Properties

Label 1.12
Level 1
Weight 12
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 1
Trace bound 0

Downloads

Learn more

Defining parameters

Level: N N = 1 1
Weight: k k = 12 12
Nonzero newspaces: 1 1
Newform subspaces: 1 1
Sturm bound: 11
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M12(Γ1(1))M_{12}(\Gamma_1(1)).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

Trace form

q24q2+252q31472q4+4830q56048q616744q7+84480q8113643q9115920q10+534612q11370944q12577738q13+401856q14+1217160q15+60754911516q99+O(q100) q - 24 q^{2} + 252 q^{3} - 1472 q^{4} + 4830 q^{5} - 6048 q^{6} - 16744 q^{7} + 84480 q^{8} - 113643 q^{9} - 115920 q^{10} + 534612 q^{11} - 370944 q^{12} - 577738 q^{13} + 401856 q^{14} + 1217160 q^{15}+ \cdots - 60754911516 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S12new(Γ1(1))S_{12}^{\mathrm{new}}(\Gamma_1(1))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
1.12.a χ1(1,)\chi_{1}(1, \cdot) 1.12.a.a 1 1