Properties

Label 2-816-1.1-c1-0-15
Degree $2$
Conductor $816$
Sign $-1$
Analytic cond. $6.51579$
Root an. cond. $2.55260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 4·7-s + 9-s − 3·11-s + 3·13-s − 15-s − 17-s − 19-s − 4·21-s − 3·23-s − 4·25-s + 27-s − 10·29-s − 6·31-s − 3·33-s + 4·35-s − 4·37-s + 3·39-s + 5·41-s + 43-s − 45-s + 2·47-s + 9·49-s − 51-s − 14·53-s + 3·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.904·11-s + 0.832·13-s − 0.258·15-s − 0.242·17-s − 0.229·19-s − 0.872·21-s − 0.625·23-s − 4/5·25-s + 0.192·27-s − 1.85·29-s − 1.07·31-s − 0.522·33-s + 0.676·35-s − 0.657·37-s + 0.480·39-s + 0.780·41-s + 0.152·43-s − 0.149·45-s + 0.291·47-s + 9/7·49-s − 0.140·51-s − 1.92·53-s + 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(816\)    =    \(2^{4} \cdot 3 \cdot 17\)
Sign: $-1$
Analytic conductor: \(6.51579\)
Root analytic conductor: \(2.55260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 816,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.675525066681270992922543647705, −9.084920304961742227506252285555, −8.072177526566527517368179968812, −7.35280308552422744887681720550, −6.36108351595641399127151168680, −5.49242782557140989358879409039, −3.94051825844322199835949389881, −3.41153606626170658888682623087, −2.16737322822576147605235138245, 0, 2.16737322822576147605235138245, 3.41153606626170658888682623087, 3.94051825844322199835949389881, 5.49242782557140989358879409039, 6.36108351595641399127151168680, 7.35280308552422744887681720550, 8.072177526566527517368179968812, 9.084920304961742227506252285555, 9.675525066681270992922543647705

Graph of the $Z$-function along the critical line