Properties

Label 2-9386-1.1-c1-0-297
Degree $2$
Conductor $9386$
Sign $1$
Analytic cond. $74.9475$
Root an. cond. $8.65722$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s − 4·5-s − 3·6-s − 2·7-s + 8-s + 6·9-s − 4·10-s − 5·11-s − 3·12-s + 13-s − 2·14-s + 12·15-s + 16-s + 2·17-s + 6·18-s − 4·20-s + 6·21-s − 5·22-s + 4·23-s − 3·24-s + 11·25-s + 26-s − 9·27-s − 2·28-s − 8·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.78·5-s − 1.22·6-s − 0.755·7-s + 0.353·8-s + 2·9-s − 1.26·10-s − 1.50·11-s − 0.866·12-s + 0.277·13-s − 0.534·14-s + 3.09·15-s + 1/4·16-s + 0.485·17-s + 1.41·18-s − 0.894·20-s + 1.30·21-s − 1.06·22-s + 0.834·23-s − 0.612·24-s + 11/5·25-s + 0.196·26-s − 1.73·27-s − 0.377·28-s − 1.48·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9386\)    =    \(2 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(74.9475\)
Root analytic conductor: \(8.65722\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 9386,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
13 \( 1 - T \)
19 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.96939178969444401091652865832, −6.29366322979871883213658034862, −5.36959841430969789993766396024, −5.13799535567593398514796468067, −4.36136675370327813359263229683, −3.52639876364716764701280346074, −3.08867558938456631625680194517, −1.49693495906042891279298154951, 0, 0, 1.49693495906042891279298154951, 3.08867558938456631625680194517, 3.52639876364716764701280346074, 4.36136675370327813359263229683, 5.13799535567593398514796468067, 5.36959841430969789993766396024, 6.29366322979871883213658034862, 6.96939178969444401091652865832

Graph of the $Z$-function along the critical line