Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 - x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.248909889127$, $\pm0.751090110873$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-145})\) |
Galois group: | $C_2^2$ |
Jacobians: | $126$ |
Isomorphism classes: | 336 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5329$ | $28398241$ | $151334242276$ | $807065542392201$ | $4297625829561593089$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5328$ | $389018$ | $28419556$ | $2073071594$ | $151334258262$ | $11047398519098$ | $806459978343748$ | $58871586708267914$ | $4297625829419628528$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=48 x^6+29 x^5+40 x^4+29 x^3+64 x^2+57 x+22$
- $y^2=21 x^6+72 x^5+54 x^4+72 x^3+28 x^2+66 x+37$
- $y^2=69 x^6+25 x^5+52 x^4+7 x^3+43 x^2+68 x+70$
- $y^2=53 x^6+52 x^5+41 x^4+35 x^3+69 x^2+48 x+58$
- $y^2=25 x^6+64 x^5+41 x^4+56 x^3+8 x^2+14 x+34$
- $y^2=52 x^6+28 x^5+59 x^4+61 x^3+40 x^2+70 x+24$
- $y^2=6 x^6+46 x^5+63 x^4+50 x^3+49 x^2+59 x+38$
- $y^2=30 x^6+11 x^5+23 x^4+31 x^3+26 x^2+3 x+44$
- $y^2=25 x^6+44 x^5+2 x^4+70 x^3+61 x^2+35 x+11$
- $y^2=52 x^6+x^5+10 x^4+58 x^3+13 x^2+29 x+55$
- $y^2=41 x^6+26 x^5+3 x^4+43 x^3+40 x^2+7 x+33$
- $y^2=52 x^6+69 x^5+22 x^4+62 x^3+x^2+38 x+24$
- $y^2=70 x^6+68 x^5+65 x^4+22 x^3+56 x^2+47 x+7$
- $y^2=70 x^6+57 x^5+14 x^4+27 x^3+x^2+27 x+55$
- $y^2=58 x^6+66 x^5+70 x^4+62 x^3+5 x^2+62 x+56$
- $y^2=37 x^6+32 x^5+x^4+46 x^3+9 x^2+68 x+1$
- $y^2=39 x^6+14 x^5+5 x^4+11 x^3+45 x^2+48 x+5$
- $y^2=47 x^6+44 x^5+46 x^4+31 x^3+36 x^2+50 x+18$
- $y^2=16 x^6+x^5+11 x^4+9 x^3+34 x^2+31 x+17$
- $y^2=8 x^6+39 x^5+39 x^4+55 x^3+6 x^2+29 x+30$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-145})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.ab 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-435}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.a_b | $4$ | (not in LMFDB) |
2.73.av_im | $12$ | (not in LMFDB) |
2.73.v_im | $12$ | (not in LMFDB) |