Maass form invariants
| Level: | \( 7 \) |
| Weight: | \( 0 \) |
| Character: | 7.1 |
| Symmetry: | even |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(13.6053245137724225206712525349 \pm 7 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.20114190 \pm 2.6 \cdot 10^{-8} \) | \(a_{3}= +1.65214621 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{4}= +0.44274187 \pm 3.5 \cdot 10^{-8} \) | \(a_{5}= -1.10751483 \pm 1.1 \cdot 10^{-8} \) | \(a_{6}= -1.98446204 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.66934609 \pm 3.0 \cdot 10^{-8} \) | \(a_{9}= +1.72958710 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{10}= +1.33028247 \pm 1.2 \cdot 10^{-8} \) | \(a_{11}= -1.13673877 \pm 1.8 \cdot 10^{-8} \) | \(a_{12}= +0.73147430 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{13}= +0.45889837 \pm 1.7 \cdot 10^{-8} \) | \(a_{14}= +0.45398897 \pm 3.6 \cdot 10^{-8} \) | \(a_{15}= -1.82977644 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{16}= -1.24672151 \pm 3.1 \cdot 10^{-8} \) | \(a_{17}= +1.47601220 \pm 1.8 \cdot 10^{-8} \) | \(a_{18}= -2.07747954 \pm 1 \cdot 10^{-8} \) |
| \(a_{19}= -0.30127574 \pm 2.3 \cdot 10^{-8} \) | \(a_{20}= -0.49034319 \pm 1.1 \cdot 10^{-8} \) | \(a_{21}= -0.62445257 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{22}= +1.36538457 \pm 2.3 \cdot 10^{-8} \) | \(a_{23}= -0.74227501 \pm 1.9 \cdot 10^{-8} \) | \(a_{24}= +1.10585761 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{25}= +0.22658911 \pm 2.1 \cdot 10^{-8} \) | \(a_{26}= -0.55120206 \pm 1.6 \cdot 10^{-8} \) | \(a_{27}= +1.20538457 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{28}= -0.16734070 \pm 4.6 \cdot 10^{-8} \) | \(a_{29}= -0.00275899 \pm 2.0 \cdot 10^{-8} \) | \(a_{30}= +2.19782115 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{31}= +1.97891645 \pm 2.6 \cdot 10^{-8} \) | \(a_{32}= +0.82814335 \pm 1.5 \cdot 10^{-8} \) | \(a_{33}= -1.87805866 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{34}= -1.77290010 \pm 1.1 \cdot 10^{-8} \) | \(a_{35}= +0.41860126 \pm 2.2 \cdot 10^{-8} \) | \(a_{36}= +0.76576062 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{37}= +1.40261147 \pm 1.8 \cdot 10^{-8} \) | \(a_{38}= +0.36187491 \pm 1.9 \cdot 10^{-8} \) | \(a_{39}= +0.75816720 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{40}= -0.74131073 \pm 1.1 \cdot 10^{-8} \) | \(a_{41}= +0.38722309 \pm 2.5 \cdot 10^{-8} \) | \(a_{42}= +0.75005615 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{43}= +0.19529846 \pm 2.7 \cdot 10^{-8} \) | \(a_{44}= -0.50328185 \pm 3.0 \cdot 10^{-8} \) | \(a_{45}= -1.91554337 \pm 1 \cdot 10^{-8} \) |
| \(a_{46}= +0.89157761 \pm 1.4 \cdot 10^{-8} \) | \(a_{47}= +1.29440898 \pm 1.7 \cdot 10^{-8} \) | \(a_{48}= -2.05976621 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.27216567 \pm 2.2 \cdot 10^{-8} \) | \(a_{51}= +2.43858796 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{52}= +0.20317352 \pm 1.9 \cdot 10^{-8} \) | \(a_{53}= -0.23946491 \pm 2.8 \cdot 10^{-8} \) | \(a_{54}= -1.44783791 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{55}= +1.25895506 \pm 1 \cdot 10^{-8} \) | \(a_{56}= -0.25298904 \pm 4.1 \cdot 10^{-8} \) | \(a_{57}= -0.49775157 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{58}= +0.00331394 \pm 2.1 \cdot 10^{-8} \) | \(a_{59}= +1.34122437 \pm 1.3 \cdot 10^{-8} \) | \(a_{60}= -0.81011864 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{61}= +0.82641031 \pm 2.4 \cdot 10^{-8} \) | \(a_{62}= -2.37695946 \pm 4.0 \cdot 10^{-8} \) | \(a_{63}= -0.65372248 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{64}= +0.25200383 \pm 1.8 \cdot 10^{-8} \) | \(a_{65}= -0.50823675 \pm 1.1 \cdot 10^{-8} \) | \(a_{66}= +2.25581495 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{67}= +0.71216311 \pm 2.3 \cdot 10^{-8} \) | \(a_{68}= +0.65349240 \pm 1.7 \cdot 10^{-8} \) | \(a_{69}= -1.22634684 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{70}= -0.50279951 \pm 4.8 \cdot 10^{-8} \) | \(a_{71}= -0.55577062 \pm 1.7 \cdot 10^{-8} \) | \(a_{72}= +1.15769237 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{73}= +0.87525030 \pm 2.6 \cdot 10^{-8} \) | \(a_{74}= -1.68473541 \pm 2.0 \cdot 10^{-8} \) | \(a_{75}= +0.37435834 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{76}= -0.13338738 \pm 2.8 \cdot 10^{-8} \) | \(a_{77}= +0.42964687 \pm 2.8 \cdot 10^{-8} \) | \(a_{78}= -0.91066639 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{79}= +0.15755950 \pm 1.1 \cdot 10^{-8} \) | \(a_{80}= +1.38076256 \pm 1.4 \cdot 10^{-8} \) | \(a_{81}= +0.26188444 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{82}= -0.46510988 \pm 1 \cdot 10^{-8} \) | \(a_{83}= -0.26627126 \pm 2.9 \cdot 10^{-8} \) | \(a_{84}= -0.27647130 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{85}= -1.63470541 \pm 1.1 \cdot 10^{-8} \) | \(a_{86}= -0.23458116 \pm 4.4 \cdot 10^{-8} \) | \(a_{87}= -0.00455826 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{88}= -0.76087166 \pm 2.7 \cdot 10^{-8} \) | \(a_{89}= +0.35480141 \pm 3.1 \cdot 10^{-8} \) | \(a_{90}= +2.30083941 \pm 1 \cdot 10^{-8} \) |
| \(a_{91}= -0.17344728 \pm 2.7 \cdot 10^{-8} \) | \(a_{92}= -0.32863622 \pm 1.6 \cdot 10^{-8} \) | \(a_{93}= +3.26945931 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{94}= -1.55476887 \pm 2.1 \cdot 10^{-8} \) | \(a_{95}= +0.33366735 \pm 1.1 \cdot 10^{-8} \) | \(a_{96}= +1.36821389 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{97}= -1.04409681 \pm 2.6 \cdot 10^{-8} \) | \(a_{98}= -0.17159170 \pm 3.6 \cdot 10^{-8} \) | \(a_{99}= -1.96608872 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{100}= +0.10032048 \pm 3.2 \cdot 10^{-8} \) | \(a_{101}= -0.89146986 \pm 1.9 \cdot 10^{-8} \) | \(a_{102}= -2.92909019 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{103}= +1.72584481 \pm 2.2 \cdot 10^{-8} \) | \(a_{104}= +0.30716183 \pm 1.6 \cdot 10^{-8} \) | \(a_{105}= +0.69159049 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{106}= +0.28763134 \pm 1.8 \cdot 10^{-8} \) | \(a_{107}= -0.66994733 \pm 2.4 \cdot 10^{-8} \) | \(a_{108}= +0.53367421 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{109}= +1.15836871 \pm 2.7 \cdot 10^{-8} \) | \(a_{110}= -1.51218367 \pm 1 \cdot 10^{-8} \) | \(a_{111}= +2.31731923 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{112}= +0.47121644 \pm 4.2 \cdot 10^{-8} \) | \(a_{113}= -1.29862916 \pm 2.6 \cdot 10^{-8} \) | \(a_{114}= +0.59787027 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{115}= +0.82208058 \pm 1.4 \cdot 10^{-8} \) | \(a_{116}= -0.00122152 \pm 2.9 \cdot 10^{-8} \) | \(a_{117}= +0.79370470 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{118}= -1.61100079 \pm 1.8 \cdot 10^{-8} \) | \(a_{119}= -0.55788017 \pm 2.9 \cdot 10^{-8} \) | \(a_{120}= -1.22475371 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{121}= +0.29217504 \pm 1.3 \cdot 10^{-8} \) | \(a_{122}= -0.99263605 \pm 2.3 \cdot 10^{-8} \) | \(a_{123}= +0.63974916 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{124}= +0.87614916 \pm 5.1 \cdot 10^{-8} \) | \(a_{125}= +0.85656404 \pm 1.4 \cdot 10^{-8} \) | \(a_{126}= +0.78521346 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{127}= -1.44035660 \pm 1.9 \cdot 10^{-8} \) | \(a_{128}= -1.13083571 \pm 1.8 \cdot 10^{-8} \) | \(a_{129}= +0.32266161 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{130}= +0.61046445 \pm 1.2 \cdot 10^{-8} \) | \(a_{131}= +0.54735797 \pm 1.6 \cdot 10^{-8} \) | \(a_{132}= -0.83149520 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{133}= +0.11387153 \pm 3.3 \cdot 10^{-8} \) | \(a_{134}= -0.85540895 \pm 1.0 \cdot 10^{-8} \) | \(a_{135}= -1.33498129 \pm 1 \cdot 10^{-8} \) |
| \(a_{136}= +0.98796300 \pm 1 \cdot 10^{-8} \) | \(a_{137}= -0.03082085 \pm 1.7 \cdot 10^{-8} \) | \(a_{138}= +1.47301658 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{139}= +0.05657107 \pm 2.1 \cdot 10^{-8} \) | \(a_{140}= +0.18533230 \pm 5.7 \cdot 10^{-8} \) | \(a_{141}= +2.13855290 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{142}= +0.66755938 \pm 2.2 \cdot 10^{-8} \) | \(a_{143}= -0.52164757 \pm 1.2 \cdot 10^{-8} \) | \(a_{144}= -2.15631344 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{145}= +0.00305563 \pm 1.0 \cdot 10^{-8} \) | \(a_{146}= -1.05129981 \pm 4.0 \cdot 10^{-8} \) | \(a_{147}= +0.23602089 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{148}= +0.62099482 \pm 2.6 \cdot 10^{-8} \) | \(a_{149}= -0.10161509 \pm 2.7 \cdot 10^{-8} \) | \(a_{150}= -0.44965748 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{151}= +0.38826009 \pm 2.7 \cdot 10^{-8} \) | \(a_{152}= -0.20165774 \pm 2.2 \cdot 10^{-8} \) | \(a_{153}= +2.55289166 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{154}= -0.51606686 \pm 5.4 \cdot 10^{-8} \) | \(a_{155}= -2.19167932 \pm 1 \cdot 10^{-8} \) | \(a_{156}= +0.33567236 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{157}= +0.08263793 \pm 2.1 \cdot 10^{-8} \) | \(a_{158}= -0.18925132 \pm 1.1 \cdot 10^{-8} \) | \(a_{159}= -0.39563104 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{160}= -0.91718104 \pm 1 \cdot 10^{-8} \) | \(a_{161}= +0.28055358 \pm 3.0 \cdot 10^{-8} \) | \(a_{162}= -0.31456038 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{163}= -0.93722219 \pm 2.0 \cdot 10^{-8} \) | \(a_{164}= +0.17143987 \pm 2.5 \cdot 10^{-8} \) | \(a_{165}= +2.07997782 \pm 1 \cdot 10^{-8} \) |
| \(a_{166}= +0.31982957 \pm 3.4 \cdot 10^{-8} \) | \(a_{167}= +0.10176617 \pm 2.3 \cdot 10^{-8} \) | \(a_{168}= -0.41797489 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{169}= -0.78941229 \pm 1.6 \cdot 10^{-8} \) | \(a_{170}= +1.96351316 \pm 1.1 \cdot 10^{-8} \) | \(a_{171}= -0.52108263 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{172}= +0.08646680 \pm 5.6 \cdot 10^{-8} \) | \(a_{173}= -1.26016890 \pm 2.1 \cdot 10^{-8} \) | \(a_{174}= +0.00547512 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{175}= -0.08564263 \pm 3.2 \cdot 10^{-8} \) | \(a_{176}= +1.41719668 \pm 2.5 \cdot 10^{-8} \) | \(a_{177}= +2.21589876 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{178}= -0.42616684 \pm 3.0 \cdot 10^{-8} \) | \(a_{179}= -0.26683734 \pm 2.9 \cdot 10^{-8} \) | \(a_{180}= -0.84809125 \pm 1 \cdot 10^{-8} \) |
| \(a_{181}= +1.06779406 \pm 2.1 \cdot 10^{-8} \) | \(a_{182}= +0.20833479 \pm 5.4 \cdot 10^{-8} \) | \(a_{183}= +1.36535066 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{184}= -0.49683888 \pm 1 \cdot 10^{-8} \) | \(a_{185}= -1.55341301 \pm 1 \cdot 10^{-8} \) | \(a_{186}= -3.92708457 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{187}= -1.67784030 \pm 1.1 \cdot 10^{-8} \) | \(a_{188}= +0.57308905 \pm 2.7 \cdot 10^{-8} \) | \(a_{189}= -0.45559254 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{190}= -0.40078183 \pm 1.0 \cdot 10^{-8} \) | \(a_{191}= +0.60954055 \pm 3.2 \cdot 10^{-8} \) | \(a_{192}= +0.41634717 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{193}= +1.09719818 \pm 2.1 \cdot 10^{-8} \) | \(a_{194}= +1.25410842 \pm 2.5 \cdot 10^{-8} \) | \(a_{195}= -0.83968142 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{196}= +0.06324884 \pm 4.6 \cdot 10^{-8} \) | \(a_{197}= -0.64921820 \pm 3.3 \cdot 10^{-8} \) | \(a_{198}= +2.36155155 \pm 1 \cdot 10^{-8} \) |
| \(a_{199}= +0.17601906 \pm 2.5 \cdot 10^{-8} \) | \(a_{200}= +0.15166653 \pm 2.7 \cdot 10^{-8} \) | \(a_{201}= +1.17659758 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{202}= +1.07078180 \pm 1 \cdot 10^{-8} \) | \(a_{203}= +0.00104280 \pm 3.1 \cdot 10^{-8} \) | \(a_{204}= +1.07966499 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{205}= -0.42885531 \pm 1.0 \cdot 10^{-8} \) | \(a_{206}= -2.07298451 \pm 1.3 \cdot 10^{-8} \) | \(a_{207}= -1.28382928 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{208}= -0.57211846 \pm 2.0 \cdot 10^{-8} \) | \(a_{209}= +0.34247181 \pm 1.5 \cdot 10^{-8} \) | \(a_{210}= -0.83069831 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{211}= +0.99437344 \pm 1.7 \cdot 10^{-8} \) | \(a_{212}= -0.10602114 \pm 3.1 \cdot 10^{-8} \) | \(a_{213}= -0.91821433 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{214}= +0.80470181 \pm 1.5 \cdot 10^{-8} \) | \(a_{215}= -0.21629594 \pm 1 \cdot 10^{-8} \) | \(a_{216}= +0.80681945 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{217}= -0.74796011 \pm 3.6 \cdot 10^{-8} \) | \(a_{218}= -1.39136519 \pm 1.4 \cdot 10^{-8} \) | \(a_{219}= +1.44604147 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{220}= +0.55739211 \pm 1 \cdot 10^{-8} \) | \(a_{221}= +0.67733959 \pm 1.5 \cdot 10^{-8} \) | \(a_{222}= -2.78342922 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{223}= +1.39684937 \pm 2.9 \cdot 10^{-8} \) | \(a_{224}= -0.31300876 \pm 2.5 \cdot 10^{-8} \) | \(a_{225}= +0.39190560 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{226}= +1.55983790 \pm 1 \cdot 10^{-8} \) | \(a_{227}= -0.59369874 \pm 3.1 \cdot 10^{-8} \) | \(a_{228}= -0.22037546 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{229}= -0.00253600 \pm 2.2 \cdot 10^{-8} \) | \(a_{230}= -0.98743543 \pm 1.5 \cdot 10^{-8} \) | \(a_{231}= +0.70983945 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{232}= -0.00184672 \pm 2.4 \cdot 10^{-8} \) | \(a_{233}= -1.29022810 \pm 1.6 \cdot 10^{-8} \) | \(a_{234}= -0.95335197 \pm 1 \cdot 10^{-8} \) |
| \(a_{235}= -1.43357715 \pm 1 \cdot 10^{-8} \) | \(a_{236}= +0.59381618 \pm 2.1 \cdot 10^{-8} \) | \(a_{237}= +0.26031133 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{238}= +0.67009325 \pm 5.5 \cdot 10^{-8} \) | \(a_{239}= +0.76031943 \pm 2.2 \cdot 10^{-8} \) | \(a_{240}= +2.28122164 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{241}= +1.36117309 \pm 1.3 \cdot 10^{-8} \) | \(a_{242}= -0.35094368 \pm 1 \cdot 10^{-8} \) | \(a_{243}= -0.77271318 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{244}= +0.36588644 \pm 3.4 \cdot 10^{-8} \) | \(a_{245}= -0.15821640 \pm 2.2 \cdot 10^{-8} \) | \(a_{246}= -0.76842952 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{247}= -0.13825494 \pm 1.5 \cdot 10^{-8} \) | \(a_{248}= +1.32457999 \pm 4.9 \cdot 10^{-8} \) | \(a_{249}= -0.43991905 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{250}= -1.02885496 \pm 1.4 \cdot 10^{-8} \) | \(a_{251}= -0.26012208 \pm 2.4 \cdot 10^{-8} \) | \(a_{252}= -0.28943031 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{253}= +0.84377278 \pm 1.1 \cdot 10^{-8} \) | \(a_{254}= +1.73007267 \pm 3.1 \cdot 10^{-8} \) | \(a_{255}= -2.70077235 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{256}= +1.10629032 \pm 3.1 \cdot 10^{-8} \) | \(a_{257}= +0.56193388 \pm 2.4 \cdot 10^{-8} \) | \(a_{258}= -0.38756238 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{259}= -0.53013731 \pm 2.9 \cdot 10^{-8} \) | \(a_{260}= -0.22501769 \pm 1 \cdot 10^{-8} \) | \(a_{261}= -0.00477192 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{262}= -0.65745459 \pm 2.4 \cdot 10^{-8} \) | \(a_{263}= -1.16914748 \pm 1.5 \cdot 10^{-8} \) | \(a_{264}= -1.25707123 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{265}= +0.26521094 \pm 1.3 \cdot 10^{-8} \) | \(a_{266}= -0.13677586 \pm 6.0 \cdot 10^{-8} \) | \(a_{267}= +0.58618380 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{268}= +0.31530443 \pm 2.3 \cdot 10^{-8} \) | \(a_{269}= -0.37199846 \pm 1.7 \cdot 10^{-8} \) | \(a_{270}= +1.60350196 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{271}= +1.83296181 \pm 1.8 \cdot 10^{-8} \) | \(a_{272}= -1.84017615 \pm 1.9 \cdot 10^{-8} \) | \(a_{273}= -0.28656027 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{274}= +0.03702021 \pm 2.5 \cdot 10^{-8} \) | \(a_{275}= -0.25757262 \pm 1.6 \cdot 10^{-8} \) | \(a_{276}= -0.54295509 \pm 1 \cdot 10^{-8} \) |
| \(a_{277}= -0.18336604 \pm 2.5 \cdot 10^{-8} \) | \(a_{278}= -0.06794989 \pm 3.2 \cdot 10^{-8} \) | \(a_{279}= +3.42270836 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{280}= +0.28018912 \pm 5.2 \cdot 10^{-8} \) | \(a_{281}= -0.94848501 \pm 3.2 \cdot 10^{-8} \) | \(a_{282}= -2.56870549 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{283}= +1.80122457 \pm 1.5 \cdot 10^{-8} \) | \(a_{284}= -0.24606292 \pm 2.8 \cdot 10^{-8} \) | \(a_{285}= +0.55126725 \pm 1 \cdot 10^{-8} \) |
| \(a_{286}= +0.62657275 \pm 1.3 \cdot 10^{-8} \) | \(a_{287}= -0.14635657 \pm 3.6 \cdot 10^{-8} \) | \(a_{288}= +1.43234605 \pm 1 \cdot 10^{-8} \) |
| \(a_{289}= +1.17861202 \pm 1.5 \cdot 10^{-8} \) | \(a_{290}= -0.00367024 \pm 1.2 \cdot 10^{-8} \) | \(a_{291}= -1.72500058 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{292}= +0.38750995 \pm 5.1 \cdot 10^{-8} \) | \(a_{293}= +0.37811489 \pm 1.8 \cdot 10^{-8} \) | \(a_{294}= -0.28349458 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{295}= -1.48542589 \pm 1 \cdot 10^{-8} \) | \(a_{296}= +0.93883251 \pm 2.4 \cdot 10^{-8} \) | \(a_{297}= -1.37020737 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{298}= +0.12205415 \pm 1.1 \cdot 10^{-8} \) | \(a_{299}= -0.34062879 \pm 1.4 \cdot 10^{-8} \) | \(a_{300}= +0.16574411 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{301}= -0.07381588 \pm 3.8 \cdot 10^{-8} \) | \(a_{302}= -0.46635546 \pm 2.5 \cdot 10^{-8} \) | \(a_{303}= -1.47283855 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{304}= +0.37560694 \pm 2.7 \cdot 10^{-8} \) | \(a_{305}= -0.91526168 \pm 1 \cdot 10^{-8} \) | \(a_{306}= -3.06638515 \pm 1 \cdot 10^{-8} \) |
| \(a_{307}= -1.63792167 \pm 1.6 \cdot 10^{-8} \) | \(a_{308}= +0.19022266 \pm 6.4 \cdot 10^{-8} \) | \(a_{309}= +2.85134796 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{310}= +2.63251786 \pm 1.1 \cdot 10^{-8} \) | \(a_{311}= -0.08553868 \pm 3.2 \cdot 10^{-8} \) | \(a_{312}= +0.50747625 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{313}= +1.12321380 \pm 1.8 \cdot 10^{-8} \) | \(a_{314}= -0.09925988 \pm 1.6 \cdot 10^{-8} \) | \(a_{315}= +0.72400734 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{316}= +0.06975819 \pm 1.5 \cdot 10^{-8} \) | \(a_{317}= +0.45675331 \pm 3.3 \cdot 10^{-8} \) | \(a_{318}= +0.47520902 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{319}= +0.00313625 \pm 1.5 \cdot 10^{-8} \) | \(a_{320}= -0.27909798 \pm 1 \cdot 10^{-8} \) | \(a_{321}= -1.10685095 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{322}= -0.33698466 \pm 5.6 \cdot 10^{-8} \) | \(a_{323}= -0.44468667 \pm 1.9 \cdot 10^{-8} \) | \(a_{324}= +0.11594721 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{325}= +0.10398137 \pm 1.3 \cdot 10^{-8} \) | \(a_{326}= +1.12573685 \pm 1.5 \cdot 10^{-8} \) | \(a_{327}= +1.91379447 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{328}= +0.25918626 \pm 1 \cdot 10^{-8} \) | \(a_{329}= -0.48924061 \pm 2.8 \cdot 10^{-8} \) | \(a_{330}= -2.49834852 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{331}= -1.63840151 \pm 3.1 \cdot 10^{-8} \) | \(a_{332}= -0.11788943 \pm 4.7 \cdot 10^{-8} \) | \(a_{333}= +2.42593871 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{334}= -0.12223561 \pm 1.4 \cdot 10^{-8} \) | \(a_{335}= -0.78873121 \pm 1 \cdot 10^{-8} \) | \(a_{336}= +0.77851845 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{337}= +0.31215977 \pm 1.5 \cdot 10^{-8} \) | \(a_{338}= +0.94819618 \pm 2.0 \cdot 10^{-8} \) | \(a_{339}= -2.14552525 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{340}= -0.72375253 \pm 1 \cdot 10^{-8} \) | \(a_{341}= -2.24951105 \pm 2.2 \cdot 10^{-8} \) | \(a_{342}= +0.62589418 \pm 1 \cdot 10^{-8} \) |
| \(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.13072226 \pm 5.4 \cdot 10^{-8} \) | \(a_{345}= +1.35819732 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{346}= +1.51364167 \pm 2.4 \cdot 10^{-8} \) | \(a_{347}= +0.08528465 \pm 1.8 \cdot 10^{-8} \) | \(a_{348}= -0.00201813 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{349}= +1.01806954 \pm 2.3 \cdot 10^{-8} \) | \(a_{350}= +0.10286895 \pm 5.8 \cdot 10^{-8} \) | \(a_{351}= +0.55314901 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{352}= -0.94138265 \pm 1.3 \cdot 10^{-8} \) | \(a_{353}= +1.06322310 \pm 1.7 \cdot 10^{-8} \) | \(a_{354}= -2.66160885 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{355}= +0.61552421 \pm 1 \cdot 10^{-8} \) | \(a_{356}= +0.15708544 \pm 4.5 \cdot 10^{-8} \) | \(a_{357}= -0.92169962 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{358}= +0.32050951 \pm 3.4 \cdot 10^{-8} \) | \(a_{359}= +0.46579097 \pm 1.4 \cdot 10^{-8} \) | \(a_{360}= -1.28216147 \pm 1 \cdot 10^{-8} \) |
| \(a_{361}= -0.90923293 \pm 1.9 \cdot 10^{-8} \) | \(a_{362}= -1.28257219 \pm 2.8 \cdot 10^{-8} \) | \(a_{363}= +0.48271589 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{364}= -0.07679237 \pm 6.3 \cdot 10^{-8} \) | \(a_{365}= -0.96935269 \pm 1 \cdot 10^{-8} \) | \(a_{366}= -1.63997989 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{367}= +0.86015588 \pm 2.1 \cdot 10^{-8} \) | \(a_{368}= +0.92541022 \pm 2.0 \cdot 10^{-8} \) | \(a_{369}= +0.66973606 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{370}= +1.86586946 \pm 1 \cdot 10^{-8} \) | \(a_{371}= +0.09050923 \pm 3.9 \cdot 10^{-8} \) | \(a_{372}= +1.44752652 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{373}= -1.23823449 \pm 1.6 \cdot 10^{-8} \) | \(a_{374}= +2.01532429 \pm 1 \cdot 10^{-8} \) | \(a_{375}= +1.41516903 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{376}= +0.86640760 \pm 2.4 \cdot 10^{-8} \) | \(a_{377}= -0.00126610 \pm 1.6 \cdot 10^{-8} \) | \(a_{378}= +0.54723129 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{379}= +0.84413500 \pm 1.3 \cdot 10^{-8} \) | \(a_{380}= +0.14772851 \pm 1 \cdot 10^{-8} \) | \(a_{381}= -2.37967970 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{382}= -0.73214469 \pm 3.3 \cdot 10^{-8} \) | \(a_{383}= +1.45637793 \pm 2.3 \cdot 10^{-8} \) | \(a_{384}= -1.86830593 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{385}= -0.47584028 \pm 4.0 \cdot 10^{-8} \) | \(a_{386}= -1.31789071 \pm 1.5 \cdot 10^{-8} \) | \(a_{387}= +0.33778570 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{388}= -0.46226537 \pm 3.7 \cdot 10^{-8} \) | \(a_{389}= -0.57053633 \pm 3.0 \cdot 10^{-8} \) | \(a_{390}= +1.00857654 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{391}= -1.09560697 \pm 1.9 \cdot 10^{-8} \) | \(a_{392}= +0.09562087 \pm 4.1 \cdot 10^{-8} \) | \(a_{393}= +0.90431540 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{394}= +0.77980319 \pm 2.3 \cdot 10^{-8} \) | \(a_{395}= -0.17449948 \pm 1 \cdot 10^{-8} \) | \(a_{396}= -0.87046979 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{397}= -0.72655550 \pm 1.7 \cdot 10^{-8} \) | \(a_{398}= -0.21142387 \pm 3.2 \cdot 10^{-8} \) | \(a_{399}= +0.18813241 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{400}= -0.28249351 \pm 2.8 \cdot 10^{-8} \) | \(a_{401}= +0.31907028 \pm 2.5 \cdot 10^{-8} \) | \(a_{402}= -1.41326066 \pm 1 \cdot 10^{-8} \) |
| \(a_{403}= +0.90812152 \pm 1.2 \cdot 10^{-8} \) | \(a_{404}= -0.39469103 \pm 1.9 \cdot 10^{-8} \) | \(a_{405}= -0.29004090 \pm 1 \cdot 10^{-8} \) |
| \(a_{406}= -0.00125255 \pm 5.7 \cdot 10^{-8} \) | \(a_{407}= -1.59440284 \pm 1.3 \cdot 10^{-8} \) | \(a_{408}= +1.63225933 \pm 1 \cdot 10^{-8} \) |
| \(a_{409}= -0.16262653 \pm 3.1 \cdot 10^{-8} \) | \(a_{410}= +0.51511609 \pm 1.0 \cdot 10^{-8} \) | \(a_{411}= -0.05092055 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{412}= +0.76410375 \pm 2.1 \cdot 10^{-8} \) | \(a_{413}= -0.50693516 \pm 2.3 \cdot 10^{-8} \) | \(a_{414}= +1.54206114 \pm 1 \cdot 10^{-8} \) |
| \(a_{415}= +0.29489937 \pm 1 \cdot 10^{-8} \) | \(a_{416}= +0.38003363 \pm 1 \cdot 10^{-8} \) | \(a_{417}= +0.09346369 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{418}= -0.41135724 \pm 1.6 \cdot 10^{-8} \) | \(a_{419}= -0.99946633 \pm 1.9 \cdot 10^{-8} \) | \(a_{420}= +0.30619606 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{421}= +0.44426235 \pm 1.8 \cdot 10^{-8} \) | \(a_{422}= -1.19438360 \pm 1.8 \cdot 10^{-8} \) | \(a_{423}= +2.23879308 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{424}= -0.16028490 \pm 1.9 \cdot 10^{-8} \) | \(a_{425}= +0.33444829 \pm 1.5 \cdot 10^{-8} \) | \(a_{426}= +1.10290571 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{427}= -0.31235374 \pm 3.4 \cdot 10^{-8} \) | \(a_{428}= -0.29661373 \pm 2.5 \cdot 10^{-8} \) | \(a_{429}= -0.86183805 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{430}= +0.25980212 \pm 1.2 \cdot 10^{-8} \) | \(a_{431}= +1.59315227 \pm 1.9 \cdot 10^{-8} \) | \(a_{432}= -1.50277886 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{433}= -0.27074059 \pm 3.0 \cdot 10^{-8} \) | \(a_{434}= +0.89840623 \pm 6.2 \cdot 10^{-8} \) | \(a_{435}= +0.00504834 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{436}= +0.51285832 \pm 3.1 \cdot 10^{-8} \) | \(a_{437}= +0.22362945 \pm 2.6 \cdot 10^{-8} \) | \(a_{438}= -1.73690100 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{439}= -0.59087419 \pm 2.1 \cdot 10^{-8} \) | \(a_{440}= +0.84267665 \pm 1 \cdot 10^{-8} \) | \(a_{441}= +0.24708387 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{442}= -0.81358096 \pm 1.4 \cdot 10^{-8} \) | \(a_{443}= -0.68150253 \pm 1.8 \cdot 10^{-8} \) | \(a_{444}= +1.02597424 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{445}= -0.39294782 \pm 1 \cdot 10^{-8} \) | \(a_{446}= -1.67781430 \pm 3.9 \cdot 10^{-8} \) | \(a_{447}= -0.16788299 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{448}= -0.09524849 \pm 2.9 \cdot 10^{-8} \) | \(a_{449}= -1.28228722 \pm 1.9 \cdot 10^{-8} \) | \(a_{450}= -0.47073424 \pm 1 \cdot 10^{-8} \) |
| \(a_{451}= -0.44017150 \pm 1.6 \cdot 10^{-8} \) | \(a_{452}= -0.57495750 \pm 2.7 \cdot 10^{-8} \) | \(a_{453}= +0.64146244 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{454}= +0.71311644 \pm 4.0 \cdot 10^{-8} \) | \(a_{455}= +0.19209543 \pm 3.9 \cdot 10^{-8} \) | \(a_{456}= -0.33316807 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{457}= +1.45741492 \pm 1.7 \cdot 10^{-8} \) | \(a_{458}= +0.00304609 \pm 1.7 \cdot 10^{-8} \) | \(a_{459}= +1.77916233 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{460}= +0.36396949 \pm 1 \cdot 10^{-8} \) | \(a_{461}= +0.49481002 \pm 2.5 \cdot 10^{-8} \) | \(a_{462}= -0.85261791 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{463}= +0.10969845 \pm 2.7 \cdot 10^{-8} \) | \(a_{464}= +0.00343970 \pm 2.6 \cdot 10^{-8} \) | \(a_{465}= -3.62097468 \pm 1 \cdot 10^{-8} \) |
| \(a_{466}= +1.54974704 \pm 1.6 \cdot 10^{-8} \) | \(a_{467}= +1.13937806 \pm 2.3 \cdot 10^{-8} \) | \(a_{468}= +0.35140630 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{469}= -0.26917235 \pm 3.3 \cdot 10^{-8} \) | \(a_{470}= +1.72192958 \pm 1 \cdot 10^{-8} \) | \(a_{471}= +0.13652994 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{472}= +0.89774329 \pm 2.0 \cdot 10^{-8} \) | \(a_{473}= -0.22200333 \pm 2.4 \cdot 10^{-8} \) | \(a_{474}= -0.31267085 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{475}= -0.06826580 \pm 1.9 \cdot 10^{-8} \) | \(a_{476}= -0.24699691 \pm 6.4 \cdot 10^{-8} \) | \(a_{477}= -0.41417542 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{478}= -0.91325153 \pm 2.0 \cdot 10^{-8} \) | \(a_{479}= +0.48342345 \pm 2.0 \cdot 10^{-8} \) | \(a_{480}= -1.51531718 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{481}= +0.64365611 \pm 1.3 \cdot 10^{-8} \) | \(a_{482}= -1.63496203 \pm 1.6 \cdot 10^{-8} \) | \(a_{483}= +0.46351554 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{484}= +0.12935812 \pm 1.3 \cdot 10^{-8} \) | \(a_{485}= +1.15635270 \pm 1.0 \cdot 10^{-8} \) | \(a_{486}= +0.92813818 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{487}= -0.39322690 \pm 4.4 \cdot 10^{-8} \) | \(a_{488}= +0.55315451 \pm 2.7 \cdot 10^{-8} \) | \(a_{489}= -1.54842809 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{490}= +0.19004035 \pm 4.8 \cdot 10^{-8} \) | \(a_{491}= +0.42612210 \pm 3.1 \cdot 10^{-8} \) | \(a_{492}= +0.28324374 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{493}= -0.00407231 \pm 1.6 \cdot 10^{-8} \) | \(a_{494}= +0.16606381 \pm 1.3 \cdot 10^{-8} \) | \(a_{495}= +2.17747243 \pm 1 \cdot 10^{-8} \) |
| \(a_{496}= -2.46715769 \pm 4.1 \cdot 10^{-8} \) | \(a_{497}= +0.21006155 \pm 2.7 \cdot 10^{-8} \) | \(a_{498}= +0.52840520 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{499}= -1.10361706 \pm 2.0 \cdot 10^{-8} \) | \(a_{500}= +0.37923676 \pm 1.8 \cdot 10^{-8} \) | \(a_{501}= +0.16813259 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{502}= +0.31244353 \pm 4.0 \cdot 10^{-8} \) | \(a_{503}= +1.82579548 \pm 2.5 \cdot 10^{-8} \) | \(a_{504}= -0.43756659 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{505}= +0.98731609 \pm 1.0 \cdot 10^{-8} \) | \(a_{506}= -1.01349084 \pm 1 \cdot 10^{-8} \) | \(a_{507}= -1.30422452 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{508}= -0.63770617 \pm 3.6 \cdot 10^{-8} \) | \(a_{509}= -1.72425239 \pm 1.9 \cdot 10^{-8} \) | \(a_{510}= +3.24401083 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{511}= -0.33081352 \pm 3.6 \cdot 10^{-8} \) | \(a_{512}= -0.19797595 \pm 3.1 \cdot 10^{-8} \) | \(a_{513}= -0.36315312 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{514}= -0.67496232 \pm 3.7 \cdot 10^{-8} \) | \(a_{515}= -1.91139872 \pm 1.3 \cdot 10^{-8} \) | \(a_{516}= +0.14285580 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{517}= -1.47140488 \pm 1.3 \cdot 10^{-8} \) | \(a_{518}= +0.63677013 \pm 5.5 \cdot 10^{-8} \) | \(a_{519}= -2.08198327 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{520}= -0.34018628 \pm 1 \cdot 10^{-8} \) | \(a_{521}= -0.72185450 \pm 3.6 \cdot 10^{-8} \) | \(a_{522}= +0.00573175 \pm 1 \cdot 10^{-8} \) |
| \(a_{523}= -0.43264449 \pm 2.0 \cdot 10^{-8} \) | \(a_{524}= +0.24233829 \pm 3.1 \cdot 10^{-8} \) | \(a_{525}= -0.14149415 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{526}= +1.40431203 \pm 1.6 \cdot 10^{-8} \) | \(a_{527}= +2.92090482 \pm 1.2 \cdot 10^{-8} \) | \(a_{528}= +2.34141612 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{529}= -0.44902781 \pm 2.8 \cdot 10^{-8} \) | \(a_{530}= -0.31855597 \pm 1.4 \cdot 10^{-8} \) | \(a_{531}= +2.31976437 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{532}= +0.05041569 \pm 6.9 \cdot 10^{-8} \) | \(a_{533}= +0.17769604 \pm 1.9 \cdot 10^{-8} \) | \(a_{534}= -0.70408993 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{535}= +0.74197661 \pm 1.2 \cdot 10^{-8} \) | \(a_{536}= +0.47668359 \pm 1.1 \cdot 10^{-8} \) | \(a_{537}= -0.44085430 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{538}= +0.44682294 \pm 1.8 \cdot 10^{-8} \) | \(a_{539}= -0.16239125 \pm 2.8 \cdot 10^{-8} \) | \(a_{540}= -0.59105211 \pm 1 \cdot 10^{-8} \) |
| \(a_{541}= -0.26530750 \pm 1 \cdot 10^{-8} \) | \(a_{542}= -2.20164724 \pm 1.8 \cdot 10^{-8} \) | \(a_{543}= +1.76415191 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{544}= +1.22234969 \pm 1 \cdot 10^{-8} \) | \(a_{545}= -1.28291053 \pm 1 \cdot 10^{-8} \) | \(a_{546}= +0.34419954 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{547}= +0.29713075 \pm 2.5 \cdot 10^{-8} \) | \(a_{548}= -0.01364568 \pm 2.7 \cdot 10^{-8} \) | \(a_{549}= +1.42934861 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{550}= +0.30938127 \pm 2.1 \cdot 10^{-8} \) | \(a_{551}= +0.00083122 \pm 1.6 \cdot 10^{-8} \) | \(a_{552}= -0.82085047 \pm 1 \cdot 10^{-8} \) |
| \(a_{553}= -0.05955189 \pm 2.2 \cdot 10^{-8} \) | \(a_{554}= +0.22024864 \pm 2.9 \cdot 10^{-8} \) | \(a_{555}= -2.56646542 \pm 1 \cdot 10^{-8} \) |
| \(a_{556}= +0.02504638 \pm 3.9 \cdot 10^{-8} \) | \(a_{557}= +1.61482107 \pm 1.1 \cdot 10^{-8} \) | \(a_{558}= -4.11115843 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{559}= +0.08962214 \pm 1.3 \cdot 10^{-8} \) | \(a_{560}= -0.52187919 \pm 5.3 \cdot 10^{-8} \) | \(a_{561}= -2.77203749 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{562}= +1.13926509 \pm 3.0 \cdot 10^{-8} \) | \(a_{563}= +0.93582214 \pm 1.7 \cdot 10^{-8} \) | \(a_{564}= +0.94682690 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{565}= +1.43825106 \pm 1 \cdot 10^{-8} \) | \(a_{566}= -2.16352631 \pm 1.3 \cdot 10^{-8} \) | \(a_{567}= -0.09898301 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{568}= -0.37200290 \pm 2.6 \cdot 10^{-8} \) | \(a_{569}= +0.71957108 \pm 3.3 \cdot 10^{-8} \) | \(a_{570}= -0.66215019 \pm 1 \cdot 10^{-8} \) |
| \(a_{571}= +1.22797520 \pm 1.5 \cdot 10^{-8} \) | \(a_{572}= -0.23095522 \pm 1.6 \cdot 10^{-8} \) | \(a_{573}= +1.00705011 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{574}= +0.17579501 \pm 6.2 \cdot 10^{-8} \) | \(a_{575}= -0.16819143 \pm 1.3 \cdot 10^{-8} \) | \(a_{576}= +0.43586257 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{577}= -0.58633392 \pm 3.4 \cdot 10^{-8} \) | \(a_{578}= -1.41568028 \pm 2.4 \cdot 10^{-8} \) | \(a_{579}= +1.81273182 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{580}= +0.00135285 \pm 1.0 \cdot 10^{-8} \) | \(a_{581}= +0.10064108 \pm 3.9 \cdot 10^{-8} \) | \(a_{582}= +2.07197048 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{583}= +0.27220905 \pm 1.8 \cdot 10^{-8} \) | \(a_{584}= +0.58584537 \pm 4.9 \cdot 10^{-8} \) | \(a_{585}= -0.87903972 \pm 1 \cdot 10^{-8} \) |
| \(a_{586}= -0.45416964 \pm 1.5 \cdot 10^{-8} \) | \(a_{587}= -0.38720948 \pm 3.3 \cdot 10^{-8} \) | \(a_{588}= +0.10449633 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{589}= -0.59619951 \pm 2.5 \cdot 10^{-8} \) | \(a_{590}= +1.78420728 \pm 1.0 \cdot 10^{-8} \) | \(a_{591}= -1.07260340 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{592}= -1.74866589 \pm 2.4 \cdot 10^{-8} \) | \(a_{593}= -0.76555358 \pm 1.1 \cdot 10^{-8} \) | \(a_{594}= +1.64581349 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{595}= +0.61786057 \pm 4.0 \cdot 10^{-8} \) | \(a_{596}= -0.04498926 \pm 2.5 \cdot 10^{-8} \) | \(a_{597}= +0.29080922 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{598}= +0.40914351 \pm 1.6 \cdot 10^{-8} \) | \(a_{599}= -1.13940198 \pm 1.6 \cdot 10^{-8} \) | \(a_{600}= +0.25057529 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{601}= -1.06384406 \pm 1.0 \cdot 10^{-8} \) | \(a_{602}= +0.08866335 \pm 6.4 \cdot 10^{-8} \) | \(a_{603}= +1.23174813 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{604}= +0.17189900 \pm 3.5 \cdot 10^{-8} \) | \(a_{605}= -0.32358819 \pm 1 \cdot 10^{-8} \) | \(a_{606}= +1.76908809 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{607}= -0.85163550 \pm 1.3 \cdot 10^{-8} \) | \(a_{608}= -0.24949950 \pm 1.1 \cdot 10^{-8} \) | \(a_{609}= +0.00172286 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{610}= +1.09935915 \pm 1.0 \cdot 10^{-8} \) | \(a_{611}= +0.59400217 \pm 1 \cdot 10^{-8} \) | \(a_{612}= +1.13027202 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{613}= -0.55191403 \pm 2.4 \cdot 10^{-8} \) | \(a_{614}= +1.96737634 \pm 1.3 \cdot 10^{-8} \) | \(a_{615}= -0.70853168 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{616}= +0.28758245 \pm 5.9 \cdot 10^{-8} \) | \(a_{617}= -0.42690269 \pm 1.9 \cdot 10^{-8} \) | \(a_{618}= -3.42487351 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{619}= -0.61594682 \pm 2.0 \cdot 10^{-8} \) | \(a_{620}= -0.97034819 \pm 1.4 \cdot 10^{-8} \) | \(a_{621}= -0.89472684 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{622}= +0.10274410 \pm 4.0 \cdot 10^{-8} \) | \(a_{623}= -0.13410233 \pm 4.2 \cdot 10^{-8} \) | \(a_{624}= -0.94522335 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{625}= -1.17524648 \pm 2.0 \cdot 10^{-8} \) | \(a_{626}= -1.34913916 \pm 1.2 \cdot 10^{-8} \) | \(a_{627}= +0.56581351 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{628}= +0.03658727 \pm 2.7 \cdot 10^{-8} \) | \(a_{629}= +2.07027164 \pm 1.3 \cdot 10^{-8} \) | \(a_{630}= -0.86963555 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{631}= +0.97563156 \pm 2.6 \cdot 10^{-8} \) | \(a_{632}= +0.10546184 \pm 1.2 \cdot 10^{-8} \) | \(a_{633}= +1.64285031 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{634}= -0.54862554 \pm 4.3 \cdot 10^{-8} \) | \(a_{635}= +1.59521630 \pm 1.2 \cdot 10^{-8} \) | \(a_{636}= -0.17516243 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{637}= +0.06555691 \pm 2.7 \cdot 10^{-8} \) | \(a_{638}= -0.00376709 \pm 1.8 \cdot 10^{-8} \) | \(a_{639}= -0.96125370 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{640}= +1.25241732 \pm 1.0 \cdot 10^{-8} \) | \(a_{641}= -0.09626597 \pm 2.5 \cdot 10^{-8} \) | \(a_{642}= +1.32948505 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{643}= -1.07116966 \pm 1.2 \cdot 10^{-8} \) | \(a_{644}= +0.12421282 \pm 6.5 \cdot 10^{-8} \) | \(a_{645}= -0.35735252 \pm 1 \cdot 10^{-8} \) |
| \(a_{646}= +0.53413179 \pm 1.0 \cdot 10^{-8} \) | \(a_{647}= -0.16339241 \pm 2.1 \cdot 10^{-8} \) | \(a_{648}= +0.17529133 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{649}= -1.52462175 \pm 1.1 \cdot 10^{-8} \) | \(a_{650}= -0.12489638 \pm 1.1 \cdot 10^{-8} \) | \(a_{651}= -1.23573946 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{652}= -0.41494750 \pm 1.8 \cdot 10^{-8} \) | \(a_{653}= +1.52075141 \pm 2.3 \cdot 10^{-8} \) | \(a_{654}= -2.29873873 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{655}= -0.60620707 \pm 1 \cdot 10^{-8} \) | \(a_{656}= -0.48275935 \pm 2.6 \cdot 10^{-8} \) | \(a_{657}= +1.51382163 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{658}= +0.58764740 \pm 5.4 \cdot 10^{-8} \) | \(a_{659}= +1.62370051 \pm 3.0 \cdot 10^{-8} \) | \(a_{660}= +0.92089327 \pm 1 \cdot 10^{-8} \) |
| \(a_{661}= -1.54372212 \pm 2.7 \cdot 10^{-8} \) | \(a_{662}= +1.96795270 \pm 2.0 \cdot 10^{-8} \) | \(a_{663}= +1.11906403 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{664}= -0.17822763 \pm 4.1 \cdot 10^{-8} \) | \(a_{665}= -0.12611440 \pm 4.5 \cdot 10^{-8} \) | \(a_{666}= -2.91389663 \pm 1 \cdot 10^{-8} \) |
| \(a_{667}= +0.00204793 \pm 1.2 \cdot 10^{-8} \) | \(a_{668}= +0.04505614 \pm 2.1 \cdot 10^{-8} \) | \(a_{669}= +2.30779939 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{670}= +0.94737810 \pm 1 \cdot 10^{-8} \) | \(a_{671}= -0.93941264 \pm 1.7 \cdot 10^{-8} \) | \(a_{672}= -0.51713624 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{673}= +0.81470004 \pm 1.6 \cdot 10^{-8} \) | \(a_{674}= -0.37494818 \pm 1.1 \cdot 10^{-8} \) | \(a_{675}= +0.27312701 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{676}= -0.34950587 \pm 2.7 \cdot 10^{-8} \) | \(a_{677}= -0.92377595 \pm 3.0 \cdot 10^{-8} \) | \(a_{678}= +2.57708027 \pm 1 \cdot 10^{-8} \) |
| \(a_{679}= +0.39463150 \pm 3.6 \cdot 10^{-8} \) | \(a_{680}= -1.09418368 \pm 1 \cdot 10^{-8} \) | \(a_{681}= -0.98087713 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{682}= +2.70198199 \pm 3.7 \cdot 10^{-8} \) | \(a_{683}= -1.43928505 \pm 1.9 \cdot 10^{-8} \) | \(a_{684}= -0.23070510 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{685}= +0.03413455 \pm 1.3 \cdot 10^{-8} \) | \(a_{686}= +0.06485557 \pm 3.6 \cdot 10^{-8} \) | \(a_{687}= -0.00418984 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{688}= -0.24348279 \pm 4.5 \cdot 10^{-8} \) | \(a_{689}= -0.10989006 \pm 2.2 \cdot 10^{-8} \) | \(a_{690}= -1.63138771 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{691}= +0.25464915 \pm 2.3 \cdot 10^{-8} \) | \(a_{692}= -0.55792953 \pm 3.0 \cdot 10^{-8} \) | \(a_{693}= +0.74311169 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{694}= -0.10243896 \pm 2.2 \cdot 10^{-8} \) | \(a_{695}= -0.06265330 \pm 1.1 \cdot 10^{-8} \) | \(a_{696}= -0.00305105 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{697}= +0.57154600 \pm 2.2 \cdot 10^{-8} \) | \(a_{698}= -1.22284598 \pm 2.1 \cdot 10^{-8} \) | \(a_{699}= -2.13164547 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{700}= -0.03791758 \pm 6.7 \cdot 10^{-8} \) | \(a_{701}= +1.33437271 \pm 3.1 \cdot 10^{-8} \) | \(a_{702}= -0.66441045 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{703}= -0.42257281 \pm 2.1 \cdot 10^{-8} \) | \(a_{704}= -0.28646253 \pm 1.2 \cdot 10^{-8} \) | \(a_{705}= -2.36847906 \pm 1 \cdot 10^{-8} \) |
| \(a_{706}= -1.27708182 \pm 2.9 \cdot 10^{-8} \) | \(a_{707}= +0.33694394 \pm 2.9 \cdot 10^{-8} \) | \(a_{708}= +0.98107116 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{709}= +0.84069394 \pm 2.7 \cdot 10^{-8} \) | \(a_{710}= -0.73933192 \pm 1.1 \cdot 10^{-8} \) | \(a_{711}= +0.27251288 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{712}= +0.23748494 \pm 3.7 \cdot 10^{-8} \) | \(a_{713}= -1.46890022 \pm 2.3 \cdot 10^{-8} \) | \(a_{714}= +1.10709203 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{715}= +0.57773242 \pm 1 \cdot 10^{-8} \) | \(a_{716}= -0.11814006 \pm 4.6 \cdot 10^{-8} \) | \(a_{717}= +1.25615887 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{718}= -0.55948105 \pm 2.1 \cdot 10^{-8} \) | \(a_{719}= +1.30966628 \pm 2.0 \cdot 10^{-8} \) | \(a_{720}= +2.38814912 \pm 1 \cdot 10^{-8} \) |
| \(a_{721}= -0.65230802 \pm 3.2 \cdot 10^{-8} \) | \(a_{722}= +1.09211777 \pm 1.8 \cdot 10^{-8} \) | \(a_{723}= +2.24885696 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{724}= +0.47275714 \pm 3.7 \cdot 10^{-8} \) | \(a_{725}= -0.00062516 \pm 1.8 \cdot 10^{-8} \) | \(a_{726}= -0.57981028 \pm 1 \cdot 10^{-8} \) |
| \(a_{727}= +1.17826018 \pm 1.5 \cdot 10^{-8} \) | \(a_{728}= -0.11609626 \pm 5.8 \cdot 10^{-8} \) | \(a_{729}= -1.53851959 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{730}= +1.16433014 \pm 1.0 \cdot 10^{-8} \) | \(a_{731}= +0.28826291 \pm 1.1 \cdot 10^{-8} \) | \(a_{732}= +0.60449790 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{733}= +0.25716806 \pm 2.3 \cdot 10^{-8} \) | \(a_{734}= -1.03316927 \pm 3.7 \cdot 10^{-8} \) | \(a_{735}= -0.26139663 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{736}= -0.61471011 \pm 1.0 \cdot 10^{-8} \) | \(a_{737}= -0.80954342 \pm 1.4 \cdot 10^{-8} \) | \(a_{738}= -0.80444804 \pm 1 \cdot 10^{-8} \) |
| \(a_{739}= -0.18414032 \pm 2.5 \cdot 10^{-8} \) | \(a_{740}= -0.68776098 \pm 1 \cdot 10^{-8} \) | \(a_{741}= -0.22841738 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{742}= -0.10871443 \pm 6.5 \cdot 10^{-8} \) | \(a_{743}= -0.50789864 \pm 2.7 \cdot 10^{-8} \) | \(a_{744}= +2.18839981 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{745}= +0.11254022 \pm 1.0 \cdot 10^{-8} \) | \(a_{746}= +1.48729533 \pm 1.8 \cdot 10^{-8} \) | \(a_{747}= -0.46053933 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{748}= -0.74285015 \pm 1.1 \cdot 10^{-8} \) | \(a_{749}= +0.25321629 \pm 3.4 \cdot 10^{-8} \) | \(a_{750}= -1.69981882 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{751}= -0.91896248 \pm 1.7 \cdot 10^{-8} \) | \(a_{752}= -1.61376752 \pm 2.3 \cdot 10^{-8} \) | \(a_{753}= -0.42975971 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{754}= +0.00152076 \pm 1.5 \cdot 10^{-8} \) | \(a_{755}= -0.43000381 \pm 1.3 \cdot 10^{-8} \) | \(a_{756}= -0.20170989 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{757}= -0.20878338 \pm 1.7 \cdot 10^{-8} \) | \(a_{758}= -1.01392592 \pm 2.0 \cdot 10^{-8} \) | \(a_{759}= +1.39403601 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{760}= +0.22333894 \pm 1 \cdot 10^{-8} \) | \(a_{761}= +0.65032692 \pm 1.1 \cdot 10^{-8} \) | \(a_{762}= +2.85833300 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{763}= -0.43782222 \pm 3.7 \cdot 10^{-8} \) | \(a_{764}= +0.26986912 \pm 4.5 \cdot 10^{-8} \) | \(a_{765}= -2.82736539 \pm 1 \cdot 10^{-8} \) |
| \(a_{766}= -1.74931655 \pm 1.9 \cdot 10^{-8} \) | \(a_{767}= +0.61548567 \pm 1 \cdot 10^{-8} \) | \(a_{768}= +1.82775336 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{769}= -1.40839788 \pm 1.3 \cdot 10^{-8} \) | \(a_{770}= +0.57155170 \pm 6.6 \cdot 10^{-8} \) | \(a_{771}= +0.92839692 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{772}= +0.48577557 \pm 2.6 \cdot 10^{-8} \) | \(a_{773}= +1.76757500 \pm 2.9 \cdot 10^{-8} \) | \(a_{774}= -0.40572855 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{775}= +0.44840091 \pm 2.3 \cdot 10^{-8} \) | \(a_{776}= -0.69886212 \pm 3.0 \cdot 10^{-8} \) | \(a_{777}= -0.87586434 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{778}= +0.68529510 \pm 1.8 \cdot 10^{-8} \) | \(a_{779}= -0.11666092 \pm 2.0 \cdot 10^{-8} \) | \(a_{780}= -0.37176212 \pm 1 \cdot 10^{-8} \) |
| \(a_{781}= +0.63176602 \pm 1.3 \cdot 10^{-8} \) | \(a_{782}= +1.31597944 \pm 1.5 \cdot 10^{-8} \) | \(a_{783}= -0.00332565 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{784}= -0.17810307 \pm 4.2 \cdot 10^{-8} \) | \(a_{785}= -0.09152273 \pm 1 \cdot 10^{-8} \) | \(a_{786}= -1.08621111 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{787}= -1.33960664 \pm 1.9 \cdot 10^{-8} \) | \(a_{788}= -0.28743608 \pm 3.7 \cdot 10^{-8} \) | \(a_{789}= -1.93160258 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{790}= +0.20959864 \pm 1 \cdot 10^{-8} \) | \(a_{791}= +0.49083569 \pm 3.7 \cdot 10^{-8} \) | \(a_{792}= -1.31599380 \pm 1 \cdot 10^{-8} \) |
| \(a_{793}= +0.37923834 \pm 1.6 \cdot 10^{-8} \) | \(a_{794}= +0.87269626 \pm 2.4 \cdot 10^{-8} \) | \(a_{795}= +0.43816725 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{796}= +0.07793101 \pm 4.4 \cdot 10^{-8} \) | \(a_{797}= +1.99192256 \pm 3.0 \cdot 10^{-8} \) | \(a_{798}= -0.22597372 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{799}= +1.91056345 \pm 1.2 \cdot 10^{-8} \) | \(a_{800}= +0.18764826 \pm 1.2 \cdot 10^{-8} \) | \(a_{801}= +0.61365994 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{802}= -0.38324869 \pm 4.2 \cdot 10^{-8} \) | \(a_{803}= -0.99493095 \pm 2.2 \cdot 10^{-8} \) | \(a_{804}= +0.52092901 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{805}= -0.31071725 \pm 4.1 \cdot 10^{-8} \) | \(a_{806}= -1.09078281 \pm 1.9 \cdot 10^{-8} \) | \(a_{807}= -0.61459585 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{808}= -0.59670187 \pm 1 \cdot 10^{-8} \) | \(a_{809}= -0.51145104 \pm 1.8 \cdot 10^{-8} \) | \(a_{810}= +0.34838028 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{811}= +1.15928858 \pm 3.2 \cdot 10^{-8} \) | \(a_{812}= +0.00046169 \pm 6.6 \cdot 10^{-8} \) | \(a_{813}= +3.02832092 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{814}= +1.91510406 \pm 1.7 \cdot 10^{-8} \) | \(a_{815}= +1.03798748 \pm 1.4 \cdot 10^{-8} \) | \(a_{816}= -3.04024006 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{817}= -0.05883869 \pm 2.4 \cdot 10^{-8} \) | \(a_{818}= +0.19533754 \pm 3.4 \cdot 10^{-8} \) | \(a_{819}= -0.29999218 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{820}= -0.18987220 \pm 1 \cdot 10^{-8} \) | \(a_{821}= -0.71782360 \pm 2.8 \cdot 10^{-8} \) | \(a_{822}= +0.06116280 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{823}= -1.74199895 \pm 1.7 \cdot 10^{-8} \) | \(a_{824}= +1.15518748 \pm 1.1 \cdot 10^{-8} \) | \(a_{825}= -0.42554764 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{826}= +0.60890107 \pm 4.9 \cdot 10^{-8} \) | \(a_{827}= -0.73871917 \pm 2.7 \cdot 10^{-8} \) | \(a_{828}= -0.56840497 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{829}= -0.97257942 \pm 2.5 \cdot 10^{-8} \) | \(a_{830}= -0.35421599 \pm 1.0 \cdot 10^{-8} \) | \(a_{831}= -0.30294751 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{832}= +0.11564415 \pm 1.3 \cdot 10^{-8} \) | \(a_{833}= +0.21085889 \pm 2.9 \cdot 10^{-8} \) | \(a_{834}= -0.11226315 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{835}= -0.11270754 \pm 1.4 \cdot 10^{-8} \) | \(a_{836}= +0.15162661 \pm 2.2 \cdot 10^{-8} \) | \(a_{837}= +2.38535534 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{838}= +1.20050089 \pm 1 \cdot 10^{-8} \) | \(a_{839}= -1.66312222 \pm 3.1 \cdot 10^{-8} \) | \(a_{840}= +0.46291339 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{841}= -0.99999239 \pm 1.0 \cdot 10^{-8} \) | \(a_{842}= -0.53362213 \pm 3.0 \cdot 10^{-8} \) | \(a_{843}= -1.56703592 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{844}= +0.44025075 \pm 2.4 \cdot 10^{-8} \) | \(a_{845}= +0.87428582 \pm 1 \cdot 10^{-8} \) | \(a_{846}= -2.68910818 \pm 1 \cdot 10^{-8} \) |
| \(a_{847}= -0.11043179 \pm 2.3 \cdot 10^{-8} \) | \(a_{848}= +0.29854605 \pm 3.1 \cdot 10^{-8} \) | \(a_{849}= +2.97588635 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{850}= -0.40171985 \pm 1 \cdot 10^{-8} \) | \(a_{851}= -1.04112344 \pm 1.3 \cdot 10^{-8} \) | \(a_{852}= -0.40653193 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{853}= -1.19949647 \pm 2.9 \cdot 10^{-8} \) | \(a_{854}= +0.37518116 \pm 6.0 \cdot 10^{-8} \) | \(a_{855}= +0.57710674 \pm 1 \cdot 10^{-8} \) |
| \(a_{856}= -0.44842663 \pm 1.5 \cdot 10^{-8} \) | \(a_{857}= +1.29504780 \pm 3.6 \cdot 10^{-8} \) | \(a_{858}= +1.03518980 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{859}= +0.03937394 \pm 2.6 \cdot 10^{-8} \) | \(a_{860}= -0.09576327 \pm 1.4 \cdot 10^{-8} \) | \(a_{861}= -0.24180245 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{862}= -1.91360195 \pm 2.8 \cdot 10^{-8} \) | \(a_{863}= -1.44500557 \pm 1.9 \cdot 10^{-8} \) | \(a_{864}= +0.99823121 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{865}= +1.39565575 \pm 1.4 \cdot 10^{-8} \) | \(a_{866}= +0.32519787 \pm 1.9 \cdot 10^{-8} \) | \(a_{867}= +1.94723938 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{868}= -0.33115326 \pm 7.2 \cdot 10^{-8} \) | \(a_{869}= -0.17910399 \pm 1 \cdot 10^{-8} \) | \(a_{870}= -0.00606377 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{871}= +0.32681049 \pm 1.5 \cdot 10^{-8} \) | \(a_{872}= +0.77534957 \pm 1.7 \cdot 10^{-8} \) | \(a_{873}= -1.80585637 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{874}= -0.26861070 \pm 1.2 \cdot 10^{-8} \) | \(a_{875}= -0.32375077 \pm 2.4 \cdot 10^{-8} \) | \(a_{876}= +0.64022310 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{877}= +1.54025895 \pm 2.3 \cdot 10^{-8} \) | \(a_{878}= +0.70972375 \pm 2.2 \cdot 10^{-8} \) | \(a_{879}= +0.62470108 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{880}= -1.56956634 \pm 1 \cdot 10^{-8} \) | \(a_{881}= -0.60826720 \pm 2.6 \cdot 10^{-8} \) | \(a_{882}= -0.29678279 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{883}= +1.35955180 \pm 1.2 \cdot 10^{-8} \) | \(a_{884}= +0.29988659 \pm 1.2 \cdot 10^{-8} \) | \(a_{885}= -2.45414075 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{886}= +0.81858125 \pm 1.6 \cdot 10^{-8} \) | \(a_{887}= -0.16876116 \pm 2.5 \cdot 10^{-8} \) | \(a_{888}= +1.55108857 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{889}= +0.54440362 \pm 3.0 \cdot 10^{-8} \) | \(a_{890}= +0.47198610 \pm 1 \cdot 10^{-8} \) | \(a_{891}= -0.29769420 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{892}= +0.61844370 \pm 5.0 \cdot 10^{-8} \) | \(a_{893}= -0.38997402 \pm 2.0 \cdot 10^{-8} \) | \(a_{894}= +0.20165130 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{895}= +0.29552631 \pm 1.0 \cdot 10^{-8} \) | \(a_{896}= +0.42741572 \pm 2.8 \cdot 10^{-8} \) | \(a_{897}= -0.56276856 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{898}= +1.54020891 \pm 1.5 \cdot 10^{-8} \) | \(a_{899}= -0.00545982 \pm 1.8 \cdot 10^{-8} \) | \(a_{900}= +0.17351302 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{901}= -0.35345313 \pm 2.5 \cdot 10^{-8} \) | \(a_{902}= +0.52870843 \pm 1 \cdot 10^{-8} \) | \(a_{903}= -0.12195463 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{904}= -0.86923235 \pm 1 \cdot 10^{-8} \) | \(a_{905}= -1.18259776 \pm 1 \cdot 10^{-8} \) | \(a_{906}= -0.77048741 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{907}= +1.24095830 \pm 1.8 \cdot 10^{-8} \) | \(a_{908}= -0.26285529 \pm 5.4 \cdot 10^{-8} \) | \(a_{909}= -1.54187477 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{910}= -0.23073388 \pm 6.5 \cdot 10^{-8} \) | \(a_{911}= -0.58317545 \pm 3.7 \cdot 10^{-8} \) | \(a_{912}= +0.62055759 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{913}= +0.30268086 \pm 2.2 \cdot 10^{-8} \) | \(a_{914}= -1.75056213 \pm 2.4 \cdot 10^{-8} \) | \(a_{915}= -1.51214611 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{916}= -0.00112279 \pm 2.8 \cdot 10^{-8} \) | \(a_{917}= -0.20688187 \pm 2.6 \cdot 10^{-8} \) | \(a_{918}= -2.13702642 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{919}= -1.73088079 \pm 2.8 \cdot 10^{-8} \) | \(a_{920}= +0.55025643 \pm 1 \cdot 10^{-8} \) | \(a_{921}= -2.70608607 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{922}= -0.59433705 \pm 3.7 \cdot 10^{-8} \) | \(a_{923}= -0.25504223 \pm 1 \cdot 10^{-8} \) | \(a_{924}= +0.31427564 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{925}= +0.31781648 \pm 1.5 \cdot 10^{-8} \) | \(a_{926}= -0.13176340 \pm 1.1 \cdot 10^{-8} \) | \(a_{927}= +2.98499892 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{928}= -0.00228484 \pm 1.2 \cdot 10^{-8} \) | \(a_{929}= +1.86491244 \pm 3.9 \cdot 10^{-8} \) | \(a_{930}= +4.34930441 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{931}= -0.04303939 \pm 3.3 \cdot 10^{-8} \) | \(a_{932}= -0.57123800 \pm 1.2 \cdot 10^{-8} \) | \(a_{933}= -0.14132241 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{934}= -1.36855474 \pm 1.8 \cdot 10^{-8} \) | \(a_{935}= +1.85823302 \pm 1 \cdot 10^{-8} \) | \(a_{936}= +0.53126314 \pm 1 \cdot 10^{-8} \) |
| \(a_{937}= +0.05686250 \pm 2.1 \cdot 10^{-8} \) | \(a_{938}= +0.32331419 \pm 5.9 \cdot 10^{-8} \) | \(a_{939}= +1.85571343 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{940}= -0.63470463 \pm 1 \cdot 10^{-8} \) | \(a_{941}= +1.37971212 \pm 1.7 \cdot 10^{-8} \) | \(a_{942}= -0.16399183 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{943}= -0.28742602 \pm 1.2 \cdot 10^{-8} \) | \(a_{944}= -1.67213327 \pm 1.8 \cdot 10^{-8} \) | \(a_{945}= +0.50457550 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{946}= +0.26665750 \pm 4.1 \cdot 10^{-8} \) | \(a_{947}= -1.95459326 \pm 2.9 \cdot 10^{-8} \) | \(a_{948}= +0.11525073 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{949}= +0.40165093 \pm 1.5 \cdot 10^{-8} \) | \(a_{950}= +0.08199691 \pm 1.6 \cdot 10^{-8} \) | \(a_{951}= +0.75462325 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{952}= -0.37341491 \pm 6.0 \cdot 10^{-8} \) | \(a_{953}= +0.22011052 \pm 2.6 \cdot 10^{-8} \) | \(a_{954}= +0.49748345 \pm 1 \cdot 10^{-8} \) |
| \(a_{955}= -0.67507520 \pm 1.4 \cdot 10^{-8} \) | \(a_{956}= +0.33662525 \pm 2.7 \cdot 10^{-8} \) | \(a_{957}= +0.00518155 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{958}= -0.58066016 \pm 1.4 \cdot 10^{-8} \) | \(a_{959}= +0.01164919 \pm 2.8 \cdot 10^{-8} \) | \(a_{960}= -0.46111067 \pm 1 \cdot 10^{-8} \) |
| \(a_{961}= +2.91611030 \pm 3.1 \cdot 10^{-8} \) | \(a_{962}= -0.77312233 \pm 1.3 \cdot 10^{-8} \) | \(a_{963}= -1.15873226 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{964}= +0.60264832 \pm 2.0 \cdot 10^{-8} \) | \(a_{965}= -1.21516326 \pm 1 \cdot 10^{-8} \) | \(a_{966}= -0.55674793 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{967}= +0.72218385 \pm 1.6 \cdot 10^{-8} \) | \(a_{968}= +0.19556622 \pm 1 \cdot 10^{-8} \) | \(a_{969}= -0.73468739 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{970}= -1.38894368 \pm 1.1 \cdot 10^{-8} \) | \(a_{971}= -0.84154392 \pm 2.7 \cdot 10^{-8} \) | \(a_{972}= -0.34211248 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{973}= -0.02138186 \pm 3.2 \cdot 10^{-8} \) | \(a_{974}= +0.47232131 \pm 4.8 \cdot 10^{-8} \) | \(a_{975}= +0.17179243 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{976}= -1.03030350 \pm 3.0 \cdot 10^{-8} \) | \(a_{977}= +0.19715676 \pm 1.9 \cdot 10^{-8} \) | \(a_{978}= +1.85988186 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{979}= -0.40331652 \pm 2.3 \cdot 10^{-8} \) | \(a_{980}= -0.07004903 \pm 5.7 \cdot 10^{-8} \) | \(a_{981}= +2.00349957 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{982}= -0.51183311 \pm 4.4 \cdot 10^{-8} \) | \(a_{983}= +0.30622231 \pm 2.8 \cdot 10^{-8} \) | \(a_{984}= +0.42821360 \pm 1 \cdot 10^{-8} \) |
| \(a_{985}= +0.71901879 \pm 1.6 \cdot 10^{-8} \) | \(a_{986}= +0.00489142 \pm 1.1 \cdot 10^{-8} \) | \(a_{987}= -0.80829702 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{988}= -0.06121125 \pm 1.4 \cdot 10^{-8} \) | \(a_{989}= -0.14496517 \pm 1.7 \cdot 10^{-8} \) | \(a_{990}= -2.61545337 \pm 1 \cdot 10^{-8} \) |
| \(a_{991}= +0.24322267 \pm 1.6 \cdot 10^{-8} \) | \(a_{992}= +1.63882649 \pm 2.1 \cdot 10^{-8} \) | \(a_{993}= -2.70687884 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{994}= -0.25231373 \pm 5.3 \cdot 10^{-8} \) | \(a_{995}= -0.19494372 \pm 1 \cdot 10^{-8} \) | \(a_{996}= -0.19477058 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{997}= -0.12118399 \pm 2.2 \cdot 10^{-8} \) | \(a_{998}= +1.32560069 \pm 2.8 \cdot 10^{-8} \) | \(a_{999}= +1.69068622 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{1000}= +0.57333779 \pm 1.6 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000