Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 8 x + 82 x^{2} + 344 x^{3} + 1849 x^{4}$ |
| Frobenius angles: | $\pm0.488538358216$, $\pm0.723557035799$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.430400.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $154$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2284$ | $3608720$ | $6287781196$ | $11687633638400$ | $21609555070664044$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $1950$ | $79084$ | $3418638$ | $146995332$ | $6321442350$ | $271819892284$ | $11688188339358$ | $502592599351252$ | $21611482805554750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):
- $y^2=19 x^6+14 x^5+33 x^4+28 x^3+19 x^2+36 x+20$
- $y^2=32 x^6+23 x^5+13 x^4+32 x^3+32 x^2+42 x+21$
- $y^2=38 x^6+27 x^5+16 x^4+42 x^3+26 x^2+32 x+33$
- $y^2=20 x^6+36 x^5+11 x^4+9 x^3+x^2+29$
- $y^2=40 x^6+35 x^5+9 x^4+23 x^3+42 x^2+6 x+9$
- $y^2=42 x^6+41 x^5+16 x^4+6 x^3+11 x^2+4 x+23$
- $y^2=42 x^6+23 x^5+10 x^4+23 x^3+19 x^2+14 x+39$
- $y^2=33 x^6+34 x^5+8 x^4+4 x^3+31 x^2+34 x+38$
- $y^2=39 x^6+29 x^5+12 x^4+37 x^3+40 x^2+36 x+2$
- $y^2=15 x^6+16 x^5+24 x^4+40 x^3+x^2+5 x+3$
- $y^2=3 x^6+7 x^5+40 x^4+16 x^3+24 x^2+24 x+10$
- $y^2=17 x^6+26 x^5+x^4+34 x^3+40 x^2+6 x+41$
- $y^2=3 x^6+22 x^5+32 x^4+8 x^3+7 x^2+8 x+2$
- $y^2=17 x^6+21 x^5+26 x^4+18 x^3+6 x^2+8 x+17$
- $y^2=30 x^6+19 x^4+6 x^3+26 x^2+37 x+13$
- $y^2=10 x^6+32 x^5+40 x^4+x^3+41 x^2+25 x+9$
- $y^2=39 x^6+16 x^5+11 x^4+2 x^3+24 x^2+14 x+34$
- $y^2=10 x^6+22 x^5+42 x^4+20 x^3+31 x^2+41 x+7$
- $y^2=28 x^6+29 x^5+34 x^4+6 x^3+41 x^2+36 x+16$
- $y^2=35 x^6+26 x^5+22 x^4+25 x^3+42 x^2+28 x+6$
- and 134 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is 4.0.430400.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.ai_de | $2$ | (not in LMFDB) |