358i \(-0.340034\pi\)
0.481661 + 0.876358i \(0.340034\pi\)
\(90\) 0 0
\(91\) − 3.00871e7i − 0.438748i
\(92\) 0 0
\(93\) 3.80836e7 0.509103
\(94\) 0 0
\(95\) 5.16642e7i 0.634301i
\(96\) 0 0
\(97\) 1.31334e8 1.48351 0.741755 0.670671i \(-0.233994\pi\)
0.741755 + 0.670671i \(0.233994\pi\)
\(98\) 0 0
\(99\) − 6.48658e7i − 0.675266i
\(100\) 0 0
\(101\) 1.55397e8 1.49333 0.746665 0.665200i \(-0.231654\pi\)
0.746665 + 0.665200i \(0.231654\pi\)
\(102\) 0 0
\(103\) 3.83213e7i 0.340480i 0.985403 + 0.170240i \(0.0544543\pi\)
−0.985403 + 0.170240i \(0.945546\pi\)
\(104\) 0 0
\(105\) −2.25158e7 −0.185238
\(106\) 0 0
\(107\) − 3.36904e7i − 0.257022i −0.991708 0.128511i \(-0.958980\pi\)
0.991708 0.128511i \(-0.0410198\pi\)
\(108\) 0 0
\(109\) −1.87899e8 −1.33112 −0.665562 0.746343i \(-0.731808\pi\)
−0.665562 + 0.746343i \(0.731808\pi\)
\(110\) 0 0
\(111\) − 1.30123e8i − 0.857161i
\(112\) 0 0
\(113\) 2.44191e8 1.49767 0.748835 0.662757i \(-0.230614\pi\)
0.748835 + 0.662757i \(0.230614\pi\)
\(114\) 0 0
\(115\) 5.08444e7i 0.290704i
\(116\) 0 0
\(117\) −1.12413e8 −0.599889
\(118\) 0 0
\(119\) 9.07670e7i 0.452627i
\(120\) 0 0
\(121\) −2.32868e8 −1.08635
\(122\) 0 0
\(123\) − 2.97350e7i − 0.129911i
\(124\) 0 0
\(125\) −2.18366e7 −0.0894427
\(126\) 0 0
\(127\) 4.32402e7i 0.166216i 0.996541 + 0.0831080i \(0.0264846\pi\)
−0.996541 + 0.0831080i \(0.973515\pi\)
\(128\) 0 0
\(129\) −9.44304e7 −0.340999
\(130\) 0 0
\(131\) 3.46986e8i 1.17822i 0.808052 + 0.589111i \(0.200522\pi\)
−0.808052 + 0.589111i \(0.799478\pi\)
\(132\) 0 0
\(133\) −1.51744e8 −0.484960
\(134\) 0 0
\(135\) − 9.58206e7i − 0.288485i
\(136\) 0 0
\(137\) 4.54595e8 1.29045 0.645227 0.763991i \(-0.276763\pi\)
0.645227 + 0.763991i \(0.276763\pi\)
\(138\) 0 0
\(139\) − 1.24500e8i − 0.333511i −0.985998 0.166755i \(-0.946671\pi\)
0.985998 0.166755i \(-0.0533290\pi\)
\(140\) 0 0
\(141\) 8.59686e8 2.17502
\(142\) 0 0
\(143\) 7.75046e8i 1.85346i
\(144\) 0 0
\(145\) −6.41883e7 −0.145206
\(146\) 0 0
\(147\) 4.99532e8i 1.06978i
\(148\) 0 0
\(149\) 2.17967e8 0.442228 0.221114 0.975248i \(-0.429031\pi\)
0.221114 + 0.975248i \(0.429031\pi\)
\(150\) 0 0
\(151\) 2.00315e8i 0.385306i 0.981267 + 0.192653i \(0.0617091\pi\)
−0.981267 + 0.192653i \(0.938291\pi\)
\(152\) 0 0
\(153\) 3.39126e8 0.618865
\(154\) 0 0
\(155\) 1.08482e8i 0.187945i
\(156\) 0 0
\(157\) 2.01644e7 0.0331885 0.0165942 0.999862i \(-0.494718\pi\)
0.0165942 + 0.999862i \(0.494718\pi\)
\(158\) 0 0
\(159\) 5.66719e7i 0.0886705i
\(160\) 0 0
\(161\) −1.49336e8 −0.222260
\(162\) 0 0
\(163\) 1.92932e7i 0.0273309i 0.999907 + 0.0136654i \(0.00434998\pi\)
−0.999907 + 0.0136654i \(0.995650\pi\)
\(164\) 0 0
\(165\) 5.80007e8 0.782523
\(166\) 0 0
\(167\) − 2.03394e8i − 0.261500i −0.991415 0.130750i \(-0.958261\pi\)
0.991415 0.130750i \(-0.0417385\pi\)
\(168\) 0 0
\(169\) 5.27425e8 0.646567
\(170\) 0 0
\(171\) 5.66952e8i 0.663074i
\(172\) 0 0
\(173\) 4.16190e8 0.464630 0.232315 0.972641i \(-0.425370\pi\)
0.232315 + 0.972641i \(0.425370\pi\)
\(174\) 0 0
\(175\) − 6.41369e7i − 0.0683842i
\(176\) 0 0
\(177\) 4.04000e8 0.411612
\(178\) 0 0
\(179\) 5.41911e8i 0.527856i 0.964542 + 0.263928i \(0.0850182\pi\)
−0.964542 + 0.263928i \(0.914982\pi\)
\(180\) 0 0
\(181\) 1.43210e9 1.33432 0.667159 0.744915i \(-0.267510\pi\)
0.667159 + 0.744915i \(0.267510\pi\)
\(182\) 0 0
\(183\) − 2.06224e9i − 1.83880i
\(184\) 0 0
\(185\) 3.70660e8 0.316438
\(186\) 0 0
\(187\) − 2.33816e9i − 1.91209i
\(188\) 0 0
\(189\) 2.81437e8 0.220564
\(190\) 0 0
\(191\) 1.75647e9i 1.31980i 0.751355 + 0.659898i \(0.229400\pi\)
−0.751355 + 0.659898i \(0.770600\pi\)
\(192\) 0 0
\(193\) −6.79519e8 −0.489748 −0.244874 0.969555i \(-0.578747\pi\)
−0.244874 + 0.969555i \(0.578747\pi\)
\(194\) 0 0
\(195\) − 1.00515e9i − 0.695174i
\(196\) 0 0
\(197\) −4.80726e8 −0.319178 −0.159589 0.987184i \(-0.551017\pi\)
−0.159589 + 0.987184i \(0.551017\pi\)
\(198\) 0 0
\(199\) − 6.20901e8i − 0.395922i −0.980210 0.197961i \(-0.936568\pi\)
0.980210 0.197961i \(-0.0634320\pi\)
\(200\) 0 0
\(201\) 3.78685e9 2.32003
\(202\) 0 0
\(203\) − 1.88529e8i − 0.111018i
\(204\) 0 0
\(205\) 8.47011e7 0.0479594
\(206\) 0 0
\(207\) 5.57955e8i 0.303891i
\(208\) 0 0
\(209\) 3.90894e9 2.04868
\(210\) 0 0
\(211\) 2.32298e9i 1.17197i 0.810322 + 0.585984i \(0.199292\pi\)
−0.810322 + 0.585984i \(0.800708\pi\)
\(212\) 0 0
\(213\) 2.03846e9 0.990341
\(214\) 0 0
\(215\) − 2.68988e8i − 0.125886i
\(216\) 0 0
\(217\) −3.18626e8 −0.143695
\(218\) 0 0
\(219\) − 2.65483e9i − 1.15414i
\(220\) 0 0
\(221\) −4.05204e9 −1.69865
\(222\) 0 0
\(223\) − 1.52445e9i − 0.616446i −0.951314 0.308223i \(-0.900266\pi\)
0.951314 0.308223i \(-0.0997343\pi\)
\(224\) 0 0
\(225\) −2.39630e8 −0.0935000
\(226\) 0 0
\(227\) − 7.14722e8i − 0.269174i −0.990902 0.134587i \(-0.957029\pi\)
0.990902 0.134587i \(-0.0429708\pi\)
\(228\) 0 0
\(229\) 4.05044e9 1.47286 0.736428 0.676516i \(-0.236511\pi\)
0.736428 + 0.676516i \(0.236511\pi\)
\(230\) 0 0
\(231\) 1.70355e9i 0.598285i
\(232\) 0 0
\(233\) 1.91668e9 0.650318 0.325159 0.945659i \(-0.394582\pi\)
0.325159 + 0.945659i \(0.394582\pi\)
\(234\) 0 0
\(235\) 2.44884e9i 0.802952i
\(236\) 0 0
\(237\) 5.51807e9 1.74901
\(238\) 0 0
\(239\) − 3.09701e9i − 0.949186i −0.880205 0.474593i \(-0.842595\pi\)
0.880205 0.474593i \(-0.157405\pi\)
\(240\) 0 0
\(241\) −1.93463e9 −0.573496 −0.286748 0.958006i \(-0.592574\pi\)
−0.286748 + 0.958006i \(0.592574\pi\)
\(242\) 0 0
\(243\) − 3.02619e9i − 0.867903i
\(244\) 0 0
\(245\) −1.42293e9 −0.394930
\(246\) 0 0
\(247\) − 6.77420e9i − 1.82000i
\(248\) 0 0
\(249\) −6.10515e9 −1.58818
\(250\) 0 0
\(251\) − 5.70277e9i − 1.43678i −0.695639 0.718391i \(-0.744879\pi\)
0.695639 0.718391i \(-0.255121\pi\)
\(252\) 0 0
\(253\) 3.84691e9 0.938923
\(254\) 0 0
\(255\) 3.03235e9i 0.717164i
\(256\) 0 0
\(257\) 1.76094e9 0.403656 0.201828 0.979421i \(-0.435312\pi\)
0.201828 + 0.979421i \(0.435312\pi\)
\(258\) 0 0
\(259\) 1.08867e9i 0.241935i
\(260\) 0 0
\(261\) −7.04389e8 −0.151793
\(262\) 0 0
\(263\) 2.58682e8i 0.0540683i 0.999635 + 0.0270342i \(0.00860629\pi\)
−0.999635 + 0.0270342i \(0.991394\pi\)
\(264\) 0 0
\(265\) −1.61432e8 −0.0327345
\(266\) 0 0
\(267\) 5.93069e9i 1.16697i
\(268\) 0 0
\(269\) 3.03788e9 0.580178 0.290089 0.957000i \(-0.406315\pi\)
0.290089 + 0.957000i \(0.406315\pi\)
\(270\) 0 0
\(271\) 1.65010e9i 0.305937i 0.988231 + 0.152968i \(0.0488833\pi\)
−0.988231 + 0.152968i \(0.951117\pi\)
\(272\) 0 0
\(273\) 2.95226e9 0.531501
\(274\) 0 0
\(275\) 1.65217e9i 0.288884i
\(276\) 0 0
\(277\) 5.17850e9 0.879599 0.439800 0.898096i \(-0.355049\pi\)
0.439800 + 0.898096i \(0.355049\pi\)
\(278\) 0 0
\(279\) 1.19046e9i 0.196471i
\(280\) 0 0
\(281\) 8.47832e9 1.35983 0.679915 0.733291i \(-0.262017\pi\)
0.679915 + 0.733291i \(0.262017\pi\)
\(282\) 0 0
\(283\) − 3.20005e8i − 0.0498898i −0.999689 0.0249449i \(-0.992059\pi\)
0.999689 0.0249449i \(-0.00794102\pi\)
\(284\) 0 0
\(285\) −5.06949e9 −0.768395
\(286\) 0 0
\(287\) 2.48778e8i 0.0366677i
\(288\) 0 0
\(289\) 5.24844e9 0.752383
\(290\) 0 0
\(291\) 1.28870e10i 1.79713i
\(292\) 0 0
\(293\) −7.87248e9 −1.06817 −0.534086 0.845430i \(-0.679344\pi\)
−0.534086 + 0.845430i \(0.679344\pi\)
\(294\) 0 0
\(295\) 1.15081e9i 0.151955i
\(296\) 0 0
\(297\) −7.24983e9 −0.931756
\(298\) 0 0
\(299\) − 6.66670e9i − 0.834116i
\(300\) 0 0
\(301\) 7.90052e8 0.0962475
\(302\) 0 0
\(303\) 1.52481e10i 1.80903i
\(304\) 0 0
\(305\) 5.87436e9 0.678831
\(306\) 0 0
\(307\) − 1.47434e10i − 1.65976i −0.557941 0.829881i \(-0.688408\pi\)
0.557941 0.829881i \(-0.311592\pi\)
\(308\) 0 0
\(309\) −3.76023e9 −0.412459
\(310\) 0 0
\(311\) 6.36308e9i 0.680184i 0.940392 + 0.340092i \(0.110458\pi\)
−0.940392 + 0.340092i \(0.889542\pi\)
\(312\) 0 0
\(313\) 4.35717e9 0.453970 0.226985 0.973898i \(-0.427113\pi\)
0.226985 + 0.973898i \(0.427113\pi\)
\(314\) 0 0
\(315\) − 7.03824e8i − 0.0714862i
\(316\) 0 0
\(317\) 1.02074e9 0.101083 0.0505413 0.998722i \(-0.483905\pi\)
0.0505413 + 0.998722i \(0.483905\pi\)
\(318\) 0 0
\(319\) 4.85652e9i 0.468989i
\(320\) 0 0
\(321\) 3.30583e9 0.311358
\(322\) 0 0
\(323\) 2.04364e10i 1.87757i
\(324\) 0 0
\(325\) 2.86321e9 0.256637
\(326\) 0 0
\(327\) − 1.84373e10i − 1.61253i
\(328\) 0 0
\(329\) −7.19256e9 −0.613903
\(330\) 0 0
\(331\) 1.01219e10i 0.843235i 0.906774 + 0.421617i \(0.138537\pi\)
−0.906774 + 0.421617i \(0.861463\pi\)
\(332\) 0 0
\(333\) 4.06754e9 0.330792
\(334\) 0 0
\(335\) 1.07870e10i 0.856485i
\(336\) 0 0
\(337\) −1.94388e9 −0.150713 −0.0753563 0.997157i \(-0.524009\pi\)
−0.0753563 + 0.997157i \(0.524009\pi\)
\(338\) 0 0
\(339\) 2.39609e10i 1.81428i
\(340\) 0 0
\(341\) 8.20782e9 0.607030
\(342\) 0 0
\(343\) − 8.91196e9i − 0.643868i
\(344\) 0 0
\(345\) −4.98904e9 −0.352160
\(346\) 0 0
\(347\) − 2.15696e10i − 1.48773i −0.668330 0.743865i \(-0.732991\pi\)
0.668330 0.743865i \(-0.267009\pi\)
\(348\) 0 0
\(349\) −1.37934e10 −0.929760 −0.464880 0.885374i \(-0.653903\pi\)
−0.464880 + 0.885374i \(0.653903\pi\)
\(350\) 0 0
\(351\) 1.25640e10i 0.827749i
\(352\) 0 0
\(353\) −1.69884e10 −1.09409 −0.547047 0.837102i \(-0.684248\pi\)
−0.547047 + 0.837102i \(0.684248\pi\)
\(354\) 0 0
\(355\) 5.80663e9i 0.365604i
\(356\) 0 0
\(357\) −8.90639e9 −0.548314
\(358\) 0 0
\(359\) − 1.35600e10i − 0.816358i −0.912902 0.408179i \(-0.866164\pi\)
0.912902 0.408179i \(-0.133836\pi\)
\(360\) 0 0
\(361\) −1.71821e10 −1.01169
\(362\) 0 0
\(363\) − 2.28499e10i − 1.31601i
\(364\) 0 0
\(365\) 7.56236e9 0.426075
\(366\) 0 0
\(367\) 9.93203e9i 0.547487i 0.961803 + 0.273743i \(0.0882619\pi\)
−0.961803 + 0.273743i \(0.911738\pi\)
\(368\) 0 0
\(369\) 9.29491e8 0.0501349
\(370\) 0 0
\(371\) − 4.74145e8i − 0.0250274i
\(372\) 0 0
\(373\) −2.08933e10 −1.07937 −0.539686 0.841867i \(-0.681457\pi\)
−0.539686 + 0.841867i \(0.681457\pi\)
\(374\) 0 0
\(375\) − 2.14269e9i − 0.108351i
\(376\) 0 0
\(377\) 8.41636e9 0.416638
\(378\) 0 0
\(379\) − 2.78733e10i − 1.35093i −0.737394 0.675463i \(-0.763944\pi\)
0.737394 0.675463i \(-0.236056\pi\)
\(380\) 0 0
\(381\) −4.24289e9 −0.201355
\(382\) 0 0
\(383\) − 3.14260e10i − 1.46048i −0.683193 0.730238i \(-0.739409\pi\)
0.683193 0.730238i \(-0.260591\pi\)
\(384\) 0 0
\(385\) −4.85262e9 −0.220869
\(386\) 0 0
\(387\) − 2.95182e9i − 0.131597i
\(388\) 0 0
\(389\) 2.45574e10 1.07247 0.536233 0.844070i \(-0.319847\pi\)
0.536233 + 0.844070i \(0.319847\pi\)
\(390\) 0 0
\(391\) 2.01121e10i 0.860500i
\(392\) 0 0
\(393\) −3.40476e10 −1.42730
\(394\) 0 0
\(395\) 1.57184e10i 0.645683i
\(396\) 0 0
\(397\) −3.64363e10 −1.46681 −0.733403 0.679794i \(-0.762069\pi\)
−0.733403 + 0.679794i \(0.762069\pi\)
\(398\) 0 0
\(399\) − 1.48897e10i − 0.587483i
\(400\) 0 0
\(401\) −1.07267e10 −0.414847 −0.207423 0.978251i \(-0.566508\pi\)
−0.207423 + 0.978251i \(0.566508\pi\)
\(402\) 0 0
\(403\) − 1.42242e10i − 0.539270i
\(404\) 0 0
\(405\) 1.50272e10 0.558545
\(406\) 0 0
\(407\) − 2.80443e10i − 1.02204i
\(408\) 0 0
\(409\) −3.91731e7 −0.00139989 −0.000699947 1.00000i \(-0.500223\pi\)
−0.000699947 1.00000i \(0.500223\pi\)
\(410\) 0 0
\(411\) 4.46066e10i 1.56326i
\(412\) 0 0
\(413\) −3.38006e9 −0.116178
\(414\) 0 0
\(415\) − 1.73907e10i − 0.586307i
\(416\) 0 0
\(417\) 1.22164e10 0.404016
\(418\) 0 0
\(419\) − 3.53613e10i − 1.14729i −0.819105 0.573644i \(-0.805529\pi\)
0.819105 0.573644i \(-0.194471\pi\)
\(420\) 0 0
\(421\) −9.81579e9 −0.312462 −0.156231 0.987721i \(-0.549934\pi\)
−0.156231 + 0.987721i \(0.549934\pi\)
\(422\) 0 0
\(423\) 2.68731e10i 0.839375i
\(424\) 0 0
\(425\) −8.63774e9 −0.264755
\(426\) 0 0
\(427\) 1.72537e10i 0.519005i
\(428\) 0 0
\(429\) −7.60504e10 −2.24529
\(430\) 0 0
\(431\) 9.11726e9i 0.264214i 0.991235 + 0.132107i \(0.0421742\pi\)
−0.991235 + 0.132107i \(0.957826\pi\)
\(432\) 0 0
\(433\) 4.67005e9 0.132852 0.0664262 0.997791i \(-0.478840\pi\)
0.0664262 + 0.997791i \(0.478840\pi\)
\(434\) 0 0
\(435\) − 6.29840e9i − 0.175903i
\(436\) 0 0
\(437\) −3.36235e10 −0.921970
\(438\) 0 0
\(439\) 3.39406e10i 0.913822i 0.889512 + 0.456911i \(0.151044\pi\)
−0.889512 + 0.456911i \(0.848956\pi\)
\(440\) 0 0
\(441\) −1.56150e10 −0.412844
\(442\) 0 0
\(443\) − 7.20845e9i − 0.187166i −0.995611 0.0935830i \(-0.970168\pi\)
0.995611 0.0935830i \(-0.0298320\pi\)
\(444\) 0 0
\(445\) −1.68938e10 −0.430810
\(446\) 0 0
\(447\) 2.13878e10i 0.535717i
\(448\) 0 0
\(449\) −2.32977e10 −0.573229 −0.286614 0.958046i \(-0.592530\pi\)
−0.286614 + 0.958046i \(0.592530\pi\)
\(450\) 0 0
\(451\) − 6.40852e9i − 0.154900i
\(452\) 0 0
\(453\) −1.96556e10 −0.466761
\(454\) 0 0
\(455\) 8.40961e9i 0.196214i
\(456\) 0 0
\(457\) 1.72652e10 0.395829 0.197915 0.980219i \(-0.436583\pi\)
0.197915 + 0.980219i \(0.436583\pi\)
\(458\) 0 0
\(459\) − 3.79030e10i − 0.853932i
\(460\) 0 0
\(461\) 5.65725e10 1.25257 0.626285 0.779594i \(-0.284575\pi\)
0.626285 + 0.779594i \(0.284575\pi\)
\(462\) 0 0
\(463\) − 7.57511e10i − 1.64841i −0.566292 0.824205i \(-0.691623\pi\)
0.566292 0.824205i \(-0.308377\pi\)
\(464\) 0 0
\(465\) −1.06447e10 −0.227678
\(466\) 0 0
\(467\) − 5.63076e10i − 1.18386i −0.805990 0.591929i \(-0.798367\pi\)
0.805990 0.591929i \(-0.201633\pi\)
\(468\) 0 0
\(469\) −3.16827e10 −0.654833
\(470\) 0 0
\(471\) 1.97861e9i 0.0402046i
\(472\) 0 0
\(473\) −2.03518e10 −0.406591
\(474\) 0 0
\(475\) − 1.44406e10i − 0.283668i
\(476\) 0 0
\(477\) −1.77152e9 −0.0342193
\(478\) 0 0
\(479\) − 8.37112e10i − 1.59016i −0.606502 0.795082i \(-0.707428\pi\)
0.606502 0.795082i \(-0.292572\pi\)
\(480\) 0 0
\(481\) −4.86008e10 −0.907952
\(482\) 0 0
\(483\) − 1.46534e10i − 0.269247i
\(484\) 0 0
\(485\) −3.67090e10 −0.663446
\(486\) 0 0
\(487\) − 3.58034e10i − 0.636514i −0.948004 0.318257i \(-0.896902\pi\)
0.948004 0.318257i \(-0.103098\pi\)
\(488\) 0 0
\(489\) −1.89312e9 −0.0331088
\(490\) 0 0
\(491\) 5.45993e10i 0.939423i 0.882820 + 0.469712i \(0.155642\pi\)
−0.882820 + 0.469712i \(0.844358\pi\)
\(492\) 0 0
\(493\) −2.53905e10 −0.429817
\(494\) 0 0
\(495\) 1.81305e10i 0.301988i
\(496\) 0 0
\(497\) −1.70548e10 −0.279525
\(498\) 0 0
\(499\) 6.97805e10i 1.12547i 0.826639 + 0.562733i \(0.190250\pi\)
−0.826639 + 0.562733i \(0.809750\pi\)
\(500\) 0 0
\(501\) 1.99578e10 0.316782
\(502\) 0 0
\(503\) 6.40878e10i 1.00116i 0.865691 + 0.500580i \(0.166880\pi\)
−0.865691 + 0.500580i \(0.833120\pi\)
\(504\) 0 0
\(505\) −4.34347e10 −0.667838
\(506\) 0 0
\(507\) 5.17529e10i 0.783254i
\(508\) 0 0
\(509\) 1.03640e11 1.54402 0.772012 0.635608i \(-0.219250\pi\)
0.772012 + 0.635608i \(0.219250\pi\)
\(510\) 0 0
\(511\) 2.22116e10i 0.325759i
\(512\) 0 0
\(513\) 6.33664e10 0.914933
\(514\) 0 0
\(515\) − 1.07111e10i − 0.152267i
\(516\) 0 0
\(517\) 1.85281e11 2.59339
\(518\) 0 0
\(519\) 4.08382e10i 0.562855i
\(520\) 0 0
\(521\) −3.35410e10 −0.455225 −0.227612 0.973752i \(-0.573092\pi\)
−0.227612 + 0.973752i \(0.573092\pi\)
\(522\) 0 0
\(523\) 3.32143e10i 0.443934i 0.975054 + 0.221967i \(0.0712477\pi\)
−0.975054 + 0.221967i \(0.928752\pi\)
\(524\) 0 0
\(525\) 6.29335e9 0.0828408
\(526\) 0 0
\(527\) 4.29115e10i 0.556329i
\(528\) 0 0
\(529\) 4.52211e10 0.577455
\(530\) 0 0
\(531\) 1.26287e10i 0.158848i
\(532\) 0 0
\(533\) −1.11060e10 −0.137609
\(534\) 0 0
\(535\) 9.41675e9i 0.114944i
\(536\) 0 0
\(537\) −5.31743e10 −0.639447
\(538\) 0 0
\(539\) 1.07660e11i 1.27555i
\(540\) 0 0
\(541\) −1.39040e11 −1.62312 −0.811562 0.584266i \(-0.801382\pi\)
−0.811562 + 0.584266i \(0.801382\pi\)
\(542\) 0 0
\(543\) 1.40523e11i 1.61640i
\(544\) 0 0
\(545\) 5.25193e10 0.595296
\(546\) 0 0
\(547\) − 7.05870e10i − 0.788452i −0.919013 0.394226i \(-0.871013\pi\)
0.919013 0.394226i \(-0.128987\pi\)
\(548\) 0 0
\(549\) 6.44640e10 0.709623
\(550\) 0 0
\(551\) − 4.24479e10i − 0.460521i
\(552\) 0 0
\(553\) −4.61669e10 −0.493662
\(554\) 0 0
\(555\) 3.63705e10i 0.383334i
\(556\) 0 0
\(557\) −1.36274e11 −1.41577 −0.707884 0.706328i \(-0.750350\pi\)
−0.707884 + 0.706328i \(0.750350\pi\)
\(558\) 0 0
\(559\) 3.52696e10i 0.361205i
\(560\) 0 0
\(561\) 2.29429e11 2.31631
\(562\) 0 0
\(563\) 9.28198e10i 0.923862i 0.886916 + 0.461931i \(0.152843\pi\)
−0.886916 + 0.461931i \(0.847157\pi\)
\(564\) 0 0
\(565\) −6.82535e10 −0.669778
\(566\) 0 0
\(567\) 4.41368e10i 0.427040i
\(568\) 0 0
\(569\) −3.45537e10 −0.329644 −0.164822 0.986323i \(-0.552705\pi\)
−0.164822 + 0.986323i \(0.552705\pi\)
\(570\) 0 0
\(571\) − 9.27891e10i − 0.872876i −0.899734 0.436438i \(-0.856240\pi\)
0.899734 0.436438i \(-0.143760\pi\)
\(572\) 0 0
\(573\) −1.72351e11 −1.59881
\(574\) 0 0
\(575\) − 1.42114e10i − 0.130007i
\(576\) 0 0
\(577\) −3.75444e10 −0.338721 −0.169361 0.985554i \(-0.554170\pi\)
−0.169361 + 0.985554i \(0.554170\pi\)
\(578\) 0 0
\(579\) − 6.66770e10i − 0.593282i
\(580\) 0 0
\(581\) 5.10787e10 0.448266
\(582\) 0 0
\(583\) 1.22140e10i 0.105726i
\(584\) 0 0
\(585\) 3.14203e10 0.268279
\(586\) 0 0
\(587\) 2.66542e10i 0.224498i 0.993680 + 0.112249i \(0.0358054\pi\)
−0.993680 + 0.112249i \(0.964195\pi\)
\(588\) 0 0
\(589\) −7.17395e10 −0.596070
\(590\) 0 0
\(591\) − 4.71706e10i − 0.386653i
\(592\) 0 0
\(593\) −1.07542e11 −0.869681 −0.434840 0.900508i \(-0.643195\pi\)
−0.434840 + 0.900508i \(0.643195\pi\)
\(594\) 0 0
\(595\) − 2.53701e10i − 0.202421i
\(596\) 0 0
\(597\) 6.09251e10 0.479622
\(598\) 0 0
\(599\) 5.10104e10i 0.396234i 0.980178 + 0.198117i \(0.0634825\pi\)
−0.980178 + 0.198117i \(0.936517\pi\)
\(600\) 0 0
\(601\) 1.64304e11 1.25936 0.629681 0.776854i \(-0.283186\pi\)
0.629681 + 0.776854i \(0.283186\pi\)
\(602\) 0 0
\(603\) 1.18374e11i 0.895337i
\(604\) 0 0
\(605\) 6.50886e10 0.485829
\(606\) 0 0
\(607\) − 2.64985e11i − 1.95194i −0.217909 0.975969i \(-0.569923\pi\)
0.217909 0.975969i \(-0.430077\pi\)
\(608\) 0 0
\(609\) 1.84992e10 0.134488
\(610\) 0 0
\(611\) − 3.21092e11i − 2.30390i
\(612\) 0 0
\(613\) 2.58975e11 1.83407 0.917036 0.398804i \(-0.130575\pi\)
0.917036 + 0.398804i \(0.130575\pi\)
\(614\) 0 0
\(615\) 8.31118e9i 0.0580982i
\(616\) 0 0
\(617\) 2.43563e10 0.168063 0.0840313 0.996463i \(-0.473220\pi\)
0.0840313 + 0.996463i \(0.473220\pi\)
\(618\) 0 0
\(619\) − 6.16901e10i − 0.420197i −0.977680 0.210098i \(-0.932622\pi\)
0.977680 0.210098i \(-0.0673784\pi\)
\(620\) 0 0
\(621\) 6.23608e10 0.419320
\(622\) 0 0
\(623\) − 4.96191e10i − 0.329380i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 0 0
\(627\) 3.83560e11i 2.48178i
\(628\) 0 0
\(629\) 1.46619e11 0.936673
\(630\) 0 0
\(631\) 2.91259e10i 0.183722i 0.995772 + 0.0918611i \(0.0292816\pi\)
−0.995772 + 0.0918611i \(0.970718\pi\)
\(632\) 0 0
\(633\) −2.27940e11 −1.41973
\(634\) 0 0
\(635\) − 1.20860e10i − 0.0743340i
\(636\) 0 0
\(637\) 1.86575e11 1.13317
\(638\) 0 0
\(639\) 6.37207e10i 0.382188i
\(640\) 0 0
\(641\) 2.97316e11 1.76111 0.880555 0.473943i \(-0.157170\pi\)
0.880555 + 0.473943i \(0.157170\pi\)
\(642\) 0 0
\(643\) − 2.02204e11i − 1.18289i −0.806344 0.591447i \(-0.798557\pi\)
0.806344 0.591447i \(-0.201443\pi\)
\(644\) 0 0
\(645\) 2.63941e10 0.152499
\(646\) 0 0
\(647\) 2.98562e11i 1.70380i 0.523708 + 0.851898i \(0.324548\pi\)
−0.523708 + 0.851898i \(0.675452\pi\)
\(648\) 0 0
\(649\) 8.70705e10 0.490786
\(650\) 0 0
\(651\) − 3.12648e10i − 0.174073i
\(652\) 0 0
\(653\) −3.34280e10 −0.183847 −0.0919237 0.995766i \(-0.529302\pi\)
−0.0919237 + 0.995766i \(0.529302\pi\)
\(654\) 0 0
\(655\) − 9.69855e10i − 0.526916i
\(656\) 0 0
\(657\) 8.29877e10 0.445402
\(658\) 0 0
\(659\) − 7.70116e10i − 0.408333i −0.978936 0.204166i \(-0.934552\pi\)
0.978936 0.204166i \(-0.0654484\pi\)
\(660\) 0 0
\(661\) 2.47987e11 1.29904 0.649520 0.760344i \(-0.274970\pi\)
0.649520 + 0.760344i \(0.274970\pi\)
\(662\) 0 0
\(663\) − 3.97601e11i − 2.05775i
\(664\) 0 0
\(665\) 4.24138e10 0.216881
\(666\) 0 0
\(667\) − 4.17743e10i − 0.211060i
\(668\) 0 0
\(669\) 1.49585e11 0.746765
\(670\) 0 0
\(671\) − 4.44457e11i − 2.19250i
\(672\) 0 0
\(673\) 1.03219e11 0.503151 0.251576 0.967838i \(-0.419051\pi\)
0.251576 + 0.967838i \(0.419051\pi\)
\(674\) 0 0
\(675\) 2.67827e10i 0.129015i
\(676\) 0 0
\(677\) 3.83549e10 0.182585 0.0912926 0.995824i \(-0.470900\pi\)
0.0912926 + 0.995824i \(0.470900\pi\)
\(678\) 0 0
\(679\) − 1.07819e11i − 0.507243i
\(680\) 0 0
\(681\) 7.01312e10 0.326079
\(682\) 0 0
\(683\) − 2.47284e10i − 0.113635i −0.998385 0.0568177i \(-0.981905\pi\)
0.998385 0.0568177i \(-0.0180954\pi\)
\(684\) 0 0
\(685\) −1.27063e11 −0.577108
\(686\) 0 0
\(687\) 3.97444e11i 1.78422i
\(688\) 0 0
\(689\) 2.11669e10 0.0939247
\(690\) 0 0
\(691\) − 3.63864e10i − 0.159598i −0.996811 0.0797988i \(-0.974572\pi\)
0.996811 0.0797988i \(-0.0254278\pi\)
\(692\) 0 0
\(693\) −5.32517e10 −0.230887
\(694\) 0 0
\(695\) 3.47988e10i 0.149151i
\(696\) 0 0
\(697\) 3.35046e10 0.141962
\(698\) 0 0
\(699\) 1.88072e11i 0.787797i
\(700\) 0 0
\(701\) −1.36852e11 −0.566732 −0.283366 0.959012i \(-0.591451\pi\)
−0.283366 + 0.959012i \(0.591451\pi\)
\(702\) 0 0
\(703\) 2.45118e11i 1.00358i
\(704\) 0 0
\(705\) −2.40290e11 −0.972699
\(706\) 0 0
\(707\) − 1.27573e11i − 0.510601i
\(708\) 0 0
\(709\) −1.84677e11 −0.730848 −0.365424 0.930841i \(-0.619076\pi\)
−0.365424 + 0.930841i \(0.619076\pi\)
\(710\) 0 0
\(711\) 1.72490e11i 0.674972i
\(712\) 0 0
\(713\) −7.06011e10 −0.273183
\(714\) 0 0
\(715\) − 2.16632e11i − 0.828892i
\(716\) 0 0
\(717\) 3.03890e11 1.14985
\(718\) 0 0
\(719\) − 2.26289e11i − 0.846735i −0.905958 0.423368i \(-0.860848\pi\)
0.905958 0.423368i \(-0.139152\pi\)
\(720\) 0 0
\(721\) 3.14600e10 0.116417
\(722\) 0 0
\(723\) − 1.89833e11i − 0.694735i
\(724\) 0 0
\(725\) 1.79412e10 0.0649380
\(726\) 0 0
\(727\) − 6.89485e10i − 0.246824i −0.992356 0.123412i \(-0.960616\pi\)
0.992356 0.123412i \(-0.0393837\pi\)
\(728\) 0 0
\(729\) −5.57976e10 −0.197563
\(730\) 0 0
\(731\) − 1.06402e11i − 0.372631i
\(732\) 0 0
\(733\) −3.05441e11 −1.05806 −0.529031 0.848603i \(-0.677444\pi\)
−0.529031 + 0.848603i \(0.677444\pi\)
\(734\) 0 0
\(735\) − 1.39623e11i − 0.478420i
\(736\) 0 0
\(737\) 8.16147e11 2.76629
\(738\) 0 0
\(739\) 3.94495e11i 1.32271i 0.750074 + 0.661354i \(0.230018\pi\)
−0.750074 + 0.661354i \(0.769982\pi\)
\(740\) 0 0
\(741\) 6.64710e11 2.20475
\(742\) 0 0
\(743\) − 5.69341e10i − 0.186817i −0.995628 0.0934086i \(-0.970224\pi\)
0.995628 0.0934086i \(-0.0297763\pi\)
\(744\) 0 0
\(745\) −6.09237e10 −0.197770
\(746\) 0 0
\(747\) − 1.90842e11i − 0.612902i
\(748\) 0 0
\(749\) −2.76582e10 −0.0878813
\(750\) 0 0
\(751\) − 2.12038e11i − 0.666583i −0.942824 0.333292i \(-0.891841\pi\)
0.942824 0.333292i \(-0.108159\pi\)
\(752\) 0 0
\(753\) 5.59577e11 1.74052
\(754\) 0 0
\(755\) − 5.59897e10i − 0.172314i
\(756\) 0 0
\(757\) 6.46697e10 0.196933 0.0984663 0.995140i \(-0.468606\pi\)
0.0984663 + 0.995140i \(0.468606\pi\)
\(758\) 0 0
\(759\) 3.77473e11i 1.13741i
\(760\) 0 0
\(761\) −2.88384e11 −0.859869 −0.429935 0.902860i \(-0.641463\pi\)
−0.429935 + 0.902860i \(0.641463\pi\)
\(762\) 0 0
\(763\) 1.54256e11i 0.455139i
\(764\) 0 0
\(765\) −9.47887e10 −0.276765
\(766\) 0 0
\(767\) − 1.50893e11i − 0.436002i
\(768\) 0 0
\(769\) 3.09585e11 0.885267 0.442633 0.896703i \(-0.354044\pi\)
0.442633 + 0.896703i \(0.354044\pi\)
\(770\) 0 0
\(771\) 1.72790e11i 0.488991i
\(772\) 0 0
\(773\) −5.21097e11 −1.45949 −0.729744 0.683721i \(-0.760361\pi\)
−0.729744 + 0.683721i \(0.760361\pi\)
\(774\) 0 0
\(775\) − 3.03217e10i − 0.0840518i
\(776\) 0 0
\(777\) −1.06825e11 −0.293081
\(778\) 0 0
\(779\) 5.60130e10i 0.152103i
\(780\) 0 0
\(781\) 4.39332e11 1.18083
\(782\) 0 0
\(783\) 7.87272e10i 0.209449i
\(784\) 0 0
\(785\) −5.63613e9 −0.0148423
\(786\) 0 0
\(787\) 5.00687e11i 1.30517i 0.757715 + 0.652585i \(0.226316\pi\)
−0.757715 + 0.652585i \(0.773684\pi\)
\(788\) 0 0
\(789\) −2.53828e10 −0.0654986
\(790\) 0 0
\(791\) − 2.00469e11i − 0.512084i
\(792\) 0 0
\(793\) −7.70245e11 −1.94776
\(794\) 0 0
\(795\) − 1.58403e10i − 0.0396546i
\(796\) 0 0
\(797\) −4.22774e11 −1.04779 −0.523896 0.851783i \(-0.675522\pi\)
−0.523896 + 0.851783i \(0.675522\pi\)
\(798\) 0 0
\(799\) 9.68670e11i 2.37678i
\(800\) 0 0
\(801\) −1.85388e11 −0.450352
\(802\) 0 0
\(803\) − 5.72172e11i − 1.37615i
\(804\) 0 0
\(805\) 4.17408e10 0.0993978
\(806\) 0 0
\(807\) 2.98088e11i 0.702830i
\(808\) 0 0
\(809\) 1.06326e9 0.00248226 0.00124113 0.999999i \(-0.499605\pi\)
0.00124113 + 0.999999i \(0.499605\pi\)
\(810\) 0 0
\(811\) 2.59999e11i 0.601020i 0.953779 + 0.300510i \(0.0971569\pi\)
−0.953779 + 0.300510i \(0.902843\pi\)
\(812\) 0 0
\(813\) −1.61913e11 −0.370613
\(814\) 0 0
\(815\) − 5.39261e9i − 0.0122227i
\(816\) 0 0
\(817\) 1.77882e11 0.399250
\(818\) 0 0
\(819\) 9.22853e10i 0.205115i
\(820\) 0 0
\(821\) 2.68005e11 0.589889 0.294944 0.955514i \(-0.404699\pi\)
0.294944 + 0.955514i \(0.404699\pi\)
\(822\) 0 0
\(823\) 8.13596e10i 0.177341i 0.996061 + 0.0886705i \(0.0282618\pi\)
−0.996061 + 0.0886705i \(0.971738\pi\)
\(824\) 0 0
\(825\) −1.62117e11 −0.349955
\(826\) 0 0
\(827\) 3.60895e11i 0.771540i 0.922595 + 0.385770i \(0.126064\pi\)
−0.922595 + 0.385770i \(0.873936\pi\)
\(828\) 0 0
\(829\) −3.75987e11 −0.796077 −0.398038 0.917369i \(-0.630309\pi\)
−0.398038 + 0.917369i \(0.630309\pi\)
\(830\) 0 0
\(831\) 5.08134e11i 1.06555i
\(832\) 0 0
\(833\) −5.62859e11 −1.16901
\(834\) 0 0
\(835\) 5.68503e10i 0.116946i
\(836\) 0 0
\(837\) 1.33054e11 0.271098
\(838\) 0 0
\(839\) − 3.78533e11i − 0.763935i −0.924176 0.381967i \(-0.875247\pi\)
0.924176 0.381967i \(-0.124753\pi\)
\(840\) 0 0
\(841\) −4.47509e11 −0.894576
\(842\) 0 0
\(843\) 8.31925e11i 1.64730i
\(844\) 0 0
\(845\) −1.47420e11 −0.289154
\(846\) 0 0
\(847\) 1.91174e11i 0.371445i
\(848\) 0 0
\(849\) 3.14001e10 0.0604366
\(850\) 0 0
\(851\) 2.41228e11i 0.459949i
\(852\) 0 0
\(853\) 3.42638e11 0.647202 0.323601 0.946194i \(-0.395106\pi\)
0.323601 + 0.946194i \(0.395106\pi\)
\(854\) 0 0
\(855\) − 1.58468e11i − 0.296536i
\(856\) 0 0
\(857\) −3.33508e11 −0.618277 −0.309138 0.951017i \(-0.600041\pi\)
−0.309138 + 0.951017i \(0.600041\pi\)
\(858\) 0 0
\(859\) − 1.00496e12i − 1.84576i −0.385084 0.922881i \(-0.625828\pi\)
0.385084 0.922881i \(-0.374172\pi\)
\(860\) 0 0
\(861\) −2.44110e10 −0.0444194
\(862\) 0 0
\(863\) 4.79204e11i 0.863928i 0.901891 + 0.431964i \(0.142179\pi\)
−0.901891 + 0.431964i \(0.857821\pi\)
\(864\) 0 0
\(865\) −1.16329e11 −0.207789
\(866\) 0 0
\(867\) 5.14997e11i 0.911440i
\(868\) 0 0
\(869\) 1.18926e12 2.08544
\(870\) 0 0
\(871\) − 1.41438e12i − 2.45751i
\(872\) 0 0
\(873\) −4.02837e11 −0.693541
\(874\) 0 0
\(875\) 1.79268e10i 0.0305823i
\(876\) 0 0
\(877\) −4.59890e11 −0.777420 −0.388710 0.921360i \(-0.627079\pi\)
−0.388710 + 0.921360i \(0.627079\pi\)
\(878\) 0 0
\(879\) − 7.72477e11i − 1.29399i
\(880\) 0 0
\(881\) 7.20232e11 1.19555 0.597777 0.801663i \(-0.296051\pi\)
0.597777 + 0.801663i \(0.296051\pi\)
\(882\) 0 0
\(883\) 8.35891e11i 1.37501i 0.726178 + 0.687507i \(0.241295\pi\)
−0.726178 + 0.687507i \(0.758705\pi\)
\(884\) 0 0
\(885\) −1.12921e11 −0.184079
\(886\) 0 0
\(887\) 2.07019e11i 0.334439i 0.985920 + 0.167219i \(0.0534788\pi\)
−0.985920 + 0.167219i \(0.946521\pi\)
\(888\) 0 0
\(889\) 3.54981e10 0.0568327
\(890\) 0 0
\(891\) − 1.13696e12i − 1.80400i
\(892\) 0 0
\(893\) −1.61942e12 −2.54657
\(894\) 0 0
\(895\) − 1.51469e11i − 0.236064i
\(896\) 0 0
\(897\) 6.54162e11 1.01045
\(898\) 0 0
\(899\) − 8.91301e10i − 0.136454i
\(900\) 0 0
\(901\) −6.38563e10 −0.0968957
\(902\) 0 0
\(903\) 7.75228e10i 0.116595i
\(904\) 0 0
\(905\) −4.00284e11 −0.596725
\(906\) 0 0
\(907\) − 1.16689e12i − 1.72426i −0.506690 0.862128i \(-0.669131\pi\)
0.506690 0.862128i \(-0.330869\pi\)
\(908\) 0 0
\(909\) −4.76643e11 −0.698132
\(910\) 0 0
\(911\) 1.15580e12i 1.67806i 0.544084 + 0.839031i \(0.316877\pi\)
−0.544084 + 0.839031i \(0.683123\pi\)
\(912\) 0 0
\(913\) −1.31579e12 −1.89366
\(914\) 0 0
\(915\) 5.76414e11i 0.822338i
\(916\) 0 0
\(917\) 2.84859e11 0.402858
\(918\) 0 0
\(919\) − 1.20572e11i − 0.169038i −0.996422 0.0845192i \(-0.973065\pi\)
0.996422 0.0845192i \(-0.0269354\pi\)
\(920\) 0 0
\(921\) 1.44668e12 2.01064
\(922\) 0 0
\(923\) − 7.61364e11i − 1.04902i
\(924\) 0 0
\(925\) −1.03602e11 −0.141515
\(926\) 0 0
\(927\) − 1.17542e11i − 0.159174i
\(928\) 0 0
\(929\) 7.85328e11 1.05436 0.527179 0.849754i \(-0.323250\pi\)
0.527179 + 0.849754i \(0.323250\pi\)
\(930\) 0 0
\(931\) − 9.40988e11i − 1.25252i
\(932\) 0 0
\(933\) −6.24370e11 −0.823977
\(934\) 0 0
\(935\) 6.53536e11i 0.855112i
\(936\) 0 0
\(937\) −4.90137e11 −0.635856 −0.317928 0.948115i \(-0.602987\pi\)
−0.317928 + 0.948115i \(0.602987\pi\)
\(938\) 0 0
\(939\) 4.27542e11i 0.549941i
\(940\) 0 0
\(941\) −5.66225e11 −0.722155 −0.361077 0.932536i \(-0.617591\pi\)
−0.361077 + 0.932536i \(0.617591\pi\)
\(942\) 0 0
\(943\) 5.51241e10i 0.0697100i
\(944\) 0 0
\(945\) −7.86641e10 −0.0986391
\(946\) 0 0
\(947\) − 3.38620e10i − 0.0421029i −0.999778 0.0210515i \(-0.993299\pi\)
0.999778 0.0210515i \(-0.00670139\pi\)
\(948\) 0 0
\(949\) −9.91575e11 −1.22253
\(950\) 0 0
\(951\) 1.00159e11i 0.122452i
\(952\) 0 0
\(953\) −2.54903e11 −0.309032 −0.154516 0.987990i \(-0.549382\pi\)
−0.154516 + 0.987990i \(0.549382\pi\)
\(954\) 0 0
\(955\) − 4.90948e11i − 0.590231i
\(956\) 0 0
\(957\) −4.76540e11 −0.568135
\(958\) 0 0
\(959\) − 3.73201e11i − 0.441233i
\(960\) 0 0
\(961\) 7.02256e11 0.823383
\(962\) 0 0
\(963\) 1.03337e11i 0.120158i
\(964\) 0 0
\(965\) 1.89931e11 0.219022
\(966\) 0 0
\(967\) − 9.19624e11i − 1.05173i −0.850568 0.525865i \(-0.823742\pi\)
0.850568 0.525865i \(-0.176258\pi\)
\(968\) 0 0
\(969\) −2.00530e12 −2.27449
\(970\) 0 0
\(971\) 1.35436e12i 1.52355i 0.647840 + 0.761776i \(0.275672\pi\)
−0.647840 + 0.761776i \(0.724328\pi\)
\(972\) 0 0
\(973\) −1.02208e11 −0.114034
\(974\) 0 0
\(975\) 2.80949e11i 0.310891i
\(976\) 0 0
\(977\) −1.38499e12 −1.52008 −0.760042 0.649874i \(-0.774822\pi\)
−0.760042 + 0.649874i \(0.774822\pi\)
\(978\) 0 0
\(979\) 1.27819e12i 1.39144i
\(980\) 0 0
\(981\) 5.76336e11 0.622300
\(982\) 0 0
\(983\) − 1.57780e12i − 1.68981i −0.534916 0.844905i \(-0.679657\pi\)
0.534916 0.844905i \(-0.320343\pi\)
\(984\) 0 0
\(985\) 1.34367e11 0.142741
\(986\) 0 0
\(987\) − 7.05761e11i − 0.743685i
\(988\) 0 0
\(989\) 1.75060e11 0.182979
\(990\) 0 0
\(991\) 1.83814e11i 0.190583i 0.995449 + 0.0952917i \(0.0303784\pi\)
−0.995449 + 0.0952917i \(0.969622\pi\)
\(992\) 0 0
\(993\) −9.93195e11 −1.02150
\(994\) 0 0
\(995\) 1.73547e11i 0.177062i
\(996\) 0 0
\(997\) 2.34014e11 0.236844 0.118422 0.992963i \(-0.462217\pi\)
0.118422 + 0.992963i \(0.462217\pi\)
\(998\) 0 0
\(999\) − 4.54615e11i − 0.456438i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.9.b.d.191.13 16
4.3 odd 2 inner 320.9.b.d.191.4 16
8.3 odd 2 20.9.b.a.11.1 16
8.5 even 2 20.9.b.a.11.2 yes 16
24.5 odd 2 180.9.c.a.91.15 16
24.11 even 2 180.9.c.a.91.16 16
40.3 even 4 100.9.d.c.99.16 32
40.13 odd 4 100.9.d.c.99.18 32
40.19 odd 2 100.9.b.d.51.16 16
40.27 even 4 100.9.d.c.99.17 32
40.29 even 2 100.9.b.d.51.15 16
40.37 odd 4 100.9.d.c.99.15 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.1 16 8.3 odd 2
20.9.b.a.11.2 yes 16 8.5 even 2
100.9.b.d.51.15 16 40.29 even 2
100.9.b.d.51.16 16 40.19 odd 2
100.9.d.c.99.15 32 40.37 odd 4
100.9.d.c.99.16 32 40.3 even 4
100.9.d.c.99.17 32 40.27 even 4
100.9.d.c.99.18 32 40.13 odd 4
180.9.c.a.91.15 16 24.5 odd 2
180.9.c.a.91.16 16 24.11 even 2
320.9.b.d.191.4 16 4.3 odd 2 inner
320.9.b.d.191.13 16 1.1 even 1 trivial