L(s) = 1 | − 3·3-s − 2·5-s + 2·7-s + 2·9-s + 11-s + 2·13-s + 6·15-s + 17-s + 2·19-s − 6·21-s − 2·23-s − 7·25-s + 6·27-s − 5·29-s − 31-s − 3·33-s − 4·35-s + 14·37-s − 6·39-s + 9·41-s − 8·43-s − 4·45-s + 6·47-s + 3·49-s − 3·51-s − 3·53-s − 2·55-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.894·5-s + 0.755·7-s + 2/3·9-s + 0.301·11-s + 0.554·13-s + 1.54·15-s + 0.242·17-s + 0.458·19-s − 1.30·21-s − 0.417·23-s − 7/5·25-s + 1.15·27-s − 0.928·29-s − 0.179·31-s − 0.522·33-s − 0.676·35-s + 2.30·37-s − 0.960·39-s + 1.40·41-s − 1.21·43-s − 0.596·45-s + 0.875·47-s + 3/7·49-s − 0.420·51-s − 0.412·53-s − 0.269·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72454144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72454144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.64756280701238665251816556217, −7.47308702478798969273996422072, −6.68788641542302881211882749618, −6.62001129913886742269465180081, −5.95520742058219496565112847723, −5.93898333016967380782777476436, −5.55508661559895860874553987720, −5.47050394873346192930961020813, −4.65176543000716991258913729716, −4.54762714835190285692115357424, −4.24130790243383645241274678958, −3.86131914304230977506614567051, −3.21971756233377201205985260427, −3.12120225284675902035291227604, −2.26627808239898412619332172064, −1.95591765777815027522453746096, −1.13898682806901433992598212277, −1.01247274694987399627713147355, 0, 0,
1.01247274694987399627713147355, 1.13898682806901433992598212277, 1.95591765777815027522453746096, 2.26627808239898412619332172064, 3.12120225284675902035291227604, 3.21971756233377201205985260427, 3.86131914304230977506614567051, 4.24130790243383645241274678958, 4.54762714835190285692115357424, 4.65176543000716991258913729716, 5.47050394873346192930961020813, 5.55508661559895860874553987720, 5.93898333016967380782777476436, 5.95520742058219496565112847723, 6.62001129913886742269465180081, 6.68788641542302881211882749618, 7.47308702478798969273996422072, 7.64756280701238665251816556217