Properties

Label 2.43.i_de
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $1 + 8 x + 82 x^{2} + 344 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.488538358216$, $\pm0.723557035799$
Angle rank:  $2$ (numerical)
Number field:  4.0.430400.3
Galois group:  $D_{4}$
Jacobians:  $154$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2284$ $3608720$ $6287781196$ $11687633638400$ $21609555070664044$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $52$ $1950$ $79084$ $3418638$ $146995332$ $6321442350$ $271819892284$ $11688188339358$ $502592599351252$ $21611482805554750$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The endomorphism algebra of this simple isogeny class is 4.0.430400.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.ai_de$2$(not in LMFDB)