Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 122 x^{2} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.414505084550$, $\pm0.585494915450$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{5}, \sqrt{-66})\) |
Galois group: | $C_2^2$ |
Jacobians: | $212$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5164$ | $26666896$ | $128100254764$ | $645509551334400$ | $3255243547769639404$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $5286$ | $357912$ | $25402078$ | $1804229352$ | $128100225606$ | $9095120158392$ | $645753586774078$ | $45848500718449032$ | $3255243544529397606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 212 curves (of which all are hyperelliptic):
- $y^2=29 x^6+59 x^5+3 x^4+12 x^3+55 x^2+61 x+21$
- $y^2=7 x^6+8 x^5+26 x^4+68 x^3+13 x^2+35 x+1$
- $y^2=49 x^6+56 x^5+40 x^4+50 x^3+20 x^2+32 x+7$
- $y^2=3 x^6+59 x^5+6 x^4+6 x^3+67 x^2+x+51$
- $y^2=21 x^6+58 x^5+42 x^4+42 x^3+43 x^2+7 x+2$
- $y^2=47 x^6+68 x^5+34 x^4+34 x^3+56 x^2+44 x+39$
- $y^2=45 x^6+50 x^5+25 x^4+25 x^3+37 x^2+24 x+60$
- $y^2=42 x^6+10 x^5+66 x^4+45 x^3+34 x^2+46 x+45$
- $y^2=10 x^6+70 x^5+36 x^4+31 x^3+25 x^2+38 x+31$
- $y^2=45 x^6+33 x^5+43 x^4+32 x^3+35 x^2+56 x+53$
- $y^2=68 x^6+41 x^5+47 x^4+18 x^3+30 x^2+33 x+58$
- $y^2=14 x^6+10 x^5+3 x^4+44 x^3+6 x^2+58 x+52$
- $y^2=27 x^6+70 x^5+21 x^4+24 x^3+42 x^2+51 x+9$
- $y^2=22 x^6+30 x^5+42 x^4+54 x^3+25 x^2+51 x+11$
- $y^2=12 x^6+68 x^5+10 x^4+23 x^3+33 x^2+2 x+6$
- $y^2=x^6+14 x^5+38 x^4+13 x^3+34 x^2+59 x+35$
- $y^2=10 x^6+53 x^5+16 x^4+58 x^3+2 x^2+65 x+63$
- $y^2=70 x^6+16 x^5+41 x^4+51 x^3+14 x^2+29 x+15$
- $y^2=40 x^6+4 x^5+33 x^4+28 x^3+8 x^2+34 x+37$
- $y^2=67 x^6+28 x^5+18 x^4+54 x^3+56 x^2+25 x+46$
- and 192 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{5}, \sqrt{-66})\). |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.es 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-330}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.a_aes | $4$ | (not in LMFDB) |