Properties

Label 1.12
Level 1
Weight 12
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 1
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(1\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(1))\).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

Trace form

\( q - 24q^{2} + 252q^{3} - 1472q^{4} + 4830q^{5} - 6048q^{6} - 16744q^{7} + 84480q^{8} - 113643q^{9} + O(q^{10}) \) \( q - 24q^{2} + 252q^{3} - 1472q^{4} + 4830q^{5} - 6048q^{6} - 16744q^{7} + 84480q^{8} - 113643q^{9} - 115920q^{10} + 534612q^{11} - 370944q^{12} - 577738q^{13} + 401856q^{14} + 1217160q^{15} + 987136q^{16} - 6905934q^{17} + 2727432q^{18} + 10661420q^{19} - 7109760q^{20} - 4219488q^{21} - 12830688q^{22} + 18643272q^{23} + 21288960q^{24} - 25499225q^{25} + 13865712q^{26} - 73279080q^{27} + 24647168q^{28} + 128406630q^{29} - 29211840q^{30} - 52843168q^{31} - 196706304q^{32} + 134722224q^{33} + 165742416q^{34} - 80873520q^{35} + 167282496q^{36} - 182213314q^{37} - 255874080q^{38} - 145589976q^{39} + 408038400q^{40} + 308120442q^{41} + 101267712q^{42} - 17125708q^{43} - 786948864q^{44} - 548895690q^{45} - 447438528q^{46} + 2687348496q^{47} + 248758272q^{48} - 1696965207q^{49} + 611981400q^{50} - 1740295368q^{51} + 850430336q^{52} - 1596055698q^{53} + 1758697920q^{54} + 2582175960q^{55} - 1414533120q^{56} + 2686677840q^{57} - 3081759120q^{58} - 5189203740q^{59} - 1791659520q^{60} + 6956478662q^{61} + 1268236032q^{62} + 1902838392q^{63} + 2699296768q^{64} - 2790474540q^{65} - 3233333376q^{66} - 15481826884q^{67} + 10165534848q^{68} + 4698104544q^{69} + 1940964480q^{70} + 9791485272q^{71} - 9600560640q^{72} + 1463791322q^{73} + 4373119536q^{74} - 6425804700q^{75} - 15693610240q^{76} - 8951543328q^{77} + 3494159424q^{78} + 38116845680q^{79} + 4767866880q^{80} + 1665188361q^{81} - 7394890608q^{82} - 29335099668q^{83} + 6211086336q^{84} - 33355661220q^{85} + 411016992q^{86} + 32358470760q^{87} + 45164021760q^{88} - 24992917110q^{89} + 13173496560q^{90} + 9673645072q^{91} - 27442896384q^{92} - 13316478336q^{93} - 64496363904q^{94} + 51494658600q^{95} - 49569988608q^{96} + 75013568546q^{97} + 40727164968q^{98} - 60754911516q^{99} + O(q^{100}) \)

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1.12.a \(\chi_{1}(1, \cdot)\) 1.12.a.a 1 1

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 24 T + 2048 T^{2} \)
$3$ \( 1 - 252 T + 177147 T^{2} \)
$5$ \( 1 - 4830 T + 48828125 T^{2} \)
$7$ \( 1 + 16744 T + 1977326743 T^{2} \)
$11$ \( 1 - 534612 T + 285311670611 T^{2} \)
$13$ \( 1 + 577738 T + 1792160394037 T^{2} \)
$17$ \( 1 + 6905934 T + 34271896307633 T^{2} \)
$19$ \( 1 - 10661420 T + 116490258898219 T^{2} \)
$23$ \( 1 - 18643272 T + 952809757913927 T^{2} \)
$29$ \( 1 - 128406630 T + 12200509765705829 T^{2} \)
$31$ \( 1 + 52843168 T + 25408476896404831 T^{2} \)
$37$ \( 1 + 182213314 T + 177917621779460413 T^{2} \)
$41$ \( 1 - 308120442 T + 550329031716248441 T^{2} \)
$43$ \( 1 + 17125708 T + 929293739471222707 T^{2} \)
$47$ \( 1 - 2687348496 T + 2472159215084012303 T^{2} \)
$53$ \( 1 + 1596055698 T + 9269035929372191597 T^{2} \)
$59$ \( 1 + 5189203740 T + 30155888444737842659 T^{2} \)
$61$ \( 1 - 6956478662 T + 43513917611435838661 T^{2} \)
$67$ \( 1 + 15481826884 T + \)\(12\!\cdots\!83\)\( T^{2} \)
$71$ \( 1 - 9791485272 T + \)\(23\!\cdots\!71\)\( T^{2} \)
$73$ \( 1 - 1463791322 T + \)\(31\!\cdots\!77\)\( T^{2} \)
$79$ \( 1 - 38116845680 T + \)\(74\!\cdots\!79\)\( T^{2} \)
$83$ \( 1 + 29335099668 T + \)\(12\!\cdots\!67\)\( T^{2} \)
$89$ \( 1 + 24992917110 T + \)\(27\!\cdots\!89\)\( T^{2} \)
$97$ \( 1 - 75013568546 T + \)\(71\!\cdots\!53\)\( T^{2} \)
show more
show less