Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 14 x + 103 x^{2} - 518 x^{3} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.107987345373$, $\pm0.433373211955$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.58025.1 |
Galois group: | $D_{4}$ |
Jacobians: | $32$ |
Isomorphism classes: | 32 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $941$ | $1886705$ | $2567183504$ | $3507960040025$ | $4807729192679181$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $1380$ | $50682$ | $1871748$ | $69331624$ | $2565803190$ | $94932933672$ | $3512483252868$ | $129961740814194$ | $4808584437568900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=22 x^6+35 x^5+2 x^4+2 x^3+33 x^2+6$
- $y^2=21 x^6+22 x^5+14 x^4+x^3+34 x^2+12 x+13$
- $y^2=6 x^6+27 x^5+3 x^4+31 x^3+3 x^2+11 x+18$
- $y^2=x^6+23 x^5+27 x^4+8 x^3+28 x+32$
- $y^2=3 x^6+5 x^5+2 x^4+34 x^3+29 x^2+4 x+14$
- $y^2=18 x^6+10 x^5+3 x^4+x^3+23 x^2+21 x+1$
- $y^2=13 x^6+35 x^5+30 x^4+20 x^3+17 x^2+5 x+22$
- $y^2=13 x^6+34 x^5+x^4+19 x^3+28 x^2+27 x+24$
- $y^2=36 x^6+9 x^5+16 x^3+19 x^2+24 x+25$
- $y^2=5 x^6+19 x^5+33 x^4+26 x^3+35 x^2+2 x+6$
- $y^2=18 x^6+10 x^5+2 x^4+31 x^3+23 x^2+22$
- $y^2=28 x^6+13 x^5+24 x^4+19 x^3+23 x^2+10 x+16$
- $y^2=16 x^6+26 x^5+2 x^4+x^3+21 x^2+10 x+18$
- $y^2=21 x^6+30 x^4+27 x^3+34 x^2+22 x+16$
- $y^2=15 x^6+11 x^5+23 x^4+27 x^3+18 x^2+20 x+17$
- $y^2=28 x^6+6 x^5+25 x^4+21 x^3+23 x^2+18$
- $y^2=6 x^6+10 x^5+8 x^4+28 x^3+25 x^2+31 x+32$
- $y^2=9 x^6+28 x^5+29 x^4+33 x^3+8 x^2+11 x+23$
- $y^2=16 x^6+6 x^5+9 x^4+20 x^3+32 x^2+28 x+14$
- $y^2=19 x^6+15 x^5+5 x^4+35 x^3+16 x^2+17 x+32$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is 4.0.58025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.o_dz | $2$ | (not in LMFDB) |