Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x + 97 x^{2} + 159 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.459355987830$, $\pm0.608189572253$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.982525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $145$ |
Isomorphism classes: | 203 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3069$ | $8424405$ | $22109533281$ | $62211745725525$ | $174894239961921744$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $57$ | $2995$ | $148509$ | $7884403$ | $418211682$ | $22164441235$ | $1174711332369$ | $62259696565603$ | $3299763496455117$ | $174887469798965350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 145 curves (of which all are hyperelliptic):
- $y^2=17 x^6+44 x^5+5 x^4+9 x^3+47 x^2+7 x+17$
- $y^2=21 x^6+49 x^5+23 x^4+31 x^3+25 x^2+25 x+29$
- $y^2=32 x^5+45 x^4+19 x^3+51 x^2+13 x+19$
- $y^2=4 x^6+32 x^5+37 x^4+28 x^3+41 x^2+33 x+51$
- $y^2=3 x^6+51 x^5+17 x^4+9 x^3+28 x^2+45 x+9$
- $y^2=44 x^6+4 x^5+45 x^4+19 x^3+21 x^2+14 x+21$
- $y^2=34 x^6+26 x^5+12 x^3+37 x^2+32 x+2$
- $y^2=42 x^6+41 x^5+31 x^4+47 x^3+5 x^2+44 x+35$
- $y^2=19 x^6+47 x^5+40 x^4+52 x^3+41 x^2+45 x+49$
- $y^2=42 x^6+28 x^5+34 x^4+39 x^3+6 x^2+24 x+24$
- $y^2=31 x^6+49 x^5+12 x^4+12 x^3+9 x^2+21 x+42$
- $y^2=30 x^6+51 x^5+42 x^4+x^3+11 x^2+39 x+43$
- $y^2=24 x^5+36 x^4+52 x^3+43 x^2+26 x+39$
- $y^2=42 x^6+5 x^5+13 x^4+49 x^3+18 x^2+13 x+41$
- $y^2=51 x^6+x^5+8 x^4+51 x^3+42 x^2+34 x+47$
- $y^2=10 x^6+48 x^5+9 x^4+15 x^3+33 x^2+43 x+41$
- $y^2=35 x^6+12 x^5+12 x^4+50 x^3+48 x^2+37 x+11$
- $y^2=18 x^6+41 x^5+35 x^4+5 x^3+42 x^2+36 x+5$
- $y^2=39 x^6+2 x^5+22 x^4+40 x^3+3 x+42$
- $y^2=29 x^6+40 x^5+46 x^4+47 x^3+21 x^2+52 x+12$
- and 125 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.982525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ad_dt | $2$ | (not in LMFDB) |