L(s) = 1 | − 2·2-s + 2·3-s + 3·4-s − 4·6-s + 7·7-s − 4·8-s + 3·9-s − 5·11-s + 6·12-s + 9·13-s − 14·14-s + 5·16-s + 2·17-s − 6·18-s − 3·19-s + 14·21-s + 10·22-s + 5·23-s − 8·24-s − 18·26-s + 4·27-s + 21·28-s − 2·29-s − 4·31-s − 6·32-s − 10·33-s − 4·34-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.15·3-s + 3/2·4-s − 1.63·6-s + 2.64·7-s − 1.41·8-s + 9-s − 1.50·11-s + 1.73·12-s + 2.49·13-s − 3.74·14-s + 5/4·16-s + 0.485·17-s − 1.41·18-s − 0.688·19-s + 3.05·21-s + 2.13·22-s + 1.04·23-s − 1.63·24-s − 3.53·26-s + 0.769·27-s + 3.96·28-s − 0.371·29-s − 0.718·31-s − 1.06·32-s − 1.74·33-s − 0.685·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 562500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 562500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.527940844\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.527940844\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60117460001814790123815808961, −10.36159654423022920317707907717, −9.493608215871121679620853072776, −8.972527151304895505297455197288, −8.808798108697884325141960292324, −8.461571378487726807263584562430, −8.043164029822116798756954868928, −7.84462332378714446137790700393, −7.42870943787904088195404995620, −7.09696044061933819000435744988, −6.13507820152330042751533510841, −5.84832147928909660512638598894, −5.10886372119344622084759441837, −4.79444024909693425982103301951, −3.87869696057505651806647739525, −3.59445857792095036750700771086, −2.54159153840049157841681421308, −2.29213383794753257312806161143, −1.36708512983003916590438478009, −1.21254035295304341454546610332,
1.21254035295304341454546610332, 1.36708512983003916590438478009, 2.29213383794753257312806161143, 2.54159153840049157841681421308, 3.59445857792095036750700771086, 3.87869696057505651806647739525, 4.79444024909693425982103301951, 5.10886372119344622084759441837, 5.84832147928909660512638598894, 6.13507820152330042751533510841, 7.09696044061933819000435744988, 7.42870943787904088195404995620, 7.84462332378714446137790700393, 8.043164029822116798756954868928, 8.461571378487726807263584562430, 8.808798108697884325141960292324, 8.972527151304895505297455197288, 9.493608215871121679620853072776, 10.36159654423022920317707907717, 10.60117460001814790123815808961