L(s) = 1 | + 2·5-s + 6·11-s − 2·13-s − 4·17-s − 6·19-s − 2·23-s + 3·25-s − 8·29-s − 2·31-s − 8·37-s + 4·41-s + 2·43-s + 8·47-s − 14·49-s + 4·53-s + 12·55-s + 2·59-s − 4·65-s − 12·67-s − 6·71-s − 24·73-s − 4·79-s + 8·83-s − 8·85-s − 20·89-s − 12·95-s − 20·97-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 1.80·11-s − 0.554·13-s − 0.970·17-s − 1.37·19-s − 0.417·23-s + 3/5·25-s − 1.48·29-s − 0.359·31-s − 1.31·37-s + 0.624·41-s + 0.304·43-s + 1.16·47-s − 2·49-s + 0.549·53-s + 1.61·55-s + 0.260·59-s − 0.496·65-s − 1.46·67-s − 0.712·71-s − 2.80·73-s − 0.450·79-s + 0.878·83-s − 0.867·85-s − 2.11·89-s − 1.23·95-s − 2.03·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87609600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87609600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.32528465495988304631423541998, −7.14716017863086900023140237417, −6.72522284600748965856639734297, −6.66389075693166651223389235451, −6.15761272881055029899608734207, −5.85826773704523250404020558786, −5.52689218429173939399842681449, −5.31074688833152813403754924142, −4.52044002506552924633637335638, −4.43216327111233501983180769240, −4.00267098349224159635694869177, −3.89337311645652559953517630512, −3.07294820340271518977377721450, −2.90714493868132380909683568780, −2.20238782359475020367649432397, −2.00313350973763790314008066535, −1.42806010816876280071723649462, −1.31640764684290981613069667801, 0, 0,
1.31640764684290981613069667801, 1.42806010816876280071723649462, 2.00313350973763790314008066535, 2.20238782359475020367649432397, 2.90714493868132380909683568780, 3.07294820340271518977377721450, 3.89337311645652559953517630512, 4.00267098349224159635694869177, 4.43216327111233501983180769240, 4.52044002506552924633637335638, 5.31074688833152813403754924142, 5.52689218429173939399842681449, 5.85826773704523250404020558786, 6.15761272881055029899608734207, 6.66389075693166651223389235451, 6.72522284600748965856639734297, 7.14716017863086900023140237417, 7.32528465495988304631423541998