Properties

Label 2-7742-1.1-c1-0-170
Degree $2$
Conductor $7742$
Sign $-1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s + 8-s − 3·9-s − 4·10-s − 11-s + 2·13-s + 16-s − 2·17-s − 3·18-s + 4·19-s − 4·20-s − 22-s + 6·23-s + 11·25-s + 2·26-s + 9·29-s − 6·31-s + 32-s − 2·34-s − 3·36-s − 9·37-s + 4·38-s − 4·40-s + 2·41-s + 10·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.78·5-s + 0.353·8-s − 9-s − 1.26·10-s − 0.301·11-s + 0.554·13-s + 1/4·16-s − 0.485·17-s − 0.707·18-s + 0.917·19-s − 0.894·20-s − 0.213·22-s + 1.25·23-s + 11/5·25-s + 0.392·26-s + 1.67·29-s − 1.07·31-s + 0.176·32-s − 0.342·34-s − 1/2·36-s − 1.47·37-s + 0.648·38-s − 0.632·40-s + 0.312·41-s + 1.52·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 11 T + p T^{2} \) 1.71.al
73 \( 1 + 13 T + p T^{2} \) 1.73.n
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 19 T + p T^{2} \) 1.97.t
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43238021072890668765203578080, −6.92743011379372280899632504168, −6.09057789117808115248188516226, −5.20863350491788148628192193875, −4.69068879520955928614585612353, −3.86029937833260774254618444431, −3.20266063439440861469857445873, −2.72788776380928479227726034707, −1.16313880815545579111524880120, 0, 1.16313880815545579111524880120, 2.72788776380928479227726034707, 3.20266063439440861469857445873, 3.86029937833260774254618444431, 4.69068879520955928614585612353, 5.20863350491788148628192193875, 6.09057789117808115248188516226, 6.92743011379372280899632504168, 7.43238021072890668765203578080

Graph of the $Z$-function along the critical line