Maass form invariants
| Level: | \( 7 \) |
| Weight: | \( 0 \) |
| Character: | 7.1 |
| Symmetry: | odd |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(13.5838479949470338728978508051 \pm 9 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -0.50413279 \pm 1.7 \cdot 10^{-5} \) | \(a_{3}= -1.59984529 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{4}= -0.74585013 \pm 1.0 \cdot 10^{-5} \) | \(a_{5}= -0.74880727 \pm 1.2 \cdot 10^{-5} \) | \(a_{6}= +0.80653446 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.88014029 \pm 1.1 \cdot 10^{-5} \) | \(a_{9}= +1.55950494 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{10}= +0.37749829 \pm 1.2 \cdot 10^{-5} \) | \(a_{11}= +0.77264687 \pm 1.0 \cdot 10^{-5} \) | \(a_{12}= +1.19324482 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{13}= -1.03465630 \pm 1.2 \cdot 10^{-5} \) | \(a_{14}= +0.19054428 \pm 1.7 \cdot 10^{-5} \) | \(a_{15}= +1.19797578 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{16}= +0.30214255 \pm 1.4 \cdot 10^{-5} \) | \(a_{17}= +0.26125351 \pm 9.7 \cdot 10^{-6} \) | \(a_{18}= -0.78619757 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{19}= +1.66610425 \pm 1.2 \cdot 10^{-5} \) | \(a_{20}= +0.55849800 \pm 8.1 \cdot 10^{-6} \) | \(a_{21}= +0.60468468 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{22}= -0.38951662 \pm 1.0 \cdot 10^{-5} \) | \(a_{23}= -0.49190565 \pm 1.5 \cdot 10^{-5} \) | \(a_{24}= -1.40808830 \pm 7.6 \cdot 10^{-6} \) |
| \(a_{25}= -0.43928768 \pm 1.1 \cdot 10^{-5} \) | \(a_{26}= +0.52160417 \pm 1.5 \cdot 10^{-5} \) | \(a_{27}= -0.89512134 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{28}= +0.28190485 \pm 1.0 \cdot 10^{-5} \) | \(a_{29}= -1.59284143 \pm 1.1 \cdot 10^{-5} \) | \(a_{30}= -0.60393887 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{31}= +1.24938873 \pm 9.5 \cdot 10^{-6} \) | \(a_{32}= -1.03246026 \pm 1.5 \cdot 10^{-5} \) | \(a_{33}= -1.23611545 \pm 8.8 \cdot 10^{-6} \) |
| \(a_{34}= -0.13170646 \pm 1.1 \cdot 10^{-5} \) | \(a_{35}= +0.28302254 \pm 1.2 \cdot 10^{-5} \) | \(a_{36}= -1.16315697 \pm 6.2 \cdot 10^{-6} \) |
| \(a_{37}= -0.24395273 \pm 1.1 \cdot 10^{-5} \) | \(a_{38}= -0.83993778 \pm 1.2 \cdot 10^{-5} \) | \(a_{39}= +1.65529001 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{40}= -0.65905545 \pm 1.2 \cdot 10^{-5} \) | \(a_{41}= +1.09004208 \pm 1.5 \cdot 10^{-5} \) | \(a_{42}= -0.30484137 \pm 2.9 \cdot 10^{-5} \) |
| \(a_{43}= +0.31120157 \pm 9.3 \cdot 10^{-6} \) | \(a_{44}= -0.57627877 \pm 7.9 \cdot 10^{-6} \) | \(a_{45}= -1.16776863 \pm 9.9 \cdot 10^{-6} \) |
| \(a_{46}= +0.24798577 \pm 1.8 \cdot 10^{-5} \) | \(a_{47}= -0.50251645 \pm 1.4 \cdot 10^{-5} \) | \(a_{48}= -0.48338134 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.22145932 \pm 1.4 \cdot 10^{-5} \) | \(a_{51}= -0.41796520 \pm 7.1 \cdot 10^{-6} \) |
| \(a_{52}= +0.77169854 \pm 8.4 \cdot 10^{-6} \) | \(a_{53}= +1.89865232 \pm 9.7 \cdot 10^{-6} \) | \(a_{54}= +0.45126002 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{55}= -0.57856359 \pm 1.0 \cdot 10^{-5} \) | \(a_{56}= -0.33266176 \pm 1.1 \cdot 10^{-5} \) | \(a_{57}= -2.66550903 \pm 6.1 \cdot 10^{-6} \) |
| \(a_{58}= +0.80300359 \pm 1.2 \cdot 10^{-5} \) | \(a_{59}= +0.99455189 \pm 1.9 \cdot 10^{-5} \) | \(a_{60}= -0.89351039 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{61}= +1.12055615 \pm 1.3 \cdot 10^{-5} \) | \(a_{62}= -0.62985782 \pm 1.2 \cdot 10^{-5} \) | \(a_{63}= -0.58943746 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{64}= +0.21835451 \pm 1.2 \cdot 10^{-5} \) | \(a_{65}= +0.77475816 \pm 1.0 \cdot 10^{-5} \) | \(a_{66}= +0.62316633 \pm 7.8 \cdot 10^{-6} \) |
| \(a_{67}= -1.60835007 \pm 1.7 \cdot 10^{-5} \) | \(a_{68}= -0.19485596 \pm 7.1 \cdot 10^{-6} \) | \(a_{69}= +0.78697293 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{70}= -0.14268094 \pm 3.0 \cdot 10^{-5} \) | \(a_{71}= -1.21698706 \pm 1.0 \cdot 10^{-5} \) | \(a_{72}= +1.37258314 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{73}= +1.34214764 \pm 1.6 \cdot 10^{-5} \) | \(a_{74}= +0.12298457 \pm 1.1 \cdot 10^{-5} \) | \(a_{75}= +0.70279232 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{76}= -1.24266408 \pm 6.8 \cdot 10^{-6} \) | \(a_{77}= -0.29203307 \pm 1.0 \cdot 10^{-5} \) | \(a_{78}= -0.83448597 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{79}= +0.62837567 \pm 1.0 \cdot 10^{-5} \) | \(a_{80}= -0.22624654 \pm 9.7 \cdot 10^{-6} \) | \(a_{81}= -0.12744928 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{82}= -0.54952595 \pm 1.8 \cdot 10^{-5} \) | \(a_{83}= -0.87693222 \pm 9.7 \cdot 10^{-6} \) | \(a_{84}= -0.45100415 \pm 2.2 \cdot 10^{-5} \) |
| \(a_{85}= -0.19562853 \pm 8.2 \cdot 10^{-6} \) | \(a_{86}= -0.15688691 \pm 1.0 \cdot 10^{-5} \) | \(a_{87}= +2.54829985 \pm 6.3 \cdot 10^{-6} \) |
| \(a_{88}= +0.68003764 \pm 1.0 \cdot 10^{-5} \) | \(a_{89}= -0.33237243 \pm 1.0 \cdot 10^{-5} \) | \(a_{90}= +0.58871045 \pm 9.0 \cdot 10^{-6} \) |
| \(a_{91}= +0.39106332 \pm 1.2 \cdot 10^{-5} \) | \(a_{92}= +0.36688789 \pm 1.0 \cdot 10^{-5} \) | \(a_{93}= -1.99882866 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{94}= +0.25333502 \pm 1.4 \cdot 10^{-5} \) | \(a_{95}= -1.24759097 \pm 1.2 \cdot 10^{-5} \) | \(a_{96}= +1.65177668 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{97}= -1.02434923 \pm 2.1 \cdot 10^{-5} \) | \(a_{98}= -0.07201897 \pm 1.7 \cdot 10^{-5} \) | \(a_{99}= +1.20494661 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{100}= +0.32764277 \pm 8.6 \cdot 10^{-6} \) | \(a_{101}= -0.23966947 \pm 1.2 \cdot 10^{-5} \) | \(a_{102}= +0.21070996 \pm 9.0 \cdot 10^{-6} \) |
| \(a_{103}= -0.76085136 \pm 1.6 \cdot 10^{-5} \) | \(a_{104}= -0.91064270 \pm 8.6 \cdot 10^{-6} \) | \(a_{105}= -0.45279228 \pm 2.4 \cdot 10^{-5} \) |
| \(a_{106}= -0.95717289 \pm 1.0 \cdot 10^{-5} \) | \(a_{107}= -0.28067060 \pm 1.0 \cdot 10^{-5} \) | \(a_{108}= +0.66762637 \pm 9.9 \cdot 10^{-6} \) |
| \(a_{109}= +0.56236856 \pm 2.1 \cdot 10^{-5} \) | \(a_{110}= +0.29167288 \pm 9.8 \cdot 10^{-6} \) | \(a_{111}= +0.39028662 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{112}= -0.11419915 \pm 1.4 \cdot 10^{-5} \) | \(a_{113}= +0.53146923 \pm 1.4 \cdot 10^{-5} \) | \(a_{114}= +1.34377050 \pm 6.9 \cdot 10^{-6} \) |
| \(a_{115}= +0.36834252 \pm 9.7 \cdot 10^{-6} \) | \(a_{116}= +1.18802099 \pm 6.8 \cdot 10^{-6} \) | \(a_{117}= -1.61355162 \pm 8.8 \cdot 10^{-6} \) |
| \(a_{118}= -0.50138622 \pm 2.5 \cdot 10^{-5} \) | \(a_{119}= -0.09874455 \pm 9.7 \cdot 10^{-6} \) | \(a_{120}= +1.05438675 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{121}= -0.40301681 \pm 1.1 \cdot 10^{-5} \) | \(a_{122}= -0.56490910 \pm 1.5 \cdot 10^{-5} \) | \(a_{123}= -1.74389868 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{124}= -0.93185675 \pm 8.1 \cdot 10^{-6} \) | \(a_{125}= +1.07774907 \pm 1.1 \cdot 10^{-5} \) | \(a_{126}= +0.29715475 \pm 2.8 \cdot 10^{-5} \) |
| \(a_{127}= -0.73889728 \pm 1.5 \cdot 10^{-5} \) | \(a_{128}= +0.92238059 \pm 9.9 \cdot 10^{-6} \) | \(a_{129}= -0.49787436 \pm 7.7 \cdot 10^{-6} \) |
| \(a_{130}= -0.39058099 \pm 1.2 \cdot 10^{-5} \) | \(a_{131}= +0.03396658 \pm 1.1 \cdot 10^{-5} \) | \(a_{132}= +0.92195688 \pm 6.5 \cdot 10^{-6} \) |
| \(a_{133}= -0.62972822 \pm 1.2 \cdot 10^{-5} \) | \(a_{134}= +0.81082200 \pm 2.1 \cdot 10^{-5} \) | \(a_{135}= +0.67027337 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{136}= +0.22993974 \pm 7.9 \cdot 10^{-6} \) | \(a_{137}= -0.00030219 \pm 9.8 \cdot 10^{-6} \) | \(a_{138}= -0.39673886 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{139}= -1.06133819 \pm 9.3 \cdot 10^{-6} \) | \(a_{140}= -0.21109240 \pm 2.3 \cdot 10^{-5} \) | \(a_{141}= +0.80394858 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{142}= +0.61352308 \pm 1.2 \cdot 10^{-5} \) | \(a_{143}= -0.79942395 \pm 5.8 \cdot 10^{-6} \) | \(a_{144}= +0.47119281 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{145}= +1.19273124 \pm 1.1 \cdot 10^{-5} \) | \(a_{146}= -0.67662063 \pm 2.1 \cdot 10^{-5} \) | \(a_{147}= -0.22854933 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{148}= +0.18195218 \pm 7.1 \cdot 10^{-6} \) | \(a_{149}= -0.37809682 \pm 2.0 \cdot 10^{-5} \) | \(a_{150}= -0.35430065 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{151}= -0.28540809 \pm 1.4 \cdot 10^{-5} \) | \(a_{152}= +1.46640548 \pm 1.2 \cdot 10^{-5} \) | \(a_{153}= +0.40742614 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{154}= +0.14722344 \pm 2.8 \cdot 10^{-5} \) | \(a_{155}= -0.93555136 \pm 7.9 \cdot 10^{-6} \) | \(a_{156}= -1.23459827 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{157}= +0.97519714 \pm 1.6 \cdot 10^{-5} \) | \(a_{158}= -0.31678478 \pm 1.2 \cdot 10^{-5} \) | \(a_{159}= -3.03754997 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{160}= +0.77311375 \pm 1.0 \cdot 10^{-5} \) | \(a_{161}= +0.18592286 \pm 1.5 \cdot 10^{-5} \) | \(a_{162}= +0.06425136 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{163}= +0.24675755 \pm 1.3 \cdot 10^{-5} \) | \(a_{164}= -0.81300803 \pm 1.1 \cdot 10^{-5} \) | \(a_{165}= +0.92561223 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{166}= +0.44209028 \pm 9.8 \cdot 10^{-6} \) | \(a_{167}= +0.30624685 \pm 1.1 \cdot 10^{-5} \) | \(a_{168}= +0.53220735 \pm 2.3 \cdot 10^{-5} \) |
| \(a_{169}= +0.07051366 \pm 1.0 \cdot 10^{-5} \) | \(a_{170}= +0.09862275 \pm 1.0 \cdot 10^{-5} \) | \(a_{171}= +2.59829781 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{172}= -0.23210973 \pm 5.8 \cdot 10^{-6} \) | \(a_{173}= +0.48563789 \pm 1.1 \cdot 10^{-5} \) | \(a_{174}= -1.28468151 \pm 7.8 \cdot 10^{-6} \) |
| \(a_{175}= +0.16603514 \pm 1.1 \cdot 10^{-5} \) | \(a_{176}= +0.23344950 \pm 7.8 \cdot 10^{-6} \) | \(a_{177}= -1.59112915 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{178}= +0.16755984 \pm 1.1 \cdot 10^{-5} \) | \(a_{179}= +0.55443017 \pm 1.1 \cdot 10^{-5} \) | \(a_{180}= +0.87098039 \pm 5.2 \cdot 10^{-6} \) |
| \(a_{181}= -1.58423527 \pm 1.8 \cdot 10^{-5} \) | \(a_{182}= -0.19714784 \pm 3.0 \cdot 10^{-5} \) | \(a_{183}= -1.79271648 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{184}= -0.43294598 \pm 1.0 \cdot 10^{-5} \) | \(a_{185}= +0.18267358 \pm 1.1 \cdot 10^{-5} \) | \(a_{186}= +1.00767506 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{187}= +0.20185671 \pm 5.4 \cdot 10^{-6} \) | \(a_{188}= +0.37480196 \pm 8.3 \cdot 10^{-6} \) | \(a_{189}= +0.33832407 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{190}= +0.62895151 \pm 1.0 \cdot 10^{-5} \) | \(a_{191}= -1.28678787 \pm 6.7 \cdot 10^{-6} \) | \(a_{192}= -0.34933344 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{193}= +0.61442793 \pm 1.7 \cdot 10^{-5} \) | \(a_{194}= +0.51640803 \pm 2.4 \cdot 10^{-5} \) | \(a_{195}= -1.23949319 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{196}= -0.10655002 \pm 1.0 \cdot 10^{-5} \) | \(a_{197}= -0.12474222 \pm 1.2 \cdot 10^{-5} \) | \(a_{198}= -0.60745309 \pm 8.8 \cdot 10^{-6} \) |
| \(a_{199}= +0.18167322 \pm 2.1 \cdot 10^{-5} \) | \(a_{200}= -0.38663479 \pm 7.4 \cdot 10^{-6} \) | \(a_{201}= +2.57311128 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{202}= +0.12082524 \pm 1.5 \cdot 10^{-5} \) | \(a_{203}= +0.60203747 \pm 1.1 \cdot 10^{-5} \) | \(a_{204}= +0.31173940 \pm 6.7 \cdot 10^{-6} \) |
| \(a_{205}= -0.81623143 \pm 1.1 \cdot 10^{-5} \) | \(a_{206}= +0.38357012 \pm 2.2 \cdot 10^{-5} \) | \(a_{207}= -0.76712929 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{208}= -0.31261370 \pm 1.4 \cdot 10^{-5} \) | \(a_{209}= +1.28731024 \pm 1.1 \cdot 10^{-5} \) | \(a_{210}= +0.22826744 \pm 4.1 \cdot 10^{-5} \) |
| \(a_{211}= +0.28299546 \pm 9.0 \cdot 10^{-6} \) | \(a_{212}= -1.41611009 \pm 5.7 \cdot 10^{-6} \) | \(a_{213}= +1.94699101 \pm 7.6 \cdot 10^{-6} \) |
| \(a_{214}= +0.14149525 \pm 1.1 \cdot 10^{-5} \) | \(a_{215}= -0.23303000 \pm 9.2 \cdot 10^{-6} \) | \(a_{216}= -0.78783236 \pm 7.0 \cdot 10^{-6} \) |
| \(a_{217}= -0.47222455 \pm 9.5 \cdot 10^{-6} \) | \(a_{218}= -0.28350843 \pm 2.5 \cdot 10^{-5} \) | \(a_{219}= -2.14722857 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{220}= +0.43152173 \pm 7.5 \cdot 10^{-6} \) | \(a_{221}= -0.27030759 \pm 1.1 \cdot 10^{-5} \) | \(a_{222}= -0.19675628 \pm 9.1 \cdot 10^{-6} \) |
| \(a_{223}= -0.81158062 \pm 1.3 \cdot 10^{-5} \) | \(a_{224}= +0.39023330 \pm 1.5 \cdot 10^{-5} \) | \(a_{225}= -0.68507130 \pm 5.8 \cdot 10^{-6} \) |
| \(a_{226}= -0.26793106 \pm 1.7 \cdot 10^{-5} \) | \(a_{227}= +0.08077886 \pm 7.8 \cdot 10^{-6} \) | \(a_{228}= +1.98807027 \pm 4.4 \cdot 10^{-6} \) |
| \(a_{229}= +0.96361438 \pm 1.3 \cdot 10^{-5} \) | \(a_{230}= -0.18569354 \pm 9.4 \cdot 10^{-6} \) | \(a_{231}= +0.46720773 \pm 2.2 \cdot 10^{-5} \) |
| \(a_{232}= -1.40192392 \pm 1.0 \cdot 10^{-5} \) | \(a_{233}= +1.57424607 \pm 8.7 \cdot 10^{-6} \) | \(a_{234}= +0.81344427 \pm 9.4 \cdot 10^{-6} \) |
| \(a_{235}= +0.37628797 \pm 1.3 \cdot 10^{-5} \) | \(a_{236}= -0.74178666 \pm 1.5 \cdot 10^{-5} \) | \(a_{237}= -1.00530385 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{238}= +0.04978036 \pm 2.7 \cdot 10^{-5} \) | \(a_{239}= +0.14576448 \pm 1.6 \cdot 10^{-5} \) | \(a_{240}= +0.36195946 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{241}= -1.49922324 \pm 1.2 \cdot 10^{-5} \) | \(a_{242}= +0.20317399 \pm 1.4 \cdot 10^{-5} \) | \(a_{243}= +1.09902047 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{244}= -0.83576695 \pm 8.1 \cdot 10^{-6} \) | \(a_{245}= -0.10697247 \pm 1.2 \cdot 10^{-5} \) | \(a_{246}= +0.87915650 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{247}= -1.72384526 \pm 6.5 \cdot 10^{-6} \) | \(a_{248}= +1.09963736 \pm 5.2 \cdot 10^{-6} \) | \(a_{249}= +1.40295587 \pm 8.1 \cdot 10^{-6} \) |
| \(a_{250}= -0.54332864 \pm 1.1 \cdot 10^{-5} \) | \(a_{251}= +0.75876528 \pm 1.6 \cdot 10^{-5} \) | \(a_{252}= +0.43963201 \pm 2.1 \cdot 10^{-5} \) |
| \(a_{253}= -0.38006936 \pm 9.1 \cdot 10^{-6} \) | \(a_{254}= +0.37250234 \pm 1.8 \cdot 10^{-5} \) | \(a_{255}= +0.31297538 \pm 7.3 \cdot 10^{-6} \) |
| \(a_{256}= -0.68335681 \pm 1.6 \cdot 10^{-5} \) | \(a_{257}= +0.54120252 \pm 1.8 \cdot 10^{-5} \) | \(a_{258}= +0.25099479 \pm 9.5 \cdot 10^{-6} \) |
| \(a_{259}= +0.09220546 \pm 1.1 \cdot 10^{-5} \) | \(a_{260}= -0.57785347 \pm 6.8 \cdot 10^{-6} \) | \(a_{261}= -2.48404408 \pm 9.5 \cdot 10^{-6} \) |
| \(a_{262}= -0.01712367 \pm 1.1 \cdot 10^{-5} \) | \(a_{263}= -1.05940952 \pm 1.1 \cdot 10^{-5} \) | \(a_{264}= -1.08795502 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{265}= -1.42172466 \pm 7.3 \cdot 10^{-6} \) | \(a_{266}= +0.31746664 \pm 3.0 \cdot 10^{-5} \) | \(a_{267}= +0.53174447 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{268}= +1.19958812 \pm 1.3 \cdot 10^{-5} \) | \(a_{269}= +1.75313344 \pm 2.4 \cdot 10^{-5} \) | \(a_{270}= -0.33790678 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{271}= +1.01507697 \pm 1.6 \cdot 10^{-5} \) | \(a_{272}= +0.07893580 \pm 1.0 \cdot 10^{-5} \) | \(a_{273}= -0.62564082 \pm 2.4 \cdot 10^{-5} \) |
| \(a_{274}= +0.00015234 \pm 1.0 \cdot 10^{-5} \) | \(a_{275}= -0.33941425 \pm 6.2 \cdot 10^{-6} \) | \(a_{276}= -0.58696387 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{277}= -1.26173218 \pm 1.0 \cdot 10^{-5} \) | \(a_{278}= +0.53505538 \pm 1.0 \cdot 10^{-5} \) | \(a_{279}= +1.94842789 \pm 5.4 \cdot 10^{-6} \) |
| \(a_{280}= +0.24909954 \pm 2.4 \cdot 10^{-5} \) | \(a_{281}= +1.46313247 \pm 1.8 \cdot 10^{-5} \) | \(a_{282}= -0.40529684 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{283}= -0.25704547 \pm 1.4 \cdot 10^{-5} \) | \(a_{284}= +0.90768996 \pm 8.5 \cdot 10^{-6} \) | \(a_{285}= +1.99595253 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{286}= +0.40301583 \pm 6.7 \cdot 10^{-6} \) | \(a_{287}= -0.41199718 \pm 1.5 \cdot 10^{-5} \) | \(a_{288}= -1.61012688 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{289}= -0.93174660 \pm 1.2 \cdot 10^{-5} \) | \(a_{290}= -0.60129492 \pm 1.0 \cdot 10^{-5} \) | \(a_{291}= +1.63880029 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{292}= -1.00104099 \pm 1.3 \cdot 10^{-5} \) | \(a_{293}= -1.03796060 \pm 1.7 \cdot 10^{-5} \) | \(a_{294}= +0.11521921 \pm 2.9 \cdot 10^{-5} \) |
| \(a_{295}= -0.74472768 \pm 8.3 \cdot 10^{-6} \) | \(a_{296}= -0.21471263 \pm 1.0 \cdot 10^{-5} \) | \(a_{297}= -0.69161270 \pm 7.5 \cdot 10^{-6} \) |
| \(a_{298}= +0.19061100 \pm 2.6 \cdot 10^{-5} \) | \(a_{299}= +0.50895328 \pm 1.5 \cdot 10^{-5} \) | \(a_{300}= -0.52417775 \pm 7.7 \cdot 10^{-6} \) |
| \(a_{301}= -0.11762314 \pm 9.3 \cdot 10^{-6} \) | \(a_{302}= +0.14388358 \pm 1.2 \cdot 10^{-5} \) | \(a_{303}= +0.38343408 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{304}= +0.50340099 \pm 9.5 \cdot 10^{-6} \) | \(a_{305}= -0.83908059 \pm 9.8 \cdot 10^{-6} \) | \(a_{306}= -0.20539687 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{307}= -1.03461105 \pm 1.4 \cdot 10^{-5} \) | \(a_{308}= +0.21781290 \pm 2.1 \cdot 10^{-5} \) | \(a_{309}= +1.21724446 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{310}= +0.47164211 \pm 1.0 \cdot 10^{-5} \) | \(a_{311}= -0.41907569 \pm 1.0 \cdot 10^{-5} \) | \(a_{312}= +1.45688743 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{313}= -0.75809378 \pm 1.9 \cdot 10^{-5} \) | \(a_{314}= -0.49162885 \pm 1.6 \cdot 10^{-5} \) | \(a_{315}= +0.44137506 \pm 2.3 \cdot 10^{-5} \) |
| \(a_{316}= -0.46867407 \pm 7.7 \cdot 10^{-6} \) | \(a_{317}= -0.44968143 \pm 1.1 \cdot 10^{-5} \) | \(a_{318}= +1.53132853 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{319}= -1.23070395 \pm 1.0 \cdot 10^{-5} \) | \(a_{320}= -0.16350545 \pm 1.2 \cdot 10^{-5} \) | \(a_{321}= +0.44902954 \pm 9.1 \cdot 10^{-6} \) |
| \(a_{322}= -0.09372981 \pm 3.3 \cdot 10^{-5} \) | \(a_{323}= +0.43527558 \pm 3.3 \cdot 10^{-6} \) | \(a_{324}= +0.09505806 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{325}= +0.45451176 \pm 9.3 \cdot 10^{-6} \) | \(a_{326}= -0.12439857 \pm 1.7 \cdot 10^{-5} \) | \(a_{327}= -0.89970269 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{328}= +0.95938995 \pm 1.1 \cdot 10^{-5} \) | \(a_{329}= +0.18993337 \pm 1.4 \cdot 10^{-5} \) | \(a_{330}= -0.46663148 \pm 6.8 \cdot 10^{-6} \) |
| \(a_{331}= +1.37666412 \pm 2.0 \cdot 10^{-5} \) | \(a_{332}= +0.65406001 \pm 4.7 \cdot 10^{-6} \) | \(a_{333}= -0.38044549 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{334}= -0.15438908 \pm 1.1 \cdot 10^{-5} \) | \(a_{335}= +1.20434422 \pm 1.3 \cdot 10^{-5} \) | \(a_{336}= +0.18270097 \pm 2.6 \cdot 10^{-5} \) |
| \(a_{337}= -1.35792106 \pm 1.5 \cdot 10^{-5} \) | \(a_{338}= -0.03554825 \pm 1.0 \cdot 10^{-5} \) | \(a_{339}= -0.85026854 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{340}= +0.14590956 \pm 7.4 \cdot 10^{-6} \) | \(a_{341}= +0.96533629 \pm 5.4 \cdot 10^{-6} \) | \(a_{342}= -1.30988712 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.27390104 \pm 7.5 \cdot 10^{-6} \) | \(a_{345}= -0.58929105 \pm 7.3 \cdot 10^{-6} \) |
| \(a_{346}= -0.24482598 \pm 1.2 \cdot 10^{-5} \) | \(a_{347}= -0.16068213 \pm 9.0 \cdot 10^{-6} \) | \(a_{348}= -1.90064978 \pm 5.6 \cdot 10^{-6} \) |
| \(a_{349}= -1.12419610 \pm 1.5 \cdot 10^{-5} \) | \(a_{350}= -0.08370376 \pm 2.9 \cdot 10^{-5} \) | \(a_{351}= +0.92614294 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{352}= -0.79772719 \pm 8.8 \cdot 10^{-6} \) | \(a_{353}= +0.86369336 \pm 1.7 \cdot 10^{-5} \) | \(a_{354}= +0.80214037 \pm 2.0 \cdot 10^{-5} \) |
| \(a_{355}= +0.91128875 \pm 9.6 \cdot 10^{-6} \) | \(a_{356}= +0.24790002 \pm 6.9 \cdot 10^{-6} \) | \(a_{357}= +0.15797599 \pm 2.1 \cdot 10^{-5} \) |
| \(a_{358}= -0.27950643 \pm 1.1 \cdot 10^{-5} \) | \(a_{359}= -0.57390363 \pm 1.1 \cdot 10^{-5} \) | \(a_{360}= -1.02780023 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{361}= +1.77590338 \pm 1.3 \cdot 10^{-5} \) | \(a_{362}= +0.79866494 \pm 2.3 \cdot 10^{-5} \) | \(a_{363}= +0.64476455 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{364}= -0.29167463 \pm 2.3 \cdot 10^{-5} \) | \(a_{365}= -1.00500990 \pm 9.7 \cdot 10^{-6} \) | \(a_{366}= +0.90376715 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{367}= -1.21795740 \pm 1.3 \cdot 10^{-5} \) | \(a_{368}= -0.14862563 \pm 1.6 \cdot 10^{-5} \) | \(a_{369}= +1.69992600 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{370}= -0.09209174 \pm 8.7 \cdot 10^{-6} \) | \(a_{371}= -0.71762312 \pm 9.7 \cdot 10^{-6} \) | \(a_{372}= +1.49082662 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{373}= -1.54176664 \pm 1.8 \cdot 10^{-5} \) | \(a_{374}= -0.10176258 \pm 6.7 \cdot 10^{-6} \) | \(a_{375}= -1.72423177 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{376}= -0.44228498 \pm 1.2 \cdot 10^{-5} \) | \(a_{377}= +1.64804342 \pm 8.1 \cdot 10^{-6} \) | \(a_{378}= -0.17056025 \pm 3.0 \cdot 10^{-5} \) |
| \(a_{379}= +0.40114686 \pm 1.9 \cdot 10^{-5} \) | \(a_{380}= +0.93051589 \pm 5.3 \cdot 10^{-6} \) | \(a_{381}= +1.18212132 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{382}= +0.64871195 \pm 8.6 \cdot 10^{-6} \) | \(a_{383}= +0.03018212 \pm 7.7 \cdot 10^{-6} \) | \(a_{384}= -1.47566624 \pm 7.4 \cdot 10^{-6} \) |
| \(a_{385}= +0.21867648 \pm 2.3 \cdot 10^{-5} \) | \(a_{386}= -0.30975326 \pm 1.8 \cdot 10^{-5} \) | \(a_{387}= +0.48532038 \pm 7.6 \cdot 10^{-6} \) |
| \(a_{388}= +0.76401101 \pm 1.4 \cdot 10^{-5} \) | \(a_{389}= -1.29157071 \pm 7.0 \cdot 10^{-6} \) | \(a_{390}= +0.62486915 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{391}= -0.12851208 \pm 1.1 \cdot 10^{-5} \) | \(a_{392}= +0.12573433 \pm 1.1 \cdot 10^{-5} \) | \(a_{393}= -0.05434127 \pm 9.7 \cdot 10^{-6} \) |
| \(a_{394}= +0.06288664 \pm 1.1 \cdot 10^{-5} \) | \(a_{395}= -0.47053226 \pm 1.2 \cdot 10^{-5} \) | \(a_{396}= -0.89870959 \pm 7.0 \cdot 10^{-6} \) |
| \(a_{397}= -0.83633572 \pm 1.2 \cdot 10^{-5} \) | \(a_{398}= -0.09158743 \pm 2.6 \cdot 10^{-5} \) | \(a_{399}= +1.00746772 \pm 2.4 \cdot 10^{-5} \) |
| \(a_{400}= -0.13272750 \pm 1.2 \cdot 10^{-5} \) | \(a_{401}= -1.00146996 \pm 1.3 \cdot 10^{-5} \) | \(a_{402}= -1.29718976 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{403}= -1.29268792 \pm 8.7 \cdot 10^{-6} \) | \(a_{404}= +0.17875751 \pm 1.0 \cdot 10^{-5} \) | \(a_{405}= +0.09543495 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{406}= -0.30350683 \pm 2.9 \cdot 10^{-5} \) | \(a_{407}= -0.18848931 \pm 1.2 \cdot 10^{-5} \) | \(a_{408}= -0.36786801 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{409}= +1.06784778 \pm 1.2 \cdot 10^{-5} \) | \(a_{410}= +0.41148902 \pm 1.1 \cdot 10^{-5} \) | \(a_{411}= +0.00048346 \pm 7.5 \cdot 10^{-6} \) |
| \(a_{412}= +0.56748109 \pm 1.3 \cdot 10^{-5} \) | \(a_{413}= -0.37590528 \pm 1.9 \cdot 10^{-5} \) | \(a_{414}= +0.38673503 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{415}= +0.65665321 \pm 1.0 \cdot 10^{-5} \) | \(a_{416}= +1.06824152 \pm 1.2 \cdot 10^{-5} \) | \(a_{417}= +1.69797690 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{418}= -0.64897530 \pm 1.0 \cdot 10^{-5} \) | \(a_{419}= +0.55199989 \pm 2.0 \cdot 10^{-5} \) | \(a_{420}= +0.33771518 \pm 3.4 \cdot 10^{-5} \) |
| \(a_{421}= +0.60884775 \pm 1.4 \cdot 10^{-5} \) | \(a_{422}= -0.14266729 \pm 9.9 \cdot 10^{-6} \) | \(a_{423}= -0.78367689 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{424}= +1.67108041 \pm 8.2 \cdot 10^{-6} \) | \(a_{425}= -0.11476545 \pm 6.1 \cdot 10^{-6} \) | \(a_{426}= -0.98154200 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{427}= -0.42353042 \pm 1.3 \cdot 10^{-5} \) | \(a_{428}= +0.20933821 \pm 6.9 \cdot 10^{-6} \) | \(a_{429}= +1.27895465 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{430}= +0.11747806 \pm 1.0 \cdot 10^{-5} \) | \(a_{431}= -0.46562327 \pm 7.8 \cdot 10^{-6} \) | \(a_{432}= -0.27045425 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{433}= -0.69300016 \pm 1.2 \cdot 10^{-5} \) | \(a_{434}= +0.23806388 \pm 2.7 \cdot 10^{-5} \) | \(a_{435}= -1.90818545 \pm 4.8 \cdot 10^{-6} \) |
| \(a_{436}= -0.41944267 \pm 1.4 \cdot 10^{-5} \) | \(a_{437}= -0.81956609 \pm 9.1 \cdot 10^{-6} \) | \(a_{438}= +1.08248832 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{439}= -1.37097666 \pm 2.1 \cdot 10^{-5} \) | \(a_{440}= -0.50921713 \pm 1.1 \cdot 10^{-5} \) | \(a_{441}= +0.22278642 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{442}= +0.13627092 \pm 1.3 \cdot 10^{-5} \) | \(a_{443}= +0.54471644 \pm 1.5 \cdot 10^{-5} \) | \(a_{444}= -0.29109533 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{445}= +0.24888289 \pm 1.2 \cdot 10^{-5} \) | \(a_{446}= +0.40914440 \pm 1.3 \cdot 10^{-5} \) | \(a_{447}= +0.60489641 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{448}= -0.08253025 \pm 1.2 \cdot 10^{-5} \) | \(a_{449}= +0.34377440 \pm 1.7 \cdot 10^{-5} \) | \(a_{450}= +0.34536691 \pm 6.2 \cdot 10^{-6} \) |
| \(a_{451}= +0.84221760 \pm 9.9 \cdot 10^{-6} \) | \(a_{452}= -0.39639639 \pm 1.1 \cdot 10^{-5} \) | \(a_{453}= +0.45660879 \pm 8.6 \cdot 10^{-6} \) |
| \(a_{454}= -0.04072327 \pm 9.5 \cdot 10^{-6} \) | \(a_{455}= -0.29283106 \pm 2.5 \cdot 10^{-5} \) | \(a_{456}= -2.34602190 \pm 4.6 \cdot 10^{-6} \) |
| \(a_{457}= -0.08407907 \pm 1.6 \cdot 10^{-5} \) | \(a_{458}= -0.48578960 \pm 1.6 \cdot 10^{-5} \) | \(a_{459}= -0.23385359 \pm 6.5 \cdot 10^{-6} \) |
| \(a_{460}= -0.27472832 \pm 4.6 \cdot 10^{-6} \) | \(a_{461}= +0.16873486 \pm 1.4 \cdot 10^{-5} \) | \(a_{462}= -0.23553473 \pm 4.0 \cdot 10^{-5} \) |
| \(a_{463}= +0.63863975 \pm 1.2 \cdot 10^{-5} \) | \(a_{464}= -0.48126518 \pm 9.7 \cdot 10^{-6} \) | \(a_{465}= +1.49673743 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{466}= -0.79362906 \pm 1.1 \cdot 10^{-5} \) | \(a_{467}= +0.03829085 \pm 1.4 \cdot 10^{-5} \) | \(a_{468}= +1.20346769 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{469}= +0.60789919 \pm 1.7 \cdot 10^{-5} \) | \(a_{470}= -0.18969910 \pm 1.1 \cdot 10^{-5} \) | \(a_{471}= -1.56016455 \pm 8.6 \cdot 10^{-6} \) |
| \(a_{472}= +0.87534519 \pm 8.2 \cdot 10^{-6} \) | \(a_{473}= +0.24044892 \pm 5.1 \cdot 10^{-6} \) | \(a_{474}= +0.50680663 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{475}= -0.73189907 \pm 6.3 \cdot 10^{-6} \) | \(a_{476}= +0.07364863 \pm 2.0 \cdot 10^{-5} \) | \(a_{477}= +2.96095768 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{478}= -0.07348466 \pm 2.0 \cdot 10^{-5} \) | \(a_{479}= -1.03825270 \pm 1.9 \cdot 10^{-5} \) | \(a_{480}= -1.23686238 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{481}= +0.25240723 \pm 5.8 \cdot 10^{-6} \) | \(a_{482}= +0.75580759 \pm 1.4 \cdot 10^{-5} \) | \(a_{483}= -0.29744781 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{484}= +0.30059014 \pm 9.0 \cdot 10^{-6} \) | \(a_{485}= +0.76704015 \pm 1.7 \cdot 10^{-5} \) | \(a_{486}= -0.55405225 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{487}= -1.34662671 \pm 1.5 \cdot 10^{-5} \) | \(a_{488}= +0.98624662 \pm 1.0 \cdot 10^{-5} \) | \(a_{489}= -0.39477390 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{490}= +0.05392833 \pm 3.0 \cdot 10^{-5} \) | \(a_{491}= +0.58103947 \pm 1.5 \cdot 10^{-5} \) | \(a_{492}= +1.30068706 \pm 8.6 \cdot 10^{-6} \) |
| \(a_{493}= -0.41613541 \pm 6.5 \cdot 10^{-6} \) | \(a_{494}= +0.86904692 \pm 7.3 \cdot 10^{-6} \) | \(a_{495}= -0.90227278 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{496}= +0.37749350 \pm 1.0 \cdot 10^{-5} \) | \(a_{497}= +0.45997787 \pm 1.0 \cdot 10^{-5} \) | \(a_{498}= -0.70727605 \pm 8.2 \cdot 10^{-6} \) |
| \(a_{499}= -1.31424924 \pm 1.0 \cdot 10^{-5} \) | \(a_{500}= -0.80383929 \pm 6.6 \cdot 10^{-6} \) | \(a_{501}= -0.48994759 \pm 6.1 \cdot 10^{-6} \) |
| \(a_{502}= -0.38251845 \pm 1.8 \cdot 10^{-5} \) | \(a_{503}= -0.98024986 \pm 9.8 \cdot 10^{-6} \) | \(a_{504}= -0.51878766 \pm 2.2 \cdot 10^{-5} \) |
| \(a_{505}= +0.17946624 \pm 9.3 \cdot 10^{-6} \) | \(a_{506}= +0.19160543 \pm 9.0 \cdot 10^{-6} \) | \(a_{507}= -0.11281095 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{508}= +0.55110663 \pm 1.1 \cdot 10^{-5} \) | \(a_{509}= +1.56744654 \pm 7.2 \cdot 10^{-6} \) | \(a_{510}= -0.15778115 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{511}= -0.50728412 \pm 1.6 \cdot 10^{-5} \) | \(a_{512}= -0.57787802 \pm 1.6 \cdot 10^{-5} \) | \(a_{513}= -1.49136547 \pm 8.5 \cdot 10^{-6} \) |
| \(a_{514}= -0.27283794 \pm 2.0 \cdot 10^{-5} \) | \(a_{515}= +0.56973103 \pm 9.7 \cdot 10^{-6} \) | \(a_{516}= +0.37133966 \pm 6.4 \cdot 10^{-6} \) |
| \(a_{517}= -0.38826776 \pm 1.1 \cdot 10^{-5} \) | \(a_{518}= -0.04648380 \pm 2.9 \cdot 10^{-5} \) | \(a_{519}= -0.77694548 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{520}= +0.68189587 \pm 7.2 \cdot 10^{-6} \) | \(a_{521}= +0.85538788 \pm 1.5 \cdot 10^{-5} \) | \(a_{522}= +1.25228806 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{523}= +0.74810684 \pm 1.4 \cdot 10^{-5} \) | \(a_{524}= -0.02533398 \pm 8.0 \cdot 10^{-6} \) | \(a_{525}= -0.26563053 \pm 2.3 \cdot 10^{-5} \) |
| \(a_{526}= +0.53408308 \pm 1.4 \cdot 10^{-5} \) | \(a_{527}= +0.32640719 \pm 6.8 \cdot 10^{-6} \) | \(a_{528}= -0.37348308 \pm 4.4 \cdot 10^{-6} \) |
| \(a_{529}= -0.75802883 \pm 1.0 \cdot 10^{-5} \) | \(a_{530}= +0.71673801 \pm 6.7 \cdot 10^{-6} \) | \(a_{531}= +1.55100859 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{532}= +0.46968287 \pm 2.2 \cdot 10^{-5} \) | \(a_{533}= -1.12781890 \pm 1.2 \cdot 10^{-5} \) | \(a_{534}= -0.26806982 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{535}= +0.21016819 \pm 1.2 \cdot 10^{-5} \) | \(a_{536}= -1.41557370 \pm 1.2 \cdot 10^{-5} \) | \(a_{537}= -0.88700250 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{538}= -0.88381204 \pm 3.0 \cdot 10^{-5} \) | \(a_{539}= +0.11037812 \pm 1.0 \cdot 10^{-5} \) | \(a_{540}= -0.49992348 \pm 5.9 \cdot 10^{-6} \) |
| \(a_{541}= +1.66475886 \pm 1.4 \cdot 10^{-5} \) | \(a_{542}= -0.51173358 \pm 1.5 \cdot 10^{-5} \) | \(a_{543}= +2.53453133 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{544}= -0.26973387 \pm 8.0 \cdot 10^{-6} \) | \(a_{545}= -0.42110566 \pm 1.8 \cdot 10^{-5} \) | \(a_{546}= +0.31540605 \pm 4.2 \cdot 10^{-5} \) |
| \(a_{547}= +1.26519394 \pm 1.0 \cdot 10^{-5} \) | \(a_{548}= +0.00022539 \pm 5.7 \cdot 10^{-6} \) | \(a_{549}= +1.74751285 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{550}= +0.17110985 \pm 6.8 \cdot 10^{-6} \) | \(a_{551}= -2.65383988 \pm 1.3 \cdot 10^{-5} \) | \(a_{552}= +0.69264659 \pm 7.5 \cdot 10^{-6} \) |
| \(a_{553}= -0.23750368 \pm 1.0 \cdot 10^{-5} \) | \(a_{554}= +0.63608056 \pm 1.0 \cdot 10^{-5} \) | \(a_{555}= -0.29224946 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{556}= +0.79159923 \pm 7.2 \cdot 10^{-6} \) | \(a_{557}= -1.22320799 \pm 1.5 \cdot 10^{-5} \) | \(a_{558}= -0.98226638 \pm 5.6 \cdot 10^{-6} \) |
| \(a_{559}= -0.32198666 \pm 1.1 \cdot 10^{-5} \) | \(a_{560}= +0.08551315 \pm 2.7 \cdot 10^{-5} \) | \(a_{561}= -0.32293950 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{562}= -0.73761305 \pm 2.3 \cdot 10^{-5} \) | \(a_{563}= +0.02069346 \pm 2.1 \cdot 10^{-5} \) | \(a_{564}= -0.59962515 \pm 6.8 \cdot 10^{-6} \) |
| \(a_{565}= -0.39796802 \pm 1.4 \cdot 10^{-5} \) | \(a_{566}= +0.12958505 \pm 1.4 \cdot 10^{-5} \) | \(a_{567}= +0.04817130 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{568}= -1.07111934 \pm 8.6 \cdot 10^{-6} \) | \(a_{569}= -1.01715629 \pm 1.0 \cdot 10^{-5} \) | \(a_{570}= -1.00622511 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{571}= -0.33622873 \pm 1.5 \cdot 10^{-5} \) | \(a_{572}= +0.59625046 \pm 4.1 \cdot 10^{-6} \) | \(a_{573}= +2.05866150 \pm 6.7 \cdot 10^{-6} \) |
| \(a_{574}= +0.20770129 \pm 3.3 \cdot 10^{-5} \) | \(a_{575}= +0.21608809 \pm 1.3 \cdot 10^{-5} \) | \(a_{576}= +0.34052494 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{577}= -1.14068681 \pm 1.0 \cdot 10^{-5} \) | \(a_{578}= +0.46972401 \pm 1.3 \cdot 10^{-5} \) | \(a_{579}= -0.98298963 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{580}= -0.88959875 \pm 5.9 \cdot 10^{-6} \) | \(a_{581}= +0.33144922 \pm 9.7 \cdot 10^{-6} \) | \(a_{582}= -0.82617296 \pm 2.0 \cdot 10^{-5} \) |
| \(a_{583}= +1.46698778 \pm 7.2 \cdot 10^{-6} \) | \(a_{584}= +1.18127821 \pm 8.0 \cdot 10^{-6} \) | \(a_{585}= +1.20823917 \pm 7.1 \cdot 10^{-6} \) |
| \(a_{586}= +0.52326997 \pm 2.1 \cdot 10^{-5} \) | \(a_{587}= -1.29837197 \pm 1.3 \cdot 10^{-5} \) | \(a_{588}= +0.17046355 \pm 2.2 \cdot 10^{-5} \) |
| \(a_{589}= +2.08161187 \pm 5.2 \cdot 10^{-6} \) | \(a_{590}= +0.37544164 \pm 1.0 \cdot 10^{-5} \) | \(a_{591}= +0.19956825 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{592}= -0.07370850 \pm 8.6 \cdot 10^{-6} \) | \(a_{593}= +1.61807826 \pm 2.0 \cdot 10^{-5} \) | \(a_{594}= +0.34866464 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{595}= +0.07394063 \pm 2.2 \cdot 10^{-5} \) | \(a_{596}= +0.28200356 \pm 1.6 \cdot 10^{-5} \) | \(a_{597}= -0.29064905 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{598}= -0.25658004 \pm 1.7 \cdot 10^{-5} \) | \(a_{599}= -0.61304740 \pm 1.8 \cdot 10^{-5} \) | \(a_{600}= +0.61855584 \pm 7.5 \cdot 10^{-6} \) |
| \(a_{601}= -1.01999569 \pm 1.7 \cdot 10^{-5} \) | \(a_{602}= +0.05929768 \pm 2.6 \cdot 10^{-5} \) | \(a_{603}= -2.50822989 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{604}= +0.21287167 \pm 5.5 \cdot 10^{-6} \) | \(a_{605}= +0.30178192 \pm 7.5 \cdot 10^{-6} \) | \(a_{606}= -0.19330169 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{607}= -0.19025768 \pm 1.6 \cdot 10^{-5} \) | \(a_{608}= -1.72018643 \pm 9.8 \cdot 10^{-6} \) | \(a_{609}= -0.96316681 \pm 2.3 \cdot 10^{-5} \) |
| \(a_{610}= +0.42300804 \pm 9.9 \cdot 10^{-6} \) | \(a_{611}= +0.51993181 \pm 9.4 \cdot 10^{-6} \) | \(a_{612}= -0.30387884 \pm 4.5 \cdot 10^{-6} \) |
| \(a_{613}= +1.45634653 \pm 1.4 \cdot 10^{-5} \) | \(a_{614}= +0.52158135 \pm 1.5 \cdot 10^{-5} \) | \(a_{615}= +1.30584400 \pm 7.5 \cdot 10^{-6} \) |
| \(a_{616}= -0.25703007 \pm 2.2 \cdot 10^{-5} \) | \(a_{617}= +0.06888317 \pm 1.0 \cdot 10^{-5} \) | \(a_{618}= -0.61365284 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{619}= -1.05329128 \pm 1.2 \cdot 10^{-5} \) | \(a_{620}= +0.69778110 \pm 7.6 \cdot 10^{-6} \) | \(a_{621}= +0.44031525 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{622}= +0.21126980 \pm 1.1 \cdot 10^{-5} \) | \(a_{623}= +0.12562497 \pm 1.0 \cdot 10^{-5} \) | \(a_{624}= +0.50013355 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{625}= -0.36773866 \pm 1.3 \cdot 10^{-5} \) | \(a_{626}= +0.38217993 \pm 2.3 \cdot 10^{-5} \) | \(a_{627}= -2.05949721 \pm 5.5 \cdot 10^{-6} \) |
| \(a_{628}= -0.72735092 \pm 9.2 \cdot 10^{-6} \) | \(a_{629}= -0.06373351 \pm 4.8 \cdot 10^{-6} \) | \(a_{630}= -0.22251164 \pm 4.1 \cdot 10^{-5} \) |
| \(a_{631}= +0.41294777 \pm 1.7 \cdot 10^{-5} \) | \(a_{632}= +0.55305874 \pm 7.2 \cdot 10^{-6} \) | \(a_{633}= -0.45274896 \pm 8.5 \cdot 10^{-6} \) |
| \(a_{634}= +0.22669915 \pm 1.3 \cdot 10^{-5} \) | \(a_{635}= +0.55329165 \pm 1.1 \cdot 10^{-5} \) | \(a_{636}= +2.26555705 \pm 5.8 \cdot 10^{-6} \) |
| \(a_{637}= -0.14780804 \pm 1.2 \cdot 10^{-5} \) | \(a_{638}= +0.62043821 \pm 9.4 \cdot 10^{-6} \) | \(a_{639}= -1.89789733 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{640}= -0.69068529 \pm 8.1 \cdot 10^{-6} \) | \(a_{641}= -1.49589494 \pm 1.7 \cdot 10^{-5} \) | \(a_{642}= -0.22637051 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{643}= -1.47431618 \pm 1.2 \cdot 10^{-5} \) | \(a_{644}= -0.13867059 \pm 2.6 \cdot 10^{-5} \) | \(a_{645}= +0.37281194 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{646}= -0.21943669 \pm 4.6 \cdot 10^{-6} \) | \(a_{647}= +0.33581473 \pm 1.5 \cdot 10^{-5} \) | \(a_{648}= -0.11217325 \pm 9.9 \cdot 10^{-6} \) |
| \(a_{649}= +0.76843741 \pm 9.3 \cdot 10^{-6} \) | \(a_{650}= -0.22913428 \pm 1.2 \cdot 10^{-5} \) | \(a_{651}= +0.75548622 \pm 2.1 \cdot 10^{-5} \) |
| \(a_{652}= -0.18404415 \pm 1.1 \cdot 10^{-5} \) | \(a_{653}= -0.34303482 \pm 2.2 \cdot 10^{-5} \) | \(a_{654}= +0.45356962 \pm 1.8 \cdot 10^{-5} \) |
| \(a_{655}= -0.02543442 \pm 1.0 \cdot 10^{-5} \) | \(a_{656}= +0.32934810 \pm 1.6 \cdot 10^{-5} \) | \(a_{657}= +2.09308587 \pm 8.6 \cdot 10^{-6} \) |
| \(a_{658}= -0.09575164 \pm 3.1 \cdot 10^{-5} \) | \(a_{659}= +0.95073315 \pm 1.7 \cdot 10^{-5} \) | \(a_{660}= -0.69036801 \pm 6.0 \cdot 10^{-6} \) |
| \(a_{661}= +1.19715955 \pm 9.9 \cdot 10^{-6} \) | \(a_{662}= -0.69402152 \pm 2.7 \cdot 10^{-5} \) | \(a_{663}= +0.43245032 \pm 7.7 \cdot 10^{-6} \) |
| \(a_{664}= -0.77182338 \pm 9.1 \cdot 10^{-6} \) | \(a_{665}= +0.47154506 \pm 2.4 \cdot 10^{-5} \) | \(a_{666}= +0.19179504 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{667}= +0.78352770 \pm 1.0 \cdot 10^{-5} \) | \(a_{668}= -0.22841426 \pm 6.9 \cdot 10^{-6} \) | \(a_{669}= +1.29840342 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{670}= -0.60714941 \pm 1.5 \cdot 10^{-5} \) | \(a_{671}= +0.86579420 \pm 7.4 \cdot 10^{-6} \) | \(a_{672}= -0.62431290 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{673}= -1.32149253 \pm 1.5 \cdot 10^{-5} \) | \(a_{674}= +0.68457253 \pm 1.8 \cdot 10^{-5} \) | \(a_{675}= +0.39321578 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{676}= -0.05259263 \pm 6.2 \cdot 10^{-6} \) | \(a_{677}= -0.73443040 \pm 1.9 \cdot 10^{-5} \) | \(a_{678}= +0.42864825 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{679}= +0.38716762 \pm 2.1 \cdot 10^{-5} \) | \(a_{680}= -0.17218055 \pm 6.7 \cdot 10^{-6} \) | \(a_{681}= -0.12923368 \pm 8.1 \cdot 10^{-6} \) |
| \(a_{682}= -0.48665767 \pm 6.1 \cdot 10^{-6} \) | \(a_{683}= -0.28076757 \pm 1.6 \cdot 10^{-5} \) | \(a_{684}= -1.93794077 \pm 5.2 \cdot 10^{-6} \) |
| \(a_{685}= +0.00022628 \pm 1.1 \cdot 10^{-5} \) | \(a_{686}= +0.02722061 \pm 1.7 \cdot 10^{-5} \) | \(a_{687}= -1.54163393 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{688}= +0.09402724 \pm 9.5 \cdot 10^{-6} \) | \(a_{689}= -1.96445259 \pm 9.7 \cdot 10^{-6} \) | \(a_{690}= +0.29708094 \pm 6.3 \cdot 10^{-6} \) |
| \(a_{691}= +1.62299341 \pm 1.0 \cdot 10^{-5} \) | \(a_{692}= -0.36221308 \pm 7.1 \cdot 10^{-6} \) | \(a_{693}= -0.45542701 \pm 2.1 \cdot 10^{-5} \) |
| \(a_{694}= +0.08100513 \pm 9.3 \cdot 10^{-6} \) | \(a_{695}= +0.79473775 \pm 7.9 \cdot 10^{-6} \) | \(a_{696}= +2.24286138 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{697}= +0.28477732 \pm 9.1 \cdot 10^{-6} \) | \(a_{698}= +0.56674411 \pm 1.7 \cdot 10^{-5} \) | \(a_{699}= -2.51855015 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{700}= -0.12383733 \pm 2.2 \cdot 10^{-5} \) | \(a_{701}= +0.23147703 \pm 8.9 \cdot 10^{-6} \) | \(a_{702}= -0.46689902 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{703}= -0.40645068 \pm 1.1 \cdot 10^{-5} \) | \(a_{704}= +0.16871093 \pm 9.9 \cdot 10^{-6} \) | \(a_{705}= -0.60200254 \pm 9.4 \cdot 10^{-6} \) |
| \(a_{706}= -0.43541614 \pm 2.1 \cdot 10^{-5} \) | \(a_{707}= +0.09058655 \pm 1.2 \cdot 10^{-5} \) | \(a_{708}= +1.18674389 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{709}= +0.82986878 \pm 1.5 \cdot 10^{-5} \) | \(a_{710}= -0.45941054 \pm 1.1 \cdot 10^{-5} \) | \(a_{711}= +0.97995496 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{712}= -0.29253437 \pm 9.9 \cdot 10^{-6} \) | \(a_{713}= -0.61458137 \pm 9.0 \cdot 10^{-6} \) | \(a_{714}= -0.07964088 \pm 3.9 \cdot 10^{-5} \) |
| \(a_{715}= +0.59861447 \pm 5.0 \cdot 10^{-6} \) | \(a_{716}= -0.41352182 \pm 7.7 \cdot 10^{-6} \) | \(a_{717}= -0.23320062 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{718}= +0.28932364 \pm 1.2 \cdot 10^{-5} \) | \(a_{719}= -1.21930123 \pm 1.0 \cdot 10^{-5} \) | \(a_{720}= -0.35283260 \pm 7.1 \cdot 10^{-6} \) |
| \(a_{721}= +0.28757478 \pm 1.6 \cdot 10^{-5} \) | \(a_{722}= -0.89529112 \pm 1.4 \cdot 10^{-5} \) | \(a_{723}= +2.39852523 \pm 7.8 \cdot 10^{-6} \) |
| \(a_{724}= +1.18160209 \pm 1.4 \cdot 10^{-5} \) | \(a_{725}= +0.69971561 \pm 6.6 \cdot 10^{-6} \) | \(a_{726}= -0.32504695 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{727}= -0.55298482 \pm 8.4 \cdot 10^{-6} \) | \(a_{728}= +0.34419059 \pm 2.4 \cdot 10^{-5} \) | \(a_{729}= -1.63081344 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{730}= +0.50665844 \pm 1.1 \cdot 10^{-5} \) | \(a_{731}= +0.08130250 \pm 9.9 \cdot 10^{-6} \) | \(a_{732}= +1.33709782 \pm 6.9 \cdot 10^{-6} \) |
| \(a_{733}= +1.56697060 \pm 1.3 \cdot 10^{-5} \) | \(a_{734}= +0.61401226 \pm 1.6 \cdot 10^{-5} \) | \(a_{735}= +0.17113940 \pm 2.4 \cdot 10^{-5} \) |
| \(a_{736}= +0.50787304 \pm 1.6 \cdot 10^{-5} \) | \(a_{737}= -1.24268665 \pm 1.1 \cdot 10^{-5} \) | \(a_{738}= -0.85698843 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{739}= -1.61345734 \pm 1.3 \cdot 10^{-5} \) | \(a_{740}= -0.13624711 \pm 5.2 \cdot 10^{-6} \) | \(a_{741}= +2.75788572 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{742}= +0.36177735 \pm 2.7 \cdot 10^{-5} \) | \(a_{743}= +0.05628038 \pm 1.7 \cdot 10^{-5} \) | \(a_{744}= -1.75924965 \pm 5.1 \cdot 10^{-6} \) |
| \(a_{745}= +0.28312164 \pm 1.1 \cdot 10^{-5} \) | \(a_{746}= +0.77725511 \pm 2.3 \cdot 10^{-5} \) | \(a_{747}= -1.36758012 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{748}= -0.15055485 \pm 6.6 \cdot 10^{-6} \) | \(a_{749}= +0.10608352 \pm 1.0 \cdot 10^{-5} \) | \(a_{750}= +0.86924177 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{751}= +0.16047731 \pm 9.9 \cdot 10^{-6} \) | \(a_{752}= -0.15183160 \pm 1.2 \cdot 10^{-5} \) | \(a_{753}= -1.21390705 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{754}= -0.83083272 \pm 9.1 \cdot 10^{-6} \) | \(a_{755}= +0.21371566 \pm 1.4 \cdot 10^{-5} \) | \(a_{756}= -0.25233905 \pm 2.3 \cdot 10^{-5} \) |
| \(a_{757}= -0.38818294 \pm 1.0 \cdot 10^{-5} \) | \(a_{758}= -0.20223129 \pm 2.3 \cdot 10^{-5} \) | \(a_{759}= +0.60805218 \pm 9.4 \cdot 10^{-6} \) |
| \(a_{760}= -1.09805508 \pm 1.3 \cdot 10^{-5} \) | \(a_{761}= +0.43497019 \pm 1.4 \cdot 10^{-5} \) | \(a_{762}= -0.59594612 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{763}= -0.21255534 \pm 2.1 \cdot 10^{-5} \) | \(a_{764}= +0.95975090 \pm 7.3 \cdot 10^{-6} \) | \(a_{765}= -0.30508365 \pm 6.1 \cdot 10^{-6} \) |
| \(a_{766}= -0.01521580 \pm 6.5 \cdot 10^{-6} \) | \(a_{767}= -1.02901938 \pm 1.5 \cdot 10^{-5} \) | \(a_{768}= +1.09326518 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{769}= +0.31146634 \pm 1.5 \cdot 10^{-5} \) | \(a_{770}= -0.11024198 \pm 4.0 \cdot 10^{-5} \) | \(a_{771}= -0.86584031 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{772}= -0.45827115 \pm 9.7 \cdot 10^{-6} \) | \(a_{773}= -0.76661632 \pm 1.6 \cdot 10^{-5} \) | \(a_{774}= -0.24466592 \pm 7.7 \cdot 10^{-6} \) |
| \(a_{775}= -0.54884107 \pm 8.0 \cdot 10^{-6} \) | \(a_{776}= -0.90157103 \pm 1.5 \cdot 10^{-5} \) | \(a_{777}= -0.14751448 \pm 2.3 \cdot 10^{-5} \) |
| \(a_{778}= +0.65112314 \pm 7.6 \cdot 10^{-6} \) | \(a_{779}= +1.81612374 \pm 1.2 \cdot 10^{-5} \) | \(a_{780}= +0.92447616 \pm 7.7 \cdot 10^{-6} \) |
| \(a_{781}= -0.94030124 \pm 8.0 \cdot 10^{-6} \) | \(a_{782}= +0.06478715 \pm 1.2 \cdot 10^{-5} \) | \(a_{783}= +1.42578636 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{784}= +0.04316322 \pm 1.4 \cdot 10^{-5} \) | \(a_{785}= -0.73023471 \pm 1.6 \cdot 10^{-5} \) | \(a_{786}= +0.02739522 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{787}= -0.40005974 \pm 1.5 \cdot 10^{-5} \) | \(a_{788}= +0.09303900 \pm 6.7 \cdot 10^{-6} \) | \(a_{789}= +1.69489133 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{790}= +0.23721074 \pm 1.5 \cdot 10^{-5} \) | \(a_{791}= -0.20087649 \pm 1.4 \cdot 10^{-5} \) | \(a_{792}= +1.06052206 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{793}= -1.15939048 \pm 1.5 \cdot 10^{-5} \) | \(a_{794}= +0.42162426 \pm 1.3 \cdot 10^{-5} \) | \(a_{795}= +2.27453949 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{796}= -0.13550100 \pm 1.5 \cdot 10^{-5} \) | \(a_{797}= +0.58327912 \pm 1.4 \cdot 10^{-5} \) | \(a_{798}= -0.50789751 \pm 4.1 \cdot 10^{-5} \) |
| \(a_{799}= -0.13128419 \pm 6.9 \cdot 10^{-6} \) | \(a_{800}= +0.45354707 \pm 1.3 \cdot 10^{-5} \) | \(a_{801}= -0.51833645 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{802}= +0.50487384 \pm 1.3 \cdot 10^{-5} \) | \(a_{803}= +1.03700617 \pm 8.5 \cdot 10^{-6} \) | \(a_{804}= -1.91915539 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{805}= -0.13922039 \pm 2.8 \cdot 10^{-5} \) | \(a_{806}= +0.65168636 \pm 1.1 \cdot 10^{-5} \) | \(a_{807}= -2.80474226 \pm 1.8 \cdot 10^{-5} \) |
| \(a_{808}= -0.21094276 \pm 9.4 \cdot 10^{-6} \) | \(a_{809}= +0.19306213 \pm 1.3 \cdot 10^{-5} \) | \(a_{810}= -0.04811189 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{811}= +0.46925766 \pm 1.4 \cdot 10^{-5} \) | \(a_{812}= -0.44902973 \pm 2.2 \cdot 10^{-5} \) | \(a_{813}= -1.62396610 \pm 6.1 \cdot 10^{-6} \) |
| \(a_{814}= +0.09502364 \pm 9.0 \cdot 10^{-6} \) | \(a_{815}= -0.18477385 \pm 1.0 \cdot 10^{-5} \) | \(a_{816}= -0.12628507 \pm 7.1 \cdot 10^{-6} \) |
| \(a_{817}= +0.51849426 \pm 2.2 \cdot 10^{-6} \) | \(a_{818}= -0.53833708 \pm 1.2 \cdot 10^{-5} \) | \(a_{819}= +0.60986519 \pm 2.4 \cdot 10^{-5} \) |
| \(a_{820}= +0.60878632 \pm 7.2 \cdot 10^{-6} \) | \(a_{821}= +1.81076698 \pm 1.0 \cdot 10^{-5} \) | \(a_{822}= -0.00024373 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{823}= +0.26070592 \pm 1.0 \cdot 10^{-5} \) | \(a_{824}= -0.66965594 \pm 8.4 \cdot 10^{-6} \) | \(a_{825}= +0.54301029 \pm 6.3 \cdot 10^{-6} \) |
| \(a_{826}= +0.18950618 \pm 3.6 \cdot 10^{-5} \) | \(a_{827}= +0.31129772 \pm 1.2 \cdot 10^{-5} \) | \(a_{828}= +0.57216348 \pm 5.5 \cdot 10^{-6} \) |
| \(a_{829}= +0.07419689 \pm 1.5 \cdot 10^{-5} \) | \(a_{830}= -0.33104042 \pm 1.0 \cdot 10^{-5} \) | \(a_{831}= +2.01857629 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{832}= -0.22592187 \pm 9.7 \cdot 10^{-6} \) | \(a_{833}= +0.03732193 \pm 9.7 \cdot 10^{-6} \) | \(a_{834}= -0.85600582 \pm 9.9 \cdot 10^{-6} \) |
| \(a_{835}= -0.22931987 \pm 1.2 \cdot 10^{-5} \) | \(a_{836}= -0.96014051 \pm 7.0 \cdot 10^{-6} \) | \(a_{837}= -1.11835451 \pm 9.1 \cdot 10^{-6} \) |
| \(a_{838}= -0.27828125 \pm 2.6 \cdot 10^{-5} \) | \(a_{839}= -1.03426071 \pm 1.3 \cdot 10^{-5} \) | \(a_{840}= -0.39852073 \pm 3.5 \cdot 10^{-5} \) |
| \(a_{841}= +1.53714382 \pm 1.0 \cdot 10^{-5} \) | \(a_{842}= -0.30694011 \pm 1.7 \cdot 10^{-5} \) | \(a_{843}= -2.34078559 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{844}= -0.21107220 \pm 5.6 \cdot 10^{-6} \) | \(a_{845}= -0.05280114 \pm 1.0 \cdot 10^{-5} \) | \(a_{846}= +0.39507721 \pm 9.4 \cdot 10^{-6} \) |
| \(a_{847}= +0.15232604 \pm 1.1 \cdot 10^{-5} \) | \(a_{848}= +0.57366366 \pm 9.2 \cdot 10^{-6} \) | \(a_{849}= +0.41123298 \pm 9.1 \cdot 10^{-6} \) |
| \(a_{850}= +0.05785702 \pm 7.8 \cdot 10^{-6} \) | \(a_{851}= +0.12000173 \pm 1.0 \cdot 10^{-5} \) | \(a_{852}= -1.45216350 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{853}= -0.28915508 \pm 1.3 \cdot 10^{-5} \) | \(a_{854}= +0.21351557 \pm 3.1 \cdot 10^{-5} \) | \(a_{855}= -1.94562428 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{856}= -0.24702951 \pm 9.7 \cdot 10^{-6} \) | \(a_{857}= +1.49913010 \pm 7.9 \cdot 10^{-6} \) | \(a_{858}= -0.64476297 \pm 4.6 \cdot 10^{-6} \) |
| \(a_{859}= -1.10133752 \pm 2.0 \cdot 10^{-5} \) | \(a_{860}= +0.17380545 \pm 6.7 \cdot 10^{-6} \) | \(a_{861}= +0.65913174 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{862}= +0.23473596 \pm 7.0 \cdot 10^{-6} \) | \(a_{863}= +0.14223491 \pm 1.4 \cdot 10^{-5} \) | \(a_{864}= +0.92417721 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{865}= -0.36364918 \pm 1.1 \cdot 10^{-5} \) | \(a_{866}= +0.34936410 \pm 1.2 \cdot 10^{-5} \) | \(a_{867}= +1.49065041 \pm 9.5 \cdot 10^{-6} \) |
| \(a_{868}= +0.35220874 \pm 2.0 \cdot 10^{-5} \) | \(a_{869}= +0.48551249 \pm 6.2 \cdot 10^{-6} \) | \(a_{870}= +0.96197885 \pm 5.9 \cdot 10^{-6} \) |
| \(a_{871}= +1.66408954 \pm 1.4 \cdot 10^{-5} \) | \(a_{872}= +0.49496323 \pm 1.7 \cdot 10^{-5} \) | \(a_{873}= -1.59747769 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{874}= +0.41317014 \pm 1.0 \cdot 10^{-5} \) | \(a_{875}= -0.40735086 \pm 1.1 \cdot 10^{-5} \) | \(a_{876}= +1.60151071 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{877}= -0.52375807 \pm 1.6 \cdot 10^{-5} \) | \(a_{878}= +0.69115428 \pm 2.4 \cdot 10^{-5} \) | \(a_{879}= +1.66057638 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{880}= -0.17480868 \pm 6.5 \cdot 10^{-6} \) | \(a_{881}= -1.03518980 \pm 1.8 \cdot 10^{-5} \) | \(a_{882}= -0.11231394 \pm 2.8 \cdot 10^{-5} \) |
| \(a_{883}= -1.45931052 \pm 2.2 \cdot 10^{-5} \) | \(a_{884}= +0.20160895 \pm 6.1 \cdot 10^{-6} \) | \(a_{885}= +1.19144907 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{886}= -0.27460942 \pm 1.9 \cdot 10^{-5} \) | \(a_{887}= -0.68000737 \pm 2.1 \cdot 10^{-5} \) | \(a_{888}= +0.34350698 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{889}= +0.27927692 \pm 1.5 \cdot 10^{-5} \) | \(a_{890}= -0.12547003 \pm 1.1 \cdot 10^{-5} \) | \(a_{891}= -0.09847329 \pm 7.7 \cdot 10^{-6} \) |
| \(a_{892}= +0.60531751 \pm 8.0 \cdot 10^{-6} \) | \(a_{893}= -0.83724480 \pm 1.4 \cdot 10^{-5} \) | \(a_{894}= -0.30494811 \pm 2.2 \cdot 10^{-5} \) |
| \(a_{895}= -0.41516134 \pm 1.0 \cdot 10^{-5} \) | \(a_{896}= -0.34862709 \pm 9.9 \cdot 10^{-6} \) | \(a_{897}= -0.81424651 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{898}= -0.17330795 \pm 1.9 \cdot 10^{-5} \) | \(a_{899}= -1.99007812 \pm 6.2 \cdot 10^{-6} \) | \(a_{900}= +0.51096052 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{901}= +0.49602958 \pm 8.5 \cdot 10^{-6} \) | \(a_{902}= -0.42458951 \pm 1.1 \cdot 10^{-5} \) | \(a_{903}= +0.18817882 \pm 2.1 \cdot 10^{-5} \) |
| \(a_{904}= +0.46776748 \pm 1.0 \cdot 10^{-5} \) | \(a_{905}= +1.18628688 \pm 1.0 \cdot 10^{-5} \) | \(a_{906}= -0.23019146 \pm 6.2 \cdot 10^{-6} \) |
| \(a_{907}= -0.44212963 \pm 1.1 \cdot 10^{-5} \) | \(a_{908}= -0.06024892 \pm 6.9 \cdot 10^{-6} \) | \(a_{909}= -0.37376573 \pm 9.5 \cdot 10^{-6} \) |
| \(a_{910}= +0.14762574 \pm 4.3 \cdot 10^{-5} \) | \(a_{911}= -1.66879602 \pm 1.1 \cdot 10^{-5} \) | \(a_{912}= -0.80536371 \pm 5.6 \cdot 10^{-6} \) |
| \(a_{913}= -0.67755893 \pm 7.1 \cdot 10^{-6} \) | \(a_{914}= +0.04238701 \pm 1.5 \cdot 10^{-5} \) | \(a_{915}= +1.34239912 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{916}= -0.71871191 \pm 1.0 \cdot 10^{-5} \) | \(a_{917}= -0.01283816 \pm 1.1 \cdot 10^{-5} \) | \(a_{918}= +0.11789326 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{919}= -0.04881488 \pm 1.2 \cdot 10^{-5} \) | \(a_{920}= +0.32419310 \pm 9.5 \cdot 10^{-6} \) | \(a_{921}= +1.65521762 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{922}= -0.08506478 \pm 1.7 \cdot 10^{-5} \) | \(a_{923}= +1.25916333 \pm 7.2 \cdot 10^{-6} \) | \(a_{924}= -0.34846694 \pm 3.2 \cdot 10^{-5} \) |
| \(a_{925}= +0.10716543 \pm 8.4 \cdot 10^{-6} \) | \(a_{926}= -0.32195924 \pm 1.4 \cdot 10^{-5} \) | \(a_{927}= -1.18655146 \pm 7.8 \cdot 10^{-6} \) |
| \(a_{928}= +1.64454548 \pm 9.8 \cdot 10^{-6} \) | \(a_{929}= -0.21042206 \pm 1.4 \cdot 10^{-5} \) | \(a_{930}= -0.75455441 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{931}= +0.23801489 \pm 1.2 \cdot 10^{-5} \) | \(a_{932}= -1.17415164 \pm 8.7 \cdot 10^{-6} \) | \(a_{933}= +0.67045627 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{934}= -0.01930367 \pm 1.7 \cdot 10^{-5} \) | \(a_{935}= -0.15115177 \pm 5.1 \cdot 10^{-6} \) | \(a_{936}= -1.42015179 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{937}= +0.46794299 \pm 1.9 \cdot 10^{-5} \) | \(a_{938}= -0.30646191 \pm 3.5 \cdot 10^{-5} \) | \(a_{939}= +1.21283275 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{940}= -0.28065443 \pm 5.9 \cdot 10^{-6} \) | \(a_{941}= -1.04413772 \pm 1.4 \cdot 10^{-5} \) | \(a_{942}= +0.78653010 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{943}= -0.53619786 \pm 1.6 \cdot 10^{-5} \) | \(a_{944}= +0.30049645 \pm 2.1 \cdot 10^{-5} \) | \(a_{945}= -0.25333952 \pm 2.5 \cdot 10^{-5} \) |
| \(a_{946}= -0.12121818 \pm 5.0 \cdot 10^{-6} \) | \(a_{947}= +1.23679271 \pm 1.6 \cdot 10^{-5} \) | \(a_{948}= +0.74980601 \pm 8.5 \cdot 10^{-6} \) |
| \(a_{949}= -1.38866151 \pm 1.4 \cdot 10^{-5} \) | \(a_{950}= +0.36897432 \pm 7.6 \cdot 10^{-6} \) | \(a_{951}= +0.71942071 \pm 9.9 \cdot 10^{-6} \) |
| \(a_{952}= -0.08690905 \pm 2.1 \cdot 10^{-5} \) | \(a_{953}= +1.34174941 \pm 1.2 \cdot 10^{-5} \) | \(a_{954}= -1.49271585 \pm 8.2 \cdot 10^{-6} \) |
| \(a_{955}= +0.96355610 \pm 8.3 \cdot 10^{-6} \) | \(a_{956}= -0.10871846 \pm 1.1 \cdot 10^{-5} \) | \(a_{957}= +1.96893591 \pm 5.0 \cdot 10^{-6} \) |
| \(a_{958}= +0.52341723 \pm 2.0 \cdot 10^{-5} \) | \(a_{959}= +0.00011422 \pm 9.9 \cdot 10^{-6} \) | \(a_{960}= +0.26158342 \pm 8.8 \cdot 10^{-6} \) |
| \(a_{961}= +0.56097219 \pm 1.0 \cdot 10^{-5} \) | \(a_{962}= -0.12724676 \pm 6.9 \cdot 10^{-6} \) | \(a_{963}= -0.43770719 \pm 7.7 \cdot 10^{-6} \) |
| \(a_{964}= +1.11819585 \pm 8.2 \cdot 10^{-6} \) | \(a_{965}= -0.46008810 \pm 1.4 \cdot 10^{-5} \) | \(a_{966}= +0.14995319 \pm 4.5 \cdot 10^{-5} \) |
| \(a_{967}= -0.96839999 \pm 1.9 \cdot 10^{-5} \) | \(a_{968}= -0.35471134 \pm 7.3 \cdot 10^{-6} \) | \(a_{969}= -0.69637359 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{970}= -0.38669009 \pm 1.7 \cdot 10^{-5} \) | \(a_{971}= +0.42767708 \pm 1.3 \cdot 10^{-5} \) | \(a_{972}= -0.81970457 \pm 7.5 \cdot 10^{-6} \) |
| \(a_{973}= +0.40114813 \pm 9.3 \cdot 10^{-6} \) | \(a_{974}= +0.67887868 \pm 1.6 \cdot 10^{-5} \) | \(a_{975}= -0.72714850 \pm 7.6 \cdot 10^{-6} \) |
| \(a_{976}= +0.33856770 \pm 1.4 \cdot 10^{-5} \) | \(a_{977}= -1.75247238 \pm 2.0 \cdot 10^{-5} \) | \(a_{978}= +0.19901847 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{979}= -0.25680652 \pm 8.7 \cdot 10^{-6} \) | \(a_{980}= +0.07978543 \pm 2.3 \cdot 10^{-5} \) | \(a_{981}= +0.87701655 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{982}= -0.29292105 \pm 1.5 \cdot 10^{-5} \) | \(a_{983}= +1.26564014 \pm 1.2 \cdot 10^{-5} \) | \(a_{984}= -1.53487549 \pm 5.6 \cdot 10^{-6} \) |
| \(a_{985}= +0.09340788 \pm 1.2 \cdot 10^{-5} \) | \(a_{986}= +0.20978751 \pm 7.0 \cdot 10^{-6} \) | \(a_{987}= -0.30386400 \pm 2.6 \cdot 10^{-5} \) |
| \(a_{988}= +1.28573022 \pm 4.1 \cdot 10^{-6} \) | \(a_{989}= -0.15308181 \pm 1.0 \cdot 10^{-5} \) | \(a_{990}= +0.45486529 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{991}= -0.04492805 \pm 1.4 \cdot 10^{-5} \) | \(a_{992}= -1.28994421 \pm 1.1 \cdot 10^{-5} \) | \(a_{993}= -2.20244960 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{994}= -0.23188993 \pm 2.7 \cdot 10^{-5} \) | \(a_{995}= -0.13603823 \pm 1.3 \cdot 10^{-5} \) | \(a_{996}= -1.04639482 \pm 5.3 \cdot 10^{-6} \) |
| \(a_{997}= -1.82439849 \pm 1.3 \cdot 10^{-5} \) | \(a_{998}= +0.66255613 \pm 1.1 \cdot 10^{-5} \) | \(a_{999}= +0.21836729 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{1000}= +0.94857038 \pm 1.0 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000