L(s) = 1 | + 2·3-s + 6·7-s + 3·9-s + 6·11-s + 6·19-s + 12·21-s + 6·23-s − 7·25-s + 4·27-s − 6·29-s + 12·31-s + 12·33-s − 6·37-s − 6·41-s − 2·43-s − 6·47-s + 16·49-s + 6·53-s + 12·57-s + 20·61-s + 18·63-s + 18·67-s + 12·69-s + 6·71-s − 14·75-s + 36·77-s + 4·79-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 2.26·7-s + 9-s + 1.80·11-s + 1.37·19-s + 2.61·21-s + 1.25·23-s − 7/5·25-s + 0.769·27-s − 1.11·29-s + 2.15·31-s + 2.08·33-s − 0.986·37-s − 0.937·41-s − 0.304·43-s − 0.875·47-s + 16/7·49-s + 0.824·53-s + 1.58·57-s + 2.56·61-s + 2.26·63-s + 2.19·67-s + 1.44·69-s + 0.712·71-s − 1.61·75-s + 4.10·77-s + 0.450·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65804544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65804544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(11.91260270\) |
\(L(\frac12)\) |
\(\approx\) |
\(11.91260270\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.162700234538168287645368291621, −7.84215613085463274383807646135, −7.30439246734160862154266823515, −7.01674777910065709162708666010, −6.66405823675937687722773640641, −6.63935964434858668329060270853, −5.63356764568546511696116060816, −5.60946288208943413687365536257, −5.01971651818715916071095278206, −4.95973678291212891176733660879, −4.22635523271678249761150145422, −4.21224872492551556344528850037, −3.69662803564853256499726269575, −3.34503951987688547391178257593, −2.97073895090124355293024008149, −2.26442780187223413441318997649, −1.93140832918961304608985458014, −1.65233908017883234946768246486, −1.08786962914024383321329375324, −0.858194730371261638386845441323,
0.858194730371261638386845441323, 1.08786962914024383321329375324, 1.65233908017883234946768246486, 1.93140832918961304608985458014, 2.26442780187223413441318997649, 2.97073895090124355293024008149, 3.34503951987688547391178257593, 3.69662803564853256499726269575, 4.21224872492551556344528850037, 4.22635523271678249761150145422, 4.95973678291212891176733660879, 5.01971651818715916071095278206, 5.60946288208943413687365536257, 5.63356764568546511696116060816, 6.63935964434858668329060270853, 6.66405823675937687722773640641, 7.01674777910065709162708666010, 7.30439246734160862154266823515, 7.84215613085463274383807646135, 8.162700234538168287645368291621