Properties

Label 2-9360-1.1-c1-0-38
Degree $2$
Conductor $9360$
Sign $1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s − 2·11-s − 13-s − 2·17-s − 6·19-s + 6·23-s + 25-s − 2·29-s + 6·31-s + 4·35-s − 2·37-s − 10·41-s + 10·43-s − 12·47-s + 9·49-s − 2·53-s − 2·55-s + 10·59-s + 2·61-s − 65-s + 12·67-s + 10·71-s + 10·73-s − 8·77-s + 4·79-s − 2·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s − 0.603·11-s − 0.277·13-s − 0.485·17-s − 1.37·19-s + 1.25·23-s + 1/5·25-s − 0.371·29-s + 1.07·31-s + 0.676·35-s − 0.328·37-s − 1.56·41-s + 1.52·43-s − 1.75·47-s + 9/7·49-s − 0.274·53-s − 0.269·55-s + 1.30·59-s + 0.256·61-s − 0.124·65-s + 1.46·67-s + 1.18·71-s + 1.17·73-s − 0.911·77-s + 0.450·79-s − 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.559242049\)
\(L(\frac12)\) \(\approx\) \(2.559242049\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.897773872696157958243371649683, −6.93382221399178540379656519347, −6.47403483990558052185808471960, −5.44081773836520664454715949181, −4.94152921655387894445681879278, −4.47475998458279826181189336005, −3.42625638274975134471108613648, −2.32195899884046682848721253631, −1.92875473556257178087803423750, −0.76823693791712766521382629362, 0.76823693791712766521382629362, 1.92875473556257178087803423750, 2.32195899884046682848721253631, 3.42625638274975134471108613648, 4.47475998458279826181189336005, 4.94152921655387894445681879278, 5.44081773836520664454715949181, 6.47403483990558052185808471960, 6.93382221399178540379656519347, 7.897773872696157958243371649683

Graph of the $Z$-function along the critical line