Maass form invariants
| Level: | \( 7 \) |
| Weight: | \( 0 \) |
| Character: | 7.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(13.6464251756107760805689320314 \pm 10 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.10186869 \pm 2.0 \cdot 10^{-5} \) | \(a_{3}= +1.69538000 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{4}= +0.21411460 \pm 1.2 \cdot 10^{-5} \) | \(a_{5}= +0.60513581 \pm 1.4 \cdot 10^{-5} \) | \(a_{6}= -1.86808613 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.86594251 \pm 1.3 \cdot 10^{-5} \) | \(a_{9}= +1.87431334 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{10}= -0.66678020 \pm 1.4 \cdot 10^{-5} \) | \(a_{11}= +1.89052988 \pm 1.2 \cdot 10^{-5} \) | \(a_{12}= +0.36300561 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{13}= -1.10103763 \pm 1.4 \cdot 10^{-5} \) | \(a_{14}= -0.41646722 \pm 2.0 \cdot 10^{-5} \) | \(a_{15}= +1.02593515 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{16}= -1.16826954 \pm 1.7 \cdot 10^{-5} \) | \(a_{17}= -0.14475559 \pm 1.1 \cdot 10^{-5} \) | \(a_{18}= -2.06524718 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{19}= +0.01073463 \pm 1.4 \cdot 10^{-5} \) | \(a_{20}= +0.12956841 \pm 9.4 \cdot 10^{-6} \) | \(a_{21}= +0.64079341 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{22}= -2.08311567 \pm 1.2 \cdot 10^{-5} \) | \(a_{23}= +0.51808125 \pm 1.8 \cdot 10^{-5} \) | \(a_{24}= +1.46810161 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{25}= -0.63381065 \pm 1.3 \cdot 10^{-5} \) | \(a_{26}= +1.21319889 \pm 1.8 \cdot 10^{-5} \) | \(a_{27}= +1.48229335 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{28}= +0.08092771 \pm 1.2 \cdot 10^{-5} \) | \(a_{29}= +0.84404815 \pm 1.3 \cdot 10^{-5} \) | \(a_{30}= -1.13044581 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{31}= -0.83050119 \pm 1.1 \cdot 10^{-5} \) | \(a_{32}= +0.42133711 \pm 1.7 \cdot 10^{-5} \) | \(a_{33}= +3.20516654 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{34}= +0.15950165 \pm 1.3 \cdot 10^{-5} \) | \(a_{35}= +0.22871984 \pm 1.4 \cdot 10^{-5} \) | \(a_{36}= +0.40131785 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{37}= +0.27337155 \pm 1.3 \cdot 10^{-5} \) | \(a_{38}= -0.01182815 \pm 1.4 \cdot 10^{-5} \) | \(a_{39}= -1.86667718 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{40}= +0.52401282 \pm 1.3 \cdot 10^{-5} \) | \(a_{41}= +0.49049139 \pm 1.7 \cdot 10^{-5} \) | \(a_{42}= -0.70607019 \pm 3.4 \cdot 10^{-5} \) |
| \(a_{43}= +0.59393313 \pm 1.0 \cdot 10^{-5} \) | \(a_{44}= +0.40479005 \pm 9.1 \cdot 10^{-6} \) | \(a_{45}= +1.13421412 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{46}= -0.57085750 \pm 2.1 \cdot 10^{-5} \) | \(a_{47}= +1.63308929 \pm 1.6 \cdot 10^{-5} \) | \(a_{48}= -1.98066081 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.69837611 \pm 1.6 \cdot 10^{-5} \) | \(a_{51}= -0.24541573 \pm 8.2 \cdot 10^{-6} \) |
| \(a_{52}= -0.23574823 \pm 9.7 \cdot 10^{-6} \) | \(a_{53}= +0.16040889 \pm 1.1 \cdot 10^{-5} \) | \(a_{54}= -1.63329262 \pm 1.8 \cdot 10^{-5} \) |
| \(a_{55}= +1.14402733 \pm 1.2 \cdot 10^{-5} \) | \(a_{56}= +0.32729550 \pm 1.3 \cdot 10^{-5} \) | \(a_{57}= +0.01819927 \pm 7.1 \cdot 10^{-6} \) |
| \(a_{58}= -0.93003022 \pm 1.3 \cdot 10^{-5} \) | \(a_{59}= -0.49808499 \pm 2.2 \cdot 10^{-5} \) | \(a_{60}= +0.21966770 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{61}= +1.26739611 \pm 1.5 \cdot 10^{-5} \) | \(a_{62}= +0.91510325 \pm 1.4 \cdot 10^{-5} \) | \(a_{63}= +0.70842385 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{64}= +0.70401137 \pm 1.4 \cdot 10^{-5} \) | \(a_{65}= -0.66627730 \pm 1.1 \cdot 10^{-5} \) | \(a_{66}= -3.53167264 \pm 9.0 \cdot 10^{-6} \) |
| \(a_{67}= +0.85328319 \pm 2.0 \cdot 10^{-5} \) | \(a_{68}= -0.03099429 \pm 8.3 \cdot 10^{-6} \) | \(a_{69}= +0.87834459 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{70}= -0.25201923 \pm 3.4 \cdot 10^{-5} \) | \(a_{71}= -0.07881271 \pm 1.1 \cdot 10^{-5} \) | \(a_{72}= +1.62304760 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{73}= -1.07462516 \pm 1.9 \cdot 10^{-5} \) | \(a_{74}= -0.30121956 \pm 1.2 \cdot 10^{-5} \) | \(a_{75}= -1.07454990 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{76}= +0.00229844 \pm 7.8 \cdot 10^{-6} \) | \(a_{77}= +0.71455313 \pm 1.2 \cdot 10^{-5} \) | \(a_{78}= +2.05683313 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{79}= -1.67488531 \pm 1.1 \cdot 10^{-5} \) | \(a_{80}= -0.70696173 \pm 1.1 \cdot 10^{-5} \) | \(a_{81}= +0.63873715 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{82}= -0.54045710 \pm 2.1 \cdot 10^{-5} \) | \(a_{83}= +1.06241702 \pm 1.1 \cdot 10^{-5} \) | \(a_{84}= +0.13720323 \pm 2.5 \cdot 10^{-5} \) |
| \(a_{85}= -0.08759679 \pm 9.5 \cdot 10^{-6} \) | \(a_{86}= -0.65443632 \pm 1.2 \cdot 10^{-5} \) | \(a_{87}= +1.43098234 \pm 7.3 \cdot 10^{-6} \) |
| \(a_{88}= +1.63709019 \pm 1.2 \cdot 10^{-5} \) | \(a_{89}= -0.81823612 \pm 1.2 \cdot 10^{-5} \) | \(a_{90}= -1.24975502 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{91}= -0.41615311 \pm 1.4 \cdot 10^{-5} \) | \(a_{92}= +0.11092876 \pm 1.1 \cdot 10^{-5} \) | \(a_{93}= -1.40801510 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{94}= -1.79944995 \pm 1.7 \cdot 10^{-5} \) | \(a_{95}= +0.00649591 \pm 1.4 \cdot 10^{-5} \) | \(a_{96}= +0.71432651 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{97}= -0.92902309 \pm 2.4 \cdot 10^{-5} \) | \(a_{98}= -0.15740981 \pm 2.0 \cdot 10^{-5} \) | \(a_{99}= +3.54344537 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{100}= -0.13570812 \pm 9.9 \cdot 10^{-6} \) | \(a_{101}= +1.76430706 \pm 1.4 \cdot 10^{-5} \) | \(a_{102}= +0.27041591 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{103}= +0.18062317 \pm 1.9 \cdot 10^{-5} \) | \(a_{104}= -0.95343529 \pm 1.0 \cdot 10^{-5} \) | \(a_{105}= +0.38776704 \pm 2.8 \cdot 10^{-5} \) |
| \(a_{106}= -0.17674953 \pm 1.2 \cdot 10^{-5} \) | \(a_{107}= -1.49193651 \pm 1.2 \cdot 10^{-5} \) | \(a_{108}= +0.31738065 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{109}= -0.30826087 \pm 2.5 \cdot 10^{-5} \) | \(a_{110}= -1.26056789 \pm 1.1 \cdot 10^{-5} \) | \(a_{111}= +0.46346867 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{112}= -0.44156438 \pm 1.7 \cdot 10^{-5} \) | \(a_{113}= +0.40355423 \pm 1.6 \cdot 10^{-5} \) | \(a_{114}= -0.02005321 \pm 8.0 \cdot 10^{-6} \) |
| \(a_{115}= +0.31350952 \pm 1.1 \cdot 10^{-5} \) | \(a_{116}= +0.18072303 \pm 7.8 \cdot 10^{-6} \) | \(a_{117}= -2.06368952 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{118}= +0.54882425 \pm 2.9 \cdot 10^{-5} \) | \(a_{119}= -0.05471247 \pm 1.1 \cdot 10^{-5} \) | \(a_{120}= +0.88840086 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{121}= +2.57410321 \pm 1.3 \cdot 10^{-5} \) | \(a_{122}= -1.39650409 \pm 1.8 \cdot 10^{-5} \) | \(a_{123}= +0.83156929 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{124}= -0.17782243 \pm 9.4 \cdot 10^{-6} \) | \(a_{125}= -0.98867733 \pm 1.3 \cdot 10^{-5} \) | \(a_{126}= -0.78059006 \pm 3.3 \cdot 10^{-5} \) |
| \(a_{127}= +0.66628343 \pm 1.7 \cdot 10^{-5} \) | \(a_{128}= -1.19706519 \pm 1.1 \cdot 10^{-5} \) | \(a_{129}= +1.00694235 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{130}= +0.73415009 \pm 1.3 \cdot 10^{-5} \) | \(a_{131}= +0.30562412 \pm 1.3 \cdot 10^{-5} \) | \(a_{132}= +0.68627296 \pm 7.6 \cdot 10^{-6} \) |
| \(a_{133}= +0.00405731 \pm 1.4 \cdot 10^{-5} \) | \(a_{134}= -0.94020603 \pm 2.5 \cdot 10^{-5} \) | \(a_{135}= +0.89698878 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{136}= -0.12535002 \pm 9.2 \cdot 10^{-6} \) | \(a_{137}= -0.86550905 \pm 1.1 \cdot 10^{-5} \) | \(a_{138}= -0.96782040 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{139}= -0.93592122 \pm 1.0 \cdot 10^{-5} \) | \(a_{140}= +0.04897226 \pm 2.6 \cdot 10^{-5} \) | \(a_{141}= +2.76870691 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{142}= +0.08684125 \pm 1.4 \cdot 10^{-5} \) | \(a_{143}= -2.08154453 \pm 6.7 \cdot 10^{-6} \) | \(a_{144}= -2.18970318 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{145}= +0.51076376 \pm 1.2 \cdot 10^{-5} \) | \(a_{146}= +1.18409582 \pm 2.5 \cdot 10^{-5} \) | \(a_{147}= +0.24219714 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{148}= +0.05853284 \pm 8.2 \cdot 10^{-6} \) | \(a_{149}= +0.60130425 \pm 2.3 \cdot 10^{-5} \) | \(a_{150}= +1.18401289 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{151}= -0.39439228 \pm 1.6 \cdot 10^{-5} \) | \(a_{152}= +0.00929557 \pm 1.4 \cdot 10^{-5} \) | \(a_{153}= -0.27131733 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{154}= -0.78734372 \pm 3.2 \cdot 10^{-5} \) | \(a_{155}= -0.50256601 \pm 9.1 \cdot 10^{-6} \) | \(a_{156}= -0.39968284 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{157}= +0.70631712 \pm 1.9 \cdot 10^{-5} \) | \(a_{158}= +1.84550368 \pm 1.4 \cdot 10^{-5} \) | \(a_{159}= +0.27195402 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{160}= +0.25496617 \pm 1.1 \cdot 10^{-5} \) | \(a_{161}= +0.19581631 \pm 1.8 \cdot 10^{-5} \) | \(a_{162}= -0.70380447 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{163}= -1.56433515 \pm 1.5 \cdot 10^{-5} \) | \(a_{164}= +0.10502137 \pm 1.2 \cdot 10^{-5} \) | \(a_{165}= +1.93956105 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{166}= -1.17064405 \pm 1.1 \cdot 10^{-5} \) | \(a_{167}= -0.71499878 \pm 1.3 \cdot 10^{-5} \) | \(a_{168}= +0.55489025 \pm 2.6 \cdot 10^{-5} \) |
| \(a_{169}= +0.21228386 \pm 1.2 \cdot 10^{-5} \) | \(a_{170}= +0.09652016 \pm 1.1 \cdot 10^{-5} \) | \(a_{171}= +0.02012005 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{172}= +0.12716976 \pm 6.7 \cdot 10^{-6} \) | \(a_{173}= +0.94632831 \pm 1.2 \cdot 10^{-5} \) | \(a_{174}= -1.57675464 \pm 9.1 \cdot 10^{-6} \) |
| \(a_{175}= -0.23955791 \pm 1.3 \cdot 10^{-5} \) | \(a_{176}= -2.20864847 \pm 9.0 \cdot 10^{-6} \) | \(a_{177}= -0.84444332 \pm 1.8 \cdot 10^{-5} \) |
| \(a_{178}= +0.90158876 \pm 1.2 \cdot 10^{-5} \) | \(a_{179}= -1.70190481 \pm 1.3 \cdot 10^{-5} \) | \(a_{180}= +0.24285180 \pm 6.0 \cdot 10^{-6} \) |
| \(a_{181}= +0.74370983 \pm 2.1 \cdot 10^{-5} \) | \(a_{182}= +0.45854608 \pm 3.5 \cdot 10^{-5} \) | \(a_{183}= +2.14871802 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{184}= +0.44862858 \pm 1.2 \cdot 10^{-5} \) | \(a_{185}= +0.16542692 \pm 1.2 \cdot 10^{-5} \) | \(a_{186}= +1.55144775 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{187}= -0.27366476 \pm 6.3 \cdot 10^{-6} \) | \(a_{188}= +0.34966826 \pm 9.6 \cdot 10^{-6} \) | \(a_{189}= +0.56025422 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{190}= -0.00715764 \pm 1.2 \cdot 10^{-5} \) | \(a_{191}= -0.70345152 \pm 7.8 \cdot 10^{-6} \) | \(a_{192}= +1.19356679 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{193}= -0.81884725 \pm 1.9 \cdot 10^{-5} \) | \(a_{194}= +1.02366145 \pm 2.8 \cdot 10^{-5} \) | \(a_{195}= -1.12959320 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{196}= +0.03058780 \pm 1.2 \cdot 10^{-5} \) | \(a_{197}= -0.23288866 \pm 1.4 \cdot 10^{-5} \) | \(a_{198}= -3.90441149 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{199}= +0.76357538 \pm 2.4 \cdot 10^{-5} \) | \(a_{200}= -0.54884359 \pm 8.6 \cdot 10^{-6} \) | \(a_{201}= +1.44663926 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{202}= -1.94403470 \pm 1.8 \cdot 10^{-5} \) | \(a_{203}= +0.31902021 \pm 1.3 \cdot 10^{-5} \) | \(a_{204}= -0.05254709 \pm 7.7 \cdot 10^{-6} \) |
| \(a_{205}= +0.29681390 \pm 1.3 \cdot 10^{-5} \) | \(a_{206}= -0.19902302 \pm 2.5 \cdot 10^{-5} \) | \(a_{207}= +0.97104660 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{208}= +1.28630872 \pm 1.6 \cdot 10^{-5} \) | \(a_{209}= +0.02029413 \pm 1.3 \cdot 10^{-5} \) | \(a_{210}= -0.42726836 \pm 4.8 \cdot 10^{-5} \) |
| \(a_{211}= -1.19258734 \pm 1.0 \cdot 10^{-5} \) | \(a_{212}= +0.03434589 \pm 6.6 \cdot 10^{-6} \) | \(a_{213}= -0.13361748 \pm 8.8 \cdot 10^{-6} \) |
| \(a_{214}= +1.64391812 \pm 1.3 \cdot 10^{-5} \) | \(a_{215}= +0.35941020 \pm 1.0 \cdot 10^{-5} \) | \(a_{216}= +1.28358082 \pm 8.1 \cdot 10^{-6} \) |
| \(a_{217}= -0.31389994 \pm 1.1 \cdot 10^{-5} \) | \(a_{218}= +0.33966300 \pm 2.9 \cdot 10^{-5} \) | \(a_{219}= -1.82189801 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{220}= +0.24495296 \pm 8.7 \cdot 10^{-6} \) | \(a_{221}= +0.15938135 \pm 1.3 \cdot 10^{-5} \) | \(a_{222}= -0.51068161 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{223}= +0.51124504 \pm 1.5 \cdot 10^{-5} \) | \(a_{224}= +0.15925046 \pm 1.7 \cdot 10^{-5} \) | \(a_{225}= -1.18795976 \pm 6.7 \cdot 10^{-6} \) |
| \(a_{226}= -0.44466377 \pm 1.9 \cdot 10^{-5} \) | \(a_{227}= +0.20764845 \pm 9.0 \cdot 10^{-6} \) | \(a_{228}= +0.00389673 \pm 5.1 \cdot 10^{-6} \) |
| \(a_{229}= -0.09804052 \pm 1.5 \cdot 10^{-5} \) | \(a_{230}= -0.34544632 \pm 1.0 \cdot 10^{-5} \) | \(a_{231}= +1.21143908 \pm 2.5 \cdot 10^{-5} \) |
| \(a_{232}= +0.73089717 \pm 1.2 \cdot 10^{-5} \) | \(a_{233}= +0.18452333 \pm 1.0 \cdot 10^{-5} \) | \(a_{234}= +2.27391486 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{235}= +0.98824081 \pm 1.6 \cdot 10^{-5} \) | \(a_{236}= -0.10664727 \pm 1.7 \cdot 10^{-5} \) | \(a_{237}= -2.83956706 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{238}= +0.06028596 \pm 3.1 \cdot 10^{-5} \) | \(a_{239}= +0.03656603 \pm 1.9 \cdot 10^{-5} \) | \(a_{240}= -1.19856878 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{241}= +0.86663052 \pm 1.4 \cdot 10^{-5} \) | \(a_{242}= -2.83632373 \pm 1.6 \cdot 10^{-5} \) | \(a_{243}= -0.39939115 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{244}= +0.27136801 \pm 9.4 \cdot 10^{-6} \) | \(a_{245}= +0.08644797 \pm 1.4 \cdot 10^{-5} \) | \(a_{246}= -0.91628016 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{247}= -0.01181923 \pm 7.5 \cdot 10^{-6} \) | \(a_{248}= -0.71916628 \pm 6.0 \cdot 10^{-6} \) | \(a_{249}= +1.80120057 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{250}= +1.08939259 \pm 1.3 \cdot 10^{-5} \) | \(a_{251}= +0.78867925 \pm 1.9 \cdot 10^{-5} \) | \(a_{252}= +0.15168389 \pm 2.5 \cdot 10^{-5} \) |
| \(a_{253}= +0.97944808 \pm 1.0 \cdot 10^{-5} \) | \(a_{254}= -0.73415685 \pm 2.1 \cdot 10^{-5} \) | \(a_{255}= -0.14850985 \pm 8.5 \cdot 10^{-6} \) |
| \(a_{256}= +0.61499728 \pm 1.8 \cdot 10^{-5} \) | \(a_{257}= -1.68571900 \pm 2.1 \cdot 10^{-5} \) | \(a_{258}= -1.10951824 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{259}= +0.10332474 \pm 1.3 \cdot 10^{-5} \) | \(a_{260}= -0.14265970 \pm 7.9 \cdot 10^{-6} \) | \(a_{261}= +1.58201070 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{262}= -0.33675764 \pm 1.3 \cdot 10^{-5} \) | \(a_{263}= +0.62000804 \pm 1.3 \cdot 10^{-5} \) | \(a_{264}= +2.77548996 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{265}= +0.09706916 \pm 8.4 \cdot 10^{-6} \) | \(a_{266}= -0.00447062 \pm 3.4 \cdot 10^{-5} \) | \(a_{267}= -1.38722115 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{268}= +0.18270039 \pm 1.5 \cdot 10^{-5} \) | \(a_{269}= +0.32694749 \pm 2.8 \cdot 10^{-5} \) | \(a_{270}= -0.98836385 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{271}= -0.32303595 \pm 1.9 \cdot 10^{-5} \) | \(a_{272}= +0.16911354 \pm 1.1 \cdot 10^{-5} \) | \(a_{273}= -0.70553765 \pm 2.8 \cdot 10^{-5} \) |
| \(a_{274}= +0.95367732 \pm 1.1 \cdot 10^{-5} \) | \(a_{275}= -1.19823798 \pm 7.2 \cdot 10^{-6} \) | \(a_{276}= +0.18806640 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{277}= +1.49213605 \pm 1.1 \cdot 10^{-5} \) | \(a_{278}= +1.03126229 \pm 1.1 \cdot 10^{-5} \) | \(a_{279}= -1.55661946 \pm 6.2 \cdot 10^{-6} \) |
| \(a_{280}= +0.19805823 \pm 2.7 \cdot 10^{-5} \) | \(a_{281}= -0.69337808 \pm 2.1 \cdot 10^{-5} \) | \(a_{282}= -3.05075145 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{283}= -0.33526195 \pm 1.6 \cdot 10^{-5} \) | \(a_{284}= -0.01687495 \pm 9.8 \cdot 10^{-6} \) | \(a_{285}= +0.01101303 \pm 4.9 \cdot 10^{-6} \) |
| \(a_{286}= +2.29358874 \pm 7.7 \cdot 10^{-6} \) | \(a_{287}= +0.18538832 \pm 1.7 \cdot 10^{-5} \) | \(a_{288}= +0.78971777 \pm 9.7 \cdot 10^{-6} \) |
| \(a_{289}= -0.97904582 \pm 1.4 \cdot 10^{-5} \) | \(a_{290}= -0.56279459 \pm 1.1 \cdot 10^{-5} \) | \(a_{291}= -1.57504716 \pm 1.9 \cdot 10^{-5} \) |
| \(a_{292}= -0.23009294 \pm 1.5 \cdot 10^{-5} \) | \(a_{293}= +0.82101825 \pm 2.0 \cdot 10^{-5} \) | \(a_{294}= -0.26686945 \pm 3.4 \cdot 10^{-5} \) |
| \(a_{295}= -0.30140906 \pm 9.6 \cdot 10^{-6} \) | \(a_{296}= +0.23672405 \pm 1.2 \cdot 10^{-5} \) | \(a_{297}= +2.80231986 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{298}= -0.66255833 \pm 3.0 \cdot 10^{-5} \) | \(a_{299}= -0.57042695 \pm 1.7 \cdot 10^{-5} \) | \(a_{300}= -0.23007683 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{301}= +0.22448562 \pm 1.0 \cdot 10^{-5} \) | \(a_{302}= +0.43456851 \pm 1.4 \cdot 10^{-5} \) | \(a_{303}= +2.99117090 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{304}= -0.01254094 \pm 1.1 \cdot 10^{-5} \) | \(a_{305}= +0.76694677 \pm 1.1 \cdot 10^{-5} \) | \(a_{306}= +0.29895607 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{307}= -0.11824336 \pm 1.7 \cdot 10^{-5} \) | \(a_{308}= +0.15299626 \pm 2.4 \cdot 10^{-5} \) | \(a_{309}= +0.30622491 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{310}= +0.55376175 \pm 1.1 \cdot 10^{-5} \) | \(a_{311}= -1.91893755 \pm 1.2 \cdot 10^{-5} \) | \(a_{312}= -1.61643512 \pm 4.0 \cdot 10^{-6} \) |
| \(a_{313}= -0.27958118 \pm 2.2 \cdot 10^{-5} \) | \(a_{314}= -0.77826871 \pm 1.9 \cdot 10^{-5} \) | \(a_{315}= +0.42869264 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{316}= -0.35861740 \pm 8.9 \cdot 10^{-6} \) | \(a_{317}= -1.59285502 \pm 1.2 \cdot 10^{-5} \) | \(a_{318}= -0.29965762 \pm 9.1 \cdot 10^{-6} \) |
| \(a_{319}= +1.59569824 \pm 1.1 \cdot 10^{-5} \) | \(a_{320}= +0.42602249 \pm 1.4 \cdot 10^{-5} \) | \(a_{321}= -2.52939932 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{322}= -0.21576386 \pm 3.8 \cdot 10^{-5} \) | \(a_{323}= -0.00155390 \pm 3.8 \cdot 10^{-6} \) | \(a_{324}= +0.13676295 \pm 9.1 \cdot 10^{-6} \) |
| \(a_{325}= +0.69784938 \pm 1.0 \cdot 10^{-5} \) | \(a_{326}= +1.72369192 \pm 2.0 \cdot 10^{-5} \) | \(a_{327}= -0.52261932 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{328}= +0.42473735 \pm 1.3 \cdot 10^{-5} \) | \(a_{329}= +0.61724973 \pm 1.6 \cdot 10^{-5} \) | \(a_{330}= -2.13714158 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{331}= +0.11286185 \pm 2.4 \cdot 10^{-5} \) | \(a_{332}= +0.22747900 \pm 5.4 \cdot 10^{-6} \) | \(a_{333}= +0.51238395 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{334}= +0.78783476 \pm 1.3 \cdot 10^{-5} \) | \(a_{335}= +0.51635221 \pm 1.5 \cdot 10^{-5} \) | \(a_{336}= -0.74861942 \pm 3.0 \cdot 10^{-5} \) |
| \(a_{337}= +1.39744879 \pm 1.8 \cdot 10^{-5} \) | \(a_{338}= -0.23390894 \pm 1.2 \cdot 10^{-5} \) | \(a_{339}= +0.68417776 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{340}= -0.01875575 \pm 8.6 \cdot 10^{-6} \) | \(a_{341}= -1.57008731 \pm 6.3 \cdot 10^{-6} \) | \(a_{342}= -0.02216966 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.51431195 \pm 8.7 \cdot 10^{-6} \) | \(a_{345}= +0.53151776 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{346}= -1.04272953 \pm 1.3 \cdot 10^{-5} \) | \(a_{347}= -1.15102138 \pm 1.0 \cdot 10^{-5} \) | \(a_{348}= +0.30639422 \pm 6.4 \cdot 10^{-6} \) |
| \(a_{349}= -0.43611729 \pm 1.7 \cdot 10^{-5} \) | \(a_{350}= +0.26396136 \pm 3.4 \cdot 10^{-5} \) | \(a_{351}= -1.63206075 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{352}= +0.79655040 \pm 1.0 \cdot 10^{-5} \) | \(a_{353}= +0.77984235 \pm 2.0 \cdot 10^{-5} \) | \(a_{354}= +0.93046566 \pm 2.3 \cdot 10^{-5} \) |
| \(a_{355}= -0.04769239 \pm 1.1 \cdot 10^{-5} \) | \(a_{356}= -0.17519630 \pm 8.0 \cdot 10^{-6} \) | \(a_{357}= -0.09275843 \pm 2.4 \cdot 10^{-5} \) |
| \(a_{358}= +1.87527561 \pm 1.3 \cdot 10^{-5} \) | \(a_{359}= +0.30822598 \pm 1.3 \cdot 10^{-5} \) | \(a_{360}= +0.98216422 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{361}= -0.99988477 \pm 1.5 \cdot 10^{-5} \) | \(a_{362}= -0.81947057 \pm 2.7 \cdot 10^{-5} \) | \(a_{363}= +4.36408310 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{364}= -0.08910446 \pm 2.7 \cdot 10^{-5} \) | \(a_{365}= -0.65029417 \pm 1.1 \cdot 10^{-5} \) | \(a_{366}= -2.36760510 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{367}= -1.67241156 \pm 1.6 \cdot 10^{-5} \) | \(a_{368}= -0.60525854 \pm 1.9 \cdot 10^{-5} \) | \(a_{369}= +0.91933456 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{370}= -0.18227874 \pm 1.0 \cdot 10^{-5} \) | \(a_{371}= +0.06062886 \pm 1.1 \cdot 10^{-5} \) | \(a_{372}= -0.30147659 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{373}= -1.53247114 \pm 2.1 \cdot 10^{-5} \) | \(a_{374}= +0.30154263 \pm 7.7 \cdot 10^{-6} \) | \(a_{375}= -1.67618377 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{376}= +1.41416144 \pm 1.4 \cdot 10^{-5} \) | \(a_{377}= -0.92932877 \pm 9.3 \cdot 10^{-6} \) | \(a_{378}= -0.61732659 \pm 3.5 \cdot 10^{-5} \) |
| \(a_{379}= -0.42887028 \pm 2.3 \cdot 10^{-5} \) | \(a_{380}= +0.00139087 \pm 6.2 \cdot 10^{-6} \) | \(a_{381}= +1.12960360 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{382}= +0.77511121 \pm 9.9 \cdot 10^{-6} \) | \(a_{383}= -0.58758823 \pm 8.9 \cdot 10^{-6} \) | \(a_{384}= -2.02948039 \pm 8.6 \cdot 10^{-6} \) |
| \(a_{385}= +0.43240169 \pm 2.6 \cdot 10^{-5} \) | \(a_{386}= +0.90226215 \pm 2.1 \cdot 10^{-5} \) | \(a_{387}= +1.11321679 \pm 8.8 \cdot 10^{-6} \) |
| \(a_{388}= -0.19891741 \pm 1.6 \cdot 10^{-5} \) | \(a_{389}= +0.58401907 \pm 8.1 \cdot 10^{-6} \) | \(a_{390}= +1.24466338 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{391}= -0.07499516 \pm 1.3 \cdot 10^{-5} \) | \(a_{392}= +0.12370607 \pm 1.3 \cdot 10^{-5} \) | \(a_{393}= +0.51814901 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{394}= +0.25661273 \pm 1.3 \cdot 10^{-5} \) | \(a_{395}= -1.01353308 \pm 1.4 \cdot 10^{-5} \) | \(a_{396}= +0.75870339 \pm 8.2 \cdot 10^{-6} \) |
| \(a_{397}= +0.48082148 \pm 1.4 \cdot 10^{-5} \) | \(a_{398}= -0.84135981 \pm 3.0 \cdot 10^{-5} \) | \(a_{399}= +0.00687868 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{400}= +0.74046168 \pm 1.4 \cdot 10^{-5} \) | \(a_{401}= +1.24117693 \pm 1.5 \cdot 10^{-5} \) | \(a_{402}= -1.59400650 \pm 2.0 \cdot 10^{-5} \) |
| \(a_{403}= +0.91441306 \pm 1.0 \cdot 10^{-5} \) | \(a_{404}= +0.37776390 \pm 1.2 \cdot 10^{-5} \) | \(a_{405}= +0.38652272 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{406}= -0.35151838 \pm 3.4 \cdot 10^{-5} \) | \(a_{407}= +0.51681709 \pm 1.4 \cdot 10^{-5} \) | \(a_{408}= -0.21251591 \pm 4.9 \cdot 10^{-6} \) |
| \(a_{409}= +0.14727862 \pm 1.4 \cdot 10^{-5} \) | \(a_{410}= -0.32704995 \pm 1.3 \cdot 10^{-5} \) | \(a_{411}= -1.46736673 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{412}= +0.03867406 \pm 1.6 \cdot 10^{-5} \) | \(a_{413}= -0.18825843 \pm 2.2 \cdot 10^{-5} \) | \(a_{414}= -1.06996584 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{415}= +0.64290658 \pm 1.2 \cdot 10^{-5} \) | \(a_{416}= -0.46390801 \pm 1.4 \cdot 10^{-5} \) | \(a_{417}= -1.58674212 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{418}= -0.02236147 \pm 1.2 \cdot 10^{-5} \) | \(a_{419}= +0.19815027 \pm 2.3 \cdot 10^{-5} \) | \(a_{420}= +0.08302658 \pm 4.0 \cdot 10^{-5} \) |
| \(a_{421}= -1.54212757 \pm 1.7 \cdot 10^{-5} \) | \(a_{422}= +1.31407465 \pm 1.1 \cdot 10^{-5} \) | \(a_{423}= +3.06092104 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{424}= +0.13890487 \pm 9.5 \cdot 10^{-6} \) | \(a_{425}= +0.09174763 \pm 7.1 \cdot 10^{-6} \) | \(a_{426}= +0.14722892 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{427}= +0.47903070 \pm 1.5 \cdot 10^{-5} \) | \(a_{428}= -0.31944539 \pm 7.9 \cdot 10^{-6} \) | \(a_{429}= -3.52900897 \pm 4.1 \cdot 10^{-6} \) |
| \(a_{430}= -0.39602285 \pm 1.2 \cdot 10^{-5} \) | \(a_{431}= -0.29068626 \pm 9.0 \cdot 10^{-6} \) | \(a_{432}= -1.73171817 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{433}= -0.60791820 \pm 1.4 \cdot 10^{-5} \) | \(a_{434}= +0.34587652 \pm 3.1 \cdot 10^{-5} \) | \(a_{435}= +0.86593866 \pm 5.5 \cdot 10^{-6} \) |
| \(a_{436}= -0.06600315 \pm 1.6 \cdot 10^{-5} \) | \(a_{437}= +0.00556141 \pm 1.0 \cdot 10^{-5} \) | \(a_{438}= +2.00749236 \pm 2.0 \cdot 10^{-5} \) |
| \(a_{439}= +0.25186836 \pm 2.5 \cdot 10^{-5} \) | \(a_{440}= +0.99066190 \pm 1.3 \cdot 10^{-5} \) | \(a_{441}= +0.26775905 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{442}= -0.17561732 \pm 1.5 \cdot 10^{-5} \) | \(a_{443}= +0.95467928 \pm 1.7 \cdot 10^{-5} \) | \(a_{444}= +0.09923541 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{445}= -0.49514398 \pm 1.4 \cdot 10^{-5} \) | \(a_{446}= -0.56332490 \pm 1.5 \cdot 10^{-5} \) | \(a_{447}= +1.01943920 \pm 1.9 \cdot 10^{-5} \) |
| \(a_{448}= +0.26609129 \pm 1.4 \cdot 10^{-5} \) | \(a_{449}= +0.08753774 \pm 1.9 \cdot 10^{-5} \) | \(a_{450}= +1.30897566 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{451}= +0.92728863 \pm 1.1 \cdot 10^{-5} \) | \(a_{452}= +0.08640685 \pm 1.3 \cdot 10^{-5} \) | \(a_{453}= -0.66864479 \pm 9.9 \cdot 10^{-6} \) |
| \(a_{454}= -0.22880133 \pm 1.1 \cdot 10^{-5} \) | \(a_{455}= -0.25182915 \pm 2.9 \cdot 10^{-5} \) | \(a_{456}= +0.01575952 \pm 5.3 \cdot 10^{-6} \) |
| \(a_{457}= -0.66418423 \pm 1.9 \cdot 10^{-5} \) | \(a_{458}= +0.10802778 \pm 1.9 \cdot 10^{-5} \) | \(a_{459}= -0.21457025 \pm 7.5 \cdot 10^{-6} \) |
| \(a_{460}= +0.06712697 \pm 5.3 \cdot 10^{-6} \) | \(a_{461}= +0.62730944 \pm 1.6 \cdot 10^{-5} \) | \(a_{462}= -1.33484679 \pm 4.6 \cdot 10^{-5} \) |
| \(a_{463}= +0.11067066 \pm 1.4 \cdot 10^{-5} \) | \(a_{464}= -0.98607574 \pm 1.1 \cdot 10^{-5} \) | \(a_{465}= -0.85204036 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{466}= -0.20332048 \pm 1.3 \cdot 10^{-5} \) | \(a_{467}= -1.29534249 \pm 1.6 \cdot 10^{-5} \) | \(a_{468}= -0.44186606 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{469}= +0.32251073 \pm 2.0 \cdot 10^{-5} \) | \(a_{470}= -1.08891160 \pm 1.3 \cdot 10^{-5} \) | \(a_{471}= +1.19747591 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{472}= -0.43131296 \pm 9.5 \cdot 10^{-6} \) | \(a_{473}= +1.12284833 \pm 5.9 \cdot 10^{-6} \) | \(a_{474}= +3.12883002 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{475}= -0.00680372 \pm 7.3 \cdot 10^{-6} \) | \(a_{476}= -0.01171474 \pm 2.3 \cdot 10^{-5} \) | \(a_{477}= +0.30065652 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{478}= -0.04029097 \pm 2.3 \cdot 10^{-5} \) | \(a_{479}= -1.71876807 \pm 2.3 \cdot 10^{-5} \) | \(a_{480}= +0.43226455 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{481}= -0.30099237 \pm 6.7 \cdot 10^{-6} \) | \(a_{482}= -0.95491303 \pm 1.6 \cdot 10^{-5} \) | \(a_{483}= +0.33198305 \pm 3.1 \cdot 10^{-5} \) |
| \(a_{484}= +0.55115309 \pm 1.0 \cdot 10^{-5} \) | \(a_{485}= -0.56218514 \pm 1.9 \cdot 10^{-5} \) | \(a_{486}= +0.44007660 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{487}= -1.22062017 \pm 1.8 \cdot 10^{-5} \) | \(a_{488}= +1.09749217 \pm 1.2 \cdot 10^{-5} \) | \(a_{489}= -2.65214253 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{490}= -0.09525431 \pm 3.4 \cdot 10^{-5} \) | \(a_{491}= +1.49905034 \pm 1.7 \cdot 10^{-5} \) | \(a_{492}= +0.17805113 \pm 9.9 \cdot 10^{-6} \) |
| \(a_{493}= -0.12218069 \pm 7.5 \cdot 10^{-6} \) | \(a_{494}= +0.01302324 \pm 8.4 \cdot 10^{-6} \) | \(a_{495}= +2.14426568 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{496}= +0.97024924 \pm 1.1 \cdot 10^{-5} \) | \(a_{497}= -0.02978840 \pm 1.1 \cdot 10^{-5} \) | \(a_{498}= -1.98468651 \pm 9.5 \cdot 10^{-6} \) |
| \(a_{499}= +0.55159725 \pm 1.2 \cdot 10^{-5} \) | \(a_{500}= -0.21169025 \pm 7.7 \cdot 10^{-6} \) | \(a_{501}= -1.21219463 \pm 7.1 \cdot 10^{-6} \) |
| \(a_{502}= -0.86902097 \pm 2.1 \cdot 10^{-5} \) | \(a_{503}= +0.03636911 \pm 1.1 \cdot 10^{-5} \) | \(a_{504}= +0.61345433 \pm 2.6 \cdot 10^{-5} \) |
| \(a_{505}= +1.06764538 \pm 1.0 \cdot 10^{-5} \) | \(a_{506}= -1.07922317 \pm 1.0 \cdot 10^{-5} \) | \(a_{507}= +0.35990181 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{508}= +0.14266101 \pm 1.3 \cdot 10^{-5} \) | \(a_{509}= -1.06254661 \pm 8.3 \cdot 10^{-6} \) | \(a_{510}= +0.16363835 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{511}= -0.40617013 \pm 1.9 \cdot 10^{-5} \) | \(a_{512}= +0.51941895 \pm 1.8 \cdot 10^{-5} \) | \(a_{513}= +0.01591187 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{514}= +1.85744098 \pm 2.3 \cdot 10^{-5} \) | \(a_{515}= +0.10930155 \pm 1.1 \cdot 10^{-5} \) | \(a_{516}= +0.21560106 \pm 7.5 \cdot 10^{-6} \) |
| \(a_{517}= +3.08740409 \pm 1.2 \cdot 10^{-5} \) | \(a_{518}= -0.11385029 \pm 3.4 \cdot 10^{-5} \) | \(a_{519}= +1.60438608 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{520}= -0.57695784 \pm 8.3 \cdot 10^{-6} \) | \(a_{521}= +1.64374856 \pm 1.7 \cdot 10^{-5} \) | \(a_{522}= -1.74316805 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{523}= +0.60378556 \pm 1.6 \cdot 10^{-5} \) | \(a_{524}= +0.06543859 \pm 9.2 \cdot 10^{-6} \) | \(a_{525}= -0.40614169 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{526}= -0.68316744 \pm 1.6 \cdot 10^{-5} \) | \(a_{527}= +0.12021969 \pm 7.9 \cdot 10^{-6} \) | \(a_{528}= -3.74449844 \pm 5.1 \cdot 10^{-6} \) |
| \(a_{529}= -0.73159182 \pm 1.2 \cdot 10^{-5} \) | \(a_{530}= -0.10695747 \pm 7.7 \cdot 10^{-6} \) | \(a_{531}= -0.93356733 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{532}= +0.00086873 \pm 2.6 \cdot 10^{-5} \) | \(a_{533}= -0.54004948 \pm 1.4 \cdot 10^{-5} \) | \(a_{534}= +1.52853555 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{535}= -0.90282421 \pm 1.4 \cdot 10^{-5} \) | \(a_{536}= +0.73889419 \pm 1.4 \cdot 10^{-5} \) | \(a_{537}= -2.88537537 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{538}= -0.36025320 \pm 3.4 \cdot 10^{-5} \) | \(a_{539}= +0.27007570 \pm 1.2 \cdot 10^{-5} \) | \(a_{540}= +0.19205840 \pm 6.8 \cdot 10^{-6} \) |
| \(a_{541}= -1.47978812 \pm 1.6 \cdot 10^{-5} \) | \(a_{542}= +0.35594320 \pm 1.7 \cdot 10^{-5} \) | \(a_{543}= +1.26087077 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{544}= -0.06099090 \pm 9.3 \cdot 10^{-6} \) | \(a_{545}= -0.18653969 \pm 2.1 \cdot 10^{-5} \) | \(a_{546}= +0.77740985 \pm 4.8 \cdot 10^{-5} \) |
| \(a_{547}= -0.97399256 \pm 1.1 \cdot 10^{-5} \) | \(a_{548}= -0.18531813 \pm 6.6 \cdot 10^{-6} \) | \(a_{549}= +2.37549744 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{550}= +1.32030090 \pm 7.9 \cdot 10^{-6} \) | \(a_{551}= +0.00906054 \pm 1.5 \cdot 10^{-5} \) | \(a_{552}= +0.76059592 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{553}= -0.63304714 \pm 1.1 \cdot 10^{-5} \) | \(a_{554}= -1.64413799 \pm 1.2 \cdot 10^{-5} \) | \(a_{555}= +0.28046149 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{556}= -0.20039440 \pm 8.4 \cdot 10^{-6} \) | \(a_{557}= +1.09447916 \pm 1.8 \cdot 10^{-5} \) | \(a_{558}= +1.71519024 \pm 6.4 \cdot 10^{-6} \) |
| \(a_{559}= -0.65394272 \pm 1.3 \cdot 10^{-5} \) | \(a_{560}= -0.26720642 \pm 3.1 \cdot 10^{-5} \) | \(a_{561}= -0.46396577 \pm 4.3 \cdot 10^{-6} \) |
| \(a_{562}= +0.76401159 \pm 2.7 \cdot 10^{-5} \) | \(a_{563}= +1.37286974 \pm 2.5 \cdot 10^{-5} \) | \(a_{564}= +0.59282058 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{565}= +0.24420511 \pm 1.6 \cdot 10^{-5} \) | \(a_{566}= +0.36941465 \pm 1.6 \cdot 10^{-5} \) | \(a_{567}= +0.24141995 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{568}= -0.06824727 \pm 9.9 \cdot 10^{-6} \) | \(a_{569}= -0.98396272 \pm 1.2 \cdot 10^{-5} \) | \(a_{570}= -0.01213491 \pm 4.4 \cdot 10^{-6} \) |
| \(a_{571}= -0.08801588 \pm 1.8 \cdot 10^{-5} \) | \(a_{572}= -0.44568908 \pm 4.8 \cdot 10^{-6} \) | \(a_{573}= -1.19261764 \pm 7.8 \cdot 10^{-6} \) |
| \(a_{574}= -0.20427358 \pm 3.8 \cdot 10^{-5} \) | \(a_{575}= -0.32836541 \pm 1.5 \cdot 10^{-5} \) | \(a_{576}= +1.31953790 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{577}= -1.88896033 \pm 1.2 \cdot 10^{-5} \) | \(a_{578}= +1.07877993 \pm 1.5 \cdot 10^{-5} \) | \(a_{579}= -1.38825726 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{580}= +0.10936198 \pm 6.8 \cdot 10^{-6} \) | \(a_{581}= +0.40155589 \pm 1.1 \cdot 10^{-5} \) | \(a_{582}= +1.73549515 \pm 2.3 \cdot 10^{-5} \) |
| \(a_{583}= +0.30325779 \pm 8.3 \cdot 10^{-6} \) | \(a_{584}= -0.93056361 \pm 9.3 \cdot 10^{-6} \) | \(a_{585}= -1.24881242 \pm 8.2 \cdot 10^{-6} \) |
| \(a_{586}= -0.90465431 \pm 2.5 \cdot 10^{-5} \) | \(a_{587}= +1.59945860 \pm 1.5 \cdot 10^{-5} \) | \(a_{588}= +0.05185794 \pm 2.5 \cdot 10^{-5} \) |
| \(a_{589}= -0.00891512 \pm 6.0 \cdot 10^{-6} \) | \(a_{590}= +0.33211321 \pm 1.1 \cdot 10^{-5} \) | \(a_{591}= -0.39483478 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{592}= -0.31937166 \pm 1.0 \cdot 10^{-5} \) | \(a_{593}= +1.19558104 \pm 2.3 \cdot 10^{-5} \) | \(a_{594}= -3.08778850 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{595}= -0.03310847 \pm 2.5 \cdot 10^{-5} \) | \(a_{596}= +0.12874802 \pm 1.8 \cdot 10^{-5} \) | \(a_{597}= +1.29455043 \pm 1.9 \cdot 10^{-5} \) |
| \(a_{598}= +0.62853559 \pm 2.0 \cdot 10^{-5} \) | \(a_{599}= -0.74075251 \pm 2.1 \cdot 10^{-5} \) | \(a_{600}= -0.93049844 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{601}= +0.01546314 \pm 2.0 \cdot 10^{-5} \) | \(a_{602}= -0.24735368 \pm 3.1 \cdot 10^{-5} \) | \(a_{603}= +1.59932007 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{604}= -0.08444515 \pm 6.4 \cdot 10^{-6} \) | \(a_{605}= +1.55768203 \pm 8.7 \cdot 10^{-6} \) | \(a_{606}= -3.29587755 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{607}= +0.57190667 \pm 1.9 \cdot 10^{-5} \) | \(a_{608}= +0.00452290 \pm 1.1 \cdot 10^{-5} \) | \(a_{609}= +0.54086049 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{610}= -0.84507463 \pm 1.1 \cdot 10^{-5} \) | \(a_{611}= -1.79809276 \pm 1.0 \cdot 10^{-5} \) | \(a_{612}= -0.05809300 \pm 5.2 \cdot 10^{-6} \) |
| \(a_{613}= +1.29985016 \pm 1.6 \cdot 10^{-5} \) | \(a_{614}= +0.13028866 \pm 1.8 \cdot 10^{-5} \) | \(a_{615}= +0.50321236 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{616}= +0.61876193 \pm 2.5 \cdot 10^{-5} \) | \(a_{617}= -0.91888142 \pm 1.2 \cdot 10^{-5} \) | \(a_{618}= -0.33741964 \pm 2.0 \cdot 10^{-5} \) |
| \(a_{619}= +0.47033955 \pm 1.4 \cdot 10^{-5} \) | \(a_{620}= -0.10760672 \pm 8.8 \cdot 10^{-6} \) | \(a_{621}= +0.76794839 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{622}= +2.11441719 \pm 1.3 \cdot 10^{-5} \) | \(a_{623}= -0.30926418 \pm 1.2 \cdot 10^{-5} \) | \(a_{624}= +2.18078208 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{625}= +0.03552660 \pm 1.5 \cdot 10^{-5} \) | \(a_{626}= +0.30806175 \pm 2.7 \cdot 10^{-5} \) | \(a_{627}= +0.03440627 \pm 6.4 \cdot 10^{-6} \) |
| \(a_{628}= +0.15123281 \pm 1.0 \cdot 10^{-5} \) | \(a_{629}= -0.03957206 \pm 5.5 \cdot 10^{-6} \) | \(a_{630}= -0.47236300 \pm 4.7 \cdot 10^{-5} \) |
| \(a_{631}= -0.28229150 \pm 1.9 \cdot 10^{-5} \) | \(a_{632}= -1.45035439 \pm 8.3 \cdot 10^{-6} \) | \(a_{633}= -2.02188872 \pm 9.9 \cdot 10^{-6} \) |
| \(a_{634}= +1.75511707 \pm 1.5 \cdot 10^{-5} \) | \(a_{635}= +0.40319196 \pm 1.3 \cdot 10^{-5} \) | \(a_{636}= +0.05822933 \pm 6.7 \cdot 10^{-6} \) |
| \(a_{637}= -0.15729109 \pm 1.4 \cdot 10^{-5} \) | \(a_{638}= -1.75824992 \pm 1.0 \cdot 10^{-5} \) | \(a_{639}= -0.14771970 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{640}= -0.72438701 \pm 9.4 \cdot 10^{-6} \) | \(a_{641}= -1.52089176 \pm 2.0 \cdot 10^{-5} \) | \(a_{642}= +2.78706590 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{643}= +0.55652254 \pm 1.4 \cdot 10^{-5} \) | \(a_{644}= +0.04192713 \pm 3.0 \cdot 10^{-5} \) | \(a_{645}= +0.60933687 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{646}= +0.00171219 \pm 5.3 \cdot 10^{-6} \) | \(a_{647}= +0.85153193 \pm 1.7 \cdot 10^{-5} \) | \(a_{648}= +0.55310966 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{649}= -0.94164455 \pm 1.0 \cdot 10^{-5} \) | \(a_{650}= -0.76893838 \pm 1.3 \cdot 10^{-5} \) | \(a_{651}= -0.53217969 \pm 2.4 \cdot 10^{-5} \) |
| \(a_{652}= -0.33494700 \pm 1.2 \cdot 10^{-5} \) | \(a_{653}= +1.08003261 \pm 2.5 \cdot 10^{-5} \) | \(a_{654}= +0.57585786 \pm 2.1 \cdot 10^{-5} \) |
| \(a_{655}= +0.18494410 \pm 1.2 \cdot 10^{-5} \) | \(a_{656}= -0.57302615 \pm 1.8 \cdot 10^{-5} \) | \(a_{657}= -2.01418428 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{658}= -0.68012815 \pm 3.6 \cdot 10^{-5} \) | \(a_{659}= +1.14457647 \pm 1.9 \cdot 10^{-5} \) | \(a_{660}= +0.41528834 \pm 7.0 \cdot 10^{-6} \) |
| \(a_{661}= -1.22350226 \pm 1.1 \cdot 10^{-5} \) | \(a_{662}= -0.12435894 \pm 3.1 \cdot 10^{-5} \) | \(a_{663}= +0.27021195 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{664}= +0.91999206 \pm 1.0 \cdot 10^{-5} \) | \(a_{665}= +0.00245522 \pm 2.8 \cdot 10^{-5} \) | \(a_{666}= -0.56457983 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{667}= +0.43728552 \pm 1.1 \cdot 10^{-5} \) | \(a_{668}= -0.15309168 \pm 8.0 \cdot 10^{-6} \) | \(a_{669}= +0.86675462 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{670}= -0.56895234 \pm 1.7 \cdot 10^{-5} \) | \(a_{671}= +2.39605021 \pm 8.6 \cdot 10^{-6} \) | \(a_{672}= +0.26999004 \pm 3.1 \cdot 10^{-5} \) |
| \(a_{673}= -1.37277560 \pm 1.8 \cdot 10^{-5} \) | \(a_{674}= -1.53980507 \pm 2.0 \cdot 10^{-5} \) | \(a_{675}= -0.93949331 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{676}= +0.04545307 \pm 7.1 \cdot 10^{-6} \) | \(a_{677}= -1.45779736 \pm 2.2 \cdot 10^{-5} \) | \(a_{678}= -0.75387405 \pm 1.8 \cdot 10^{-5} \) |
| \(a_{679}= -0.35113772 \pm 2.4 \cdot 10^{-5} \) | \(a_{680}= -0.07585378 \pm 7.8 \cdot 10^{-6} \) | \(a_{681}= +0.35204303 \pm 9.4 \cdot 10^{-6} \) |
| \(a_{682}= +1.73003004 \pm 7.1 \cdot 10^{-6} \) | \(a_{683}= +0.76785025 \pm 1.8 \cdot 10^{-5} \) | \(a_{684}= +0.00430800 \pm 6.0 \cdot 10^{-6} \) |
| \(a_{685}= -0.52375052 \pm 1.3 \cdot 10^{-5} \) | \(a_{686}= -0.05949532 \pm 2.0 \cdot 10^{-5} \) | \(a_{687}= -0.16621593 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{688}= -0.69387398 \pm 1.1 \cdot 10^{-5} \) | \(a_{689}= -0.17661622 \pm 1.1 \cdot 10^{-5} \) | \(a_{690}= -0.58566278 \pm 7.3 \cdot 10^{-6} \) |
| \(a_{691}= +0.00793138 \pm 1.1 \cdot 10^{-5} \) | \(a_{692}= +0.20262271 \pm 8.3 \cdot 10^{-6} \) | \(a_{693}= +1.33929646 \pm 2.5 \cdot 10^{-5} \) |
| \(a_{694}= +1.26827441 \pm 1.0 \cdot 10^{-5} \) | \(a_{695}= -0.56635945 \pm 9.1 \cdot 10^{-6} \) | \(a_{696}= +1.23914844 \pm 4.9 \cdot 10^{-6} \) |
| \(a_{697}= -0.07100137 \pm 1.0 \cdot 10^{-5} \) | \(a_{698}= +0.48054399 \pm 1.9 \cdot 10^{-5} \) | \(a_{699}= +0.31283716 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{700}= -0.05129285 \pm 2.5 \cdot 10^{-5} \) | \(a_{701}= +1.03828702 \pm 1.0 \cdot 10^{-5} \) | \(a_{702}= +1.79831664 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{703}= +0.00293454 \pm 1.3 \cdot 10^{-5} \) | \(a_{704}= +1.33095453 \pm 1.1 \cdot 10^{-5} \) | \(a_{705}= +1.67544370 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{706}= -0.85928386 \pm 2.4 \cdot 10^{-5} \) | \(a_{707}= +0.66684539 \pm 1.4 \cdot 10^{-5} \) | \(a_{708}= -0.18080765 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{709}= +0.08385463 \pm 1.8 \cdot 10^{-5} \) | \(a_{710}= +0.05255075 \pm 1.2 \cdot 10^{-5} \) | \(a_{711}= -3.13925988 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{712}= -0.70854544 \pm 1.1 \cdot 10^{-5} \) | \(a_{713}= -0.43026709 \pm 1.0 \cdot 10^{-5} \) | \(a_{714}= +0.10220761 \pm 4.5 \cdot 10^{-5} \) |
| \(a_{715}= -1.25961714 \pm 5.8 \cdot 10^{-6} \) | \(a_{716}= -0.36440267 \pm 8.9 \cdot 10^{-6} \) | \(a_{717}= +0.06199332 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{718}= -0.33962456 \pm 1.5 \cdot 10^{-5} \) | \(a_{719}= -0.22450127 \pm 1.1 \cdot 10^{-5} \) | \(a_{720}= -1.32506781 \pm 8.2 \cdot 10^{-6} \) |
| \(a_{721}= +0.06826914 \pm 1.9 \cdot 10^{-5} \) | \(a_{722}= +1.10174172 \pm 1.6 \cdot 10^{-5} \) | \(a_{723}= +1.46926804 \pm 9.0 \cdot 10^{-6} \) |
| \(a_{724}= +0.15923913 \pm 1.7 \cdot 10^{-5} \) | \(a_{725}= -0.53496671 \pm 7.6 \cdot 10^{-6} \) | \(a_{726}= -4.80864652 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{727}= -0.53043387 \pm 9.7 \cdot 10^{-6} \) | \(a_{728}= -0.36036467 \pm 2.8 \cdot 10^{-5} \) | \(a_{729}= -1.31585692 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{730}= +0.71653878 \pm 1.3 \cdot 10^{-5} \) | \(a_{731}= -0.08597514 \pm 1.1 \cdot 10^{-5} \) | \(a_{732}= +0.46007190 \pm 7.9 \cdot 10^{-6} \) |
| \(a_{733}= +0.44692924 \pm 1.6 \cdot 10^{-5} \) | \(a_{734}= +1.84277793 \pm 1.8 \cdot 10^{-5} \) | \(a_{735}= +0.14656216 \pm 2.8 \cdot 10^{-5} \) |
| \(a_{736}= +0.21828686 \pm 1.8 \cdot 10^{-5} \) | \(a_{737}= +1.61315737 \pm 1.3 \cdot 10^{-5} \) | \(a_{738}= -1.01298596 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{739}= +0.73092229 \pm 1.5 \cdot 10^{-5} \) | \(a_{740}= +0.03542032 \pm 6.1 \cdot 10^{-6} \) | \(a_{741}= -0.02003808 \pm 4.4 \cdot 10^{-6} \) |
| \(a_{742}= -0.06680504 \pm 3.1 \cdot 10^{-5} \) | \(a_{743}= -1.42690609 \pm 2.0 \cdot 10^{-5} \) | \(a_{744}= -1.21926013 \pm 5.9 \cdot 10^{-6} \) |
| \(a_{745}= +0.36387074 \pm 1.2 \cdot 10^{-5} \) | \(a_{746}= +1.68858196 \pm 2.7 \cdot 10^{-5} \) | \(a_{747}= +1.99130240 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{748}= -0.05859562 \pm 7.6 \cdot 10^{-6} \) | \(a_{749}= -0.56389900 \pm 1.2 \cdot 10^{-5} \) | \(a_{750}= +1.84693441 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{751}= -1.89703327 \pm 1.1 \cdot 10^{-5} \) | \(a_{752}= -1.90788847 \pm 1.4 \cdot 10^{-5} \) | \(a_{753}= +1.33711103 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{754}= +1.02399827 \pm 1.0 \cdot 10^{-5} \) | \(a_{755}= -0.23866089 \pm 1.6 \cdot 10^{-5} \) | \(a_{756}= +0.11995861 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{757}= +0.99311643 \pm 1.2 \cdot 10^{-5} \) | \(a_{758}= +0.47255873 \pm 2.6 \cdot 10^{-5} \) | \(a_{759}= +1.66053668 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{760}= +0.00562508 \pm 1.5 \cdot 10^{-5} \) | \(a_{761}= -0.78730543 \pm 1.6 \cdot 10^{-5} \) | \(a_{762}= -1.24467484 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{763}= -0.11651166 \pm 2.5 \cdot 10^{-5} \) | \(a_{764}= -0.15061924 \pm 8.4 \cdot 10^{-6} \) | \(a_{765}= -0.16418383 \pm 7.1 \cdot 10^{-6} \) |
| \(a_{766}= +0.64744507 \pm 7.5 \cdot 10^{-6} \) | \(a_{767}= +0.54841031 \pm 1.8 \cdot 10^{-5} \) | \(a_{768}= +1.04265409 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{769}= +0.74739416 \pm 1.7 \cdot 10^{-5} \) | \(a_{770}= -0.47644988 \pm 4.7 \cdot 10^{-5} \) | \(a_{771}= -2.85793428 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{772}= -0.17532715 \pm 1.1 \cdot 10^{-5} \) | \(a_{773}= +0.57291951 \pm 1.9 \cdot 10^{-5} \) | \(a_{774}= -1.22661872 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{775}= +0.52638050 \pm 9.3 \cdot 10^{-6} \) | \(a_{776}= -0.80448059 \pm 1.7 \cdot 10^{-5} \) | \(a_{777}= +0.17517469 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{778}= -0.64351233 \pm 8.8 \cdot 10^{-6} \) | \(a_{779}= +0.00526524 \pm 1.4 \cdot 10^{-5} \) | \(a_{780}= -0.24186240 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{781}= -0.14899777 \pm 9.3 \cdot 10^{-6} \) | \(a_{782}= +0.08263481 \pm 1.4 \cdot 10^{-5} \) | \(a_{783}= +1.25112695 \pm 9.7 \cdot 10^{-6} \) |
| \(a_{784}= -0.16689565 \pm 1.7 \cdot 10^{-5} \) | \(a_{785}= +0.42741778 \pm 1.8 \cdot 10^{-5} \) | \(a_{786}= -0.57093217 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{787}= -0.87804792 \pm 1.8 \cdot 10^{-5} \) | \(a_{788}= -0.04986486 \pm 7.8 \cdot 10^{-6} \) | \(a_{789}= +1.05114922 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{790}= +1.11678036 \pm 1.7 \cdot 10^{-5} \) | \(a_{791}= +0.15252916 \pm 1.6 \cdot 10^{-5} \) | \(a_{792}= +3.06841998 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{793}= -1.39545081 \pm 1.7 \cdot 10^{-5} \) | \(a_{794}= -0.52980213 \pm 1.5 \cdot 10^{-5} \) | \(a_{795}= +0.16456912 \pm 8.3 \cdot 10^{-6} \) |
| \(a_{796}= +0.16349264 \pm 1.7 \cdot 10^{-5} \) | \(a_{797}= +0.69343887 \pm 1.6 \cdot 10^{-5} \) | \(a_{798}= -0.00757940 \pm 4.8 \cdot 10^{-5} \) |
| \(a_{799}= -0.23639880 \pm 8.0 \cdot 10^{-6} \) | \(a_{800}= -0.26704795 \pm 1.5 \cdot 10^{-5} \) | \(a_{801}= -1.53363087 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{802}= -1.36761399 \pm 1.5 \cdot 10^{-5} \) | \(a_{803}= -2.03161098 \pm 9.9 \cdot 10^{-6} \) | \(a_{804}= +0.30974659 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{805}= +0.11849546 \pm 3.2 \cdot 10^{-5} \) | \(a_{806}= -1.00756312 \pm 1.3 \cdot 10^{-5} \) | \(a_{807}= +0.55430024 \pm 2.1 \cdot 10^{-5} \) |
| \(a_{808}= +1.52778848 \pm 1.0 \cdot 10^{-5} \) | \(a_{809}= -1.59372209 \pm 1.5 \cdot 10^{-5} \) | \(a_{810}= -0.42589729 \pm 1.5 \cdot 10^{-5} \) |
| \(a_{811}= +1.78367932 \pm 1.6 \cdot 10^{-5} \) | \(a_{812}= +0.06830689 \pm 2.5 \cdot 10^{-5} \) | \(a_{813}= -0.54766869 \pm 7.1 \cdot 10^{-6} \) |
| \(a_{814}= -0.56946457 \pm 1.0 \cdot 10^{-5} \) | \(a_{815}= -0.94663522 \pm 1.2 \cdot 10^{-5} \) | \(a_{816}= +0.28671172 \pm 8.2 \cdot 10^{-6} \) |
| \(a_{817}= +0.00637565 \pm 2.5 \cdot 10^{-6} \) | \(a_{818}= -0.16228170 \pm 1.4 \cdot 10^{-5} \) | \(a_{819}= -0.78000132 \pm 2.7 \cdot 10^{-5} \) |
| \(a_{820}= +0.06355219 \pm 8.3 \cdot 10^{-6} \) | \(a_{821}= +1.13422319 \pm 1.2 \cdot 10^{-5} \) | \(a_{822}= +1.61684546 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{823}= +0.03103738 \pm 1.2 \cdot 10^{-5} \) | \(a_{824}= +0.15640928 \pm 9.7 \cdot 10^{-6} \) | \(a_{825}= -2.03146870 \pm 7.3 \cdot 10^{-6} \) |
| \(a_{826}= +0.20743607 \pm 4.2 \cdot 10^{-5} \) | \(a_{827}= +1.47231810 \pm 1.4 \cdot 10^{-5} \) | \(a_{828}= +0.20791526 \pm 6.3 \cdot 10^{-6} \) |
| \(a_{829}= +0.57071172 \pm 1.7 \cdot 10^{-5} \) | \(a_{830}= -0.70839863 \pm 1.2 \cdot 10^{-5} \) | \(a_{831}= +2.52973762 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{832}= -0.77514301 \pm 1.1 \cdot 10^{-5} \) | \(a_{833}= -0.02067937 \pm 1.1 \cdot 10^{-5} \) | \(a_{834}= +1.74838146 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{835}= -0.43267136 \pm 1.3 \cdot 10^{-5} \) | \(a_{836}= +0.00434527 \pm 8.2 \cdot 10^{-6} \) | \(a_{837}= -1.23104639 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{838}= -0.21833558 \pm 3.0 \cdot 10^{-5} \) | \(a_{839}= +1.30966336 \pm 1.5 \cdot 10^{-5} \) | \(a_{840}= +0.33578396 \pm 4.1 \cdot 10^{-5} \) |
| \(a_{841}= -0.28758273 \pm 1.1 \cdot 10^{-5} \) | \(a_{842}= +1.69922208 \pm 2.0 \cdot 10^{-5} \) | \(a_{843}= -1.17553933 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{844}= -0.25535036 \pm 6.5 \cdot 10^{-6} \) | \(a_{845}= +0.12846057 \pm 1.2 \cdot 10^{-5} \) | \(a_{846}= -3.37273304 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{847}= +0.97291957 \pm 1.3 \cdot 10^{-5} \) | \(a_{848}= -0.18740082 \pm 1.0 \cdot 10^{-5} \) | \(a_{849}= -0.56839641 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{850}= -0.10109384 \pm 9.0 \cdot 10^{-6} \) | \(a_{851}= +0.14162868 \pm 1.2 \cdot 10^{-5} \) | \(a_{852}= -0.02860945 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{853}= +0.84208911 \pm 1.6 \cdot 10^{-5} \) | \(a_{854}= -0.52782893 \pm 3.6 \cdot 10^{-5} \) | \(a_{855}= +0.01217537 \pm 1.3 \cdot 10^{-5} \) |
| \(a_{856}= -1.29193125 \pm 1.1 \cdot 10^{-5} \) | \(a_{857}= +0.36754044 \pm 9.2 \cdot 10^{-6} \) | \(a_{858}= +3.88850448 \pm 5.4 \cdot 10^{-6} \) |
| \(a_{859}= +0.02159076 \pm 2.4 \cdot 10^{-5} \) | \(a_{860}= +0.07695497 \pm 7.8 \cdot 10^{-6} \) | \(a_{861}= +0.31430365 \pm 3.1 \cdot 10^{-5} \) |
| \(a_{862}= +0.32029809 \pm 8.1 \cdot 10^{-6} \) | \(a_{863}= +0.77860217 \pm 1.6 \cdot 10^{-5} \) | \(a_{864}= +0.62454520 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{865}= +0.57265714 \pm 1.3 \cdot 10^{-5} \) | \(a_{866}= +0.66984603 \pm 1.4 \cdot 10^{-5} \) | \(a_{867}= -1.65985470 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{868}= -0.06721056 \pm 2.3 \cdot 10^{-5} \) | \(a_{869}= -3.16642072 \pm 7.2 \cdot 10^{-6} \) | \(a_{870}= -0.95415069 \pm 6.9 \cdot 10^{-6} \) |
| \(a_{871}= -0.93949690 \pm 1.7 \cdot 10^{-5} \) | \(a_{872}= -0.26693619 \pm 1.9 \cdot 10^{-5} \) | \(a_{873}= -1.74128037 \pm 1.8 \cdot 10^{-5} \) |
| \(a_{874}= -0.00612794 \pm 1.1 \cdot 10^{-5} \) | \(a_{875}= -0.37368491 \pm 1.3 \cdot 10^{-5} \) | \(a_{876}= -0.39009497 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{877}= +1.92324395 \pm 1.9 \cdot 10^{-5} \) | \(a_{878}= -0.27752586 \pm 2.8 \cdot 10^{-5} \) | \(a_{879}= +1.39193793 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{880}= -1.33653228 \pm 7.6 \cdot 10^{-6} \) | \(a_{881}= +1.68336877 \pm 2.1 \cdot 10^{-5} \) | \(a_{882}= -0.29503531 \pm 3.3 \cdot 10^{-5} \) |
| \(a_{883}= -0.23386520 \pm 2.6 \cdot 10^{-5} \) | \(a_{884}= +0.03412587 \pm 7.1 \cdot 10^{-6} \) | \(a_{885}= -0.51100289 \pm 9.7 \cdot 10^{-6} \) |
| \(a_{886}= -1.05193120 \pm 2.2 \cdot 10^{-5} \) | \(a_{887}= +0.03007853 \pm 2.5 \cdot 10^{-5} \) | \(a_{888}= +0.40133722 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{889}= +0.25183147 \pm 1.7 \cdot 10^{-5} \) | \(a_{890}= +0.54558364 \pm 1.3 \cdot 10^{-5} \) | \(a_{891}= +1.20755167 \pm 8.9 \cdot 10^{-6} \) |
| \(a_{892}= +0.10946503 \pm 9.3 \cdot 10^{-6} \) | \(a_{893}= +0.01753060 \pm 1.6 \cdot 10^{-5} \) | \(a_{894}= -1.12328814 \pm 2.5 \cdot 10^{-5} \) |
| \(a_{895}= -1.02988354 \pm 1.2 \cdot 10^{-5} \) | \(a_{896}= -0.45244812 \pm 1.1 \cdot 10^{-5} \) | \(a_{897}= -0.96709044 \pm 9.3 \cdot 10^{-6} \) |
| \(a_{898}= -0.09645509 \pm 2.2 \cdot 10^{-5} \) | \(a_{899}= -0.70098299 \pm 7.2 \cdot 10^{-6} \) | \(a_{900}= -0.25435953 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{901}= -0.02322008 \pm 9.8 \cdot 10^{-6} \) | \(a_{902}= -1.02175030 \pm 1.3 \cdot 10^{-5} \) | \(a_{903}= +0.38058843 \pm 2.4 \cdot 10^{-5} \) |
| \(a_{904}= +0.34945476 \pm 1.2 \cdot 10^{-5} \) | \(a_{905}= +0.45004545 \pm 1.2 \cdot 10^{-5} \) | \(a_{906}= +0.73675875 \pm 7.2 \cdot 10^{-6} \) |
| \(a_{907}= -0.48672141 \pm 1.3 \cdot 10^{-5} \) | \(a_{908}= +0.04446057 \pm 8.0 \cdot 10^{-6} \) | \(a_{909}= +3.30686425 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{910}= +0.27748265 \pm 4.9 \cdot 10^{-5} \) | \(a_{911}= +1.43413597 \pm 1.3 \cdot 10^{-5} \) | \(a_{912}= -0.02126165 \pm 6.5 \cdot 10^{-6} \) |
| \(a_{913}= +2.00853112 \pm 8.2 \cdot 10^{-6} \) | \(a_{914}= +0.73184381 \pm 1.7 \cdot 10^{-5} \) | \(a_{915}= +1.30026622 \pm 8.4 \cdot 10^{-6} \) |
| \(a_{916}= -0.02099191 \pm 1.2 \cdot 10^{-5} \) | \(a_{917}= +0.11551506 \pm 1.3 \cdot 10^{-5} \) | \(a_{918}= +0.23642823 \pm 9.6 \cdot 10^{-6} \) |
| \(a_{919}= -1.28203712 \pm 1.4 \cdot 10^{-5} \) | \(a_{920}= +0.27148122 \pm 1.1 \cdot 10^{-5} \) | \(a_{921}= -0.20046743 \pm 1.4 \cdot 10^{-5} \) |
| \(a_{922}= -0.69121263 \pm 2.0 \cdot 10^{-5} \) | \(a_{923}= +0.08677575 \pm 8.4 \cdot 10^{-6} \) | \(a_{924}= +0.25938680 \pm 3.8 \cdot 10^{-5} \) |
| \(a_{925}= -0.17326580 \pm 9.7 \cdot 10^{-6} \) | \(a_{926}= -0.12194453 \pm 1.6 \cdot 10^{-5} \) | \(a_{927}= +0.33854442 \pm 9.0 \cdot 10^{-6} \) |
| \(a_{928}= +0.35562881 \pm 1.1 \cdot 10^{-5} \) | \(a_{929}= -0.86475859 \pm 1.6 \cdot 10^{-5} \) | \(a_{930}= +0.93883659 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{931}= +0.00153352 \pm 1.4 \cdot 10^{-5} \) | \(a_{932}= +0.03950914 \pm 1.0 \cdot 10^{-5} \) | \(a_{933}= -3.25332833 \pm 9.7 \cdot 10^{-6} \) |
| \(a_{934}= +1.42729732 \pm 1.9 \cdot 10^{-5} \) | \(a_{935}= -0.16560435 \pm 6.0 \cdot 10^{-6} \) | \(a_{936}= -1.78703648 \pm 9.2 \cdot 10^{-6} \) |
| \(a_{937}= -0.45559187 \pm 2.3 \cdot 10^{-5} \) | \(a_{938}= -0.35536448 \pm 4.0 \cdot 10^{-5} \) | \(a_{939}= -0.47399634 \pm 1.6 \cdot 10^{-5} \) |
| \(a_{940}= +0.21159679 \pm 6.8 \cdot 10^{-6} \) | \(a_{941}= -0.89258956 \pm 1.6 \cdot 10^{-5} \) | \(a_{942}= -1.31946121 \pm 1.2 \cdot 10^{-5} \) |
| \(a_{943}= +0.25411439 \pm 1.9 \cdot 10^{-5} \) | \(a_{944}= +0.58189752 \pm 2.4 \cdot 10^{-5} \) | \(a_{945}= +0.33902989 \pm 2.9 \cdot 10^{-5} \) |
| \(a_{946}= -1.23723141 \pm 5.8 \cdot 10^{-6} \) | \(a_{947}= +1.37645125 \pm 1.8 \cdot 10^{-5} \) | \(a_{948}= -0.60799277 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{949}= +1.18320274 \pm 1.6 \cdot 10^{-5} \) | \(a_{950}= +0.00749681 \pm 8.8 \cdot 10^{-6} \) | \(a_{951}= -2.70049454 \pm 1.1 \cdot 10^{-5} \) |
| \(a_{952}= -0.04737785 \pm 2.4 \cdot 10^{-5} \) | \(a_{953}= -0.37236497 \pm 1.4 \cdot 10^{-5} \) | \(a_{954}= -0.33128400 \pm 9.5 \cdot 10^{-6} \) |
| \(a_{955}= -0.42568371 \pm 9.6 \cdot 10^{-6} \) | \(a_{956}= +0.00782932 \pm 1.2 \cdot 10^{-5} \) | \(a_{957}= +2.70531487 \pm 5.8 \cdot 10^{-6} \) |
| \(a_{958}= +1.89385672 \pm 2.3 \cdot 10^{-5} \) | \(a_{959}= -0.32713167 \pm 1.1 \cdot 10^{-5} \) | \(a_{960}= +0.72227001 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{961}= -0.31026778 \pm 1.2 \cdot 10^{-5} \) | \(a_{962}= +0.33165407 \pm 7.9 \cdot 10^{-6} \) | \(a_{963}= -2.79635650 \pm 9.0 \cdot 10^{-6} \) |
| \(a_{964}= +0.18555825 \pm 9.5 \cdot 10^{-6} \) | \(a_{965}= -0.49551380 \pm 1.7 \cdot 10^{-5} \) | \(a_{966}= -0.36580173 \pm 5.2 \cdot 10^{-5} \) |
| \(a_{967}= +0.95348577 \pm 2.2 \cdot 10^{-5} \) | \(a_{968}= +2.22902540 \pm 8.5 \cdot 10^{-6} \) | \(a_{969}= -0.00263445 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{970}= +0.61945420 \pm 1.9 \cdot 10^{-5} \) | \(a_{971}= -0.38781280 \pm 1.6 \cdot 10^{-5} \) | \(a_{972}= -0.08551548 \pm 8.7 \cdot 10^{-6} \) |
| \(a_{973}= -0.35374497 \pm 1.0 \cdot 10^{-5} \) | \(a_{974}= +1.34496314 \pm 1.9 \cdot 10^{-5} \) | \(a_{975}= +1.18311988 \pm 8.8 \cdot 10^{-6} \) |
| \(a_{976}= -1.48066027 \pm 1.6 \cdot 10^{-5} \) | \(a_{977}= -0.40682765 \pm 2.3 \cdot 10^{-5} \) | \(a_{978}= +2.92231281 \pm 1.8 \cdot 10^{-5} \) |
| \(a_{979}= -1.54689983 \pm 1.0 \cdot 10^{-5} \) | \(a_{980}= +0.01850977 \pm 2.6 \cdot 10^{-5} \) | \(a_{981}= -0.57777746 \pm 1.7 \cdot 10^{-5} \) |
| \(a_{982}= -1.65175663 \pm 1.8 \cdot 10^{-5} \) | \(a_{983}= -0.91278092 \pm 1.4 \cdot 10^{-5} \) | \(a_{984}= +0.72009120 \pm 6.5 \cdot 10^{-6} \) |
| \(a_{985}= -0.14092927 \pm 1.5 \cdot 10^{-5} \) | \(a_{986}= +0.13462707 \pm 8.1 \cdot 10^{-6} \) | \(a_{987}= +1.04647285 \pm 3.0 \cdot 10^{-5} \) |
| \(a_{988}= -0.00253067 \pm 4.8 \cdot 10^{-6} \) | \(a_{989}= +0.30770562 \pm 1.2 \cdot 10^{-5} \) | \(a_{990}= -2.36269921 \pm 9.7 \cdot 10^{-6} \) |
| \(a_{991}= +0.94234621 \pm 1.6 \cdot 10^{-5} \) | \(a_{992}= -0.34992097 \pm 1.3 \cdot 10^{-5} \) | \(a_{993}= +0.19134373 \pm 1.8 \cdot 10^{-5} \) |
| \(a_{994}= +0.03282291 \pm 3.2 \cdot 10^{-5} \) | \(a_{995}= +0.46206681 \pm 1.5 \cdot 10^{-5} \) | \(a_{996}= +0.38566334 \pm 6.1 \cdot 10^{-6} \) |
| \(a_{997}= -0.29123263 \pm 1.5 \cdot 10^{-5} \) | \(a_{998}= -0.60778774 \pm 1.3 \cdot 10^{-5} \) | \(a_{999}= +0.40521684 \pm 1.0 \cdot 10^{-5} \) |
| \(a_{1000}= -0.85613773 \pm 1.2 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000