Defining parameters
Level: | \( N \) | = | \( 1 \) |
Weight: | \( k \) | = | \( 12 \) |
Nonzero newspaces: | \( 1 \) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(1\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(1))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2 | 2 | 0 |
Cusp forms | 1 | 1 | 0 |
Eisenstein series | 1 | 1 | 0 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1.12.a | \(\chi_{1}(1, \cdot)\) | 1.12.a.a | 1 | 1 |