Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x + 9 x^{2} + 57 x^{3} + 361 x^{4}$ |
Frobenius angles: | $\pm0.344551467303$, $\pm0.802330247685$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $25$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $431$ | $134041$ | $47854361$ | $17093578525$ | $6118271195696$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $23$ | $371$ | $6977$ | $131163$ | $2470928$ | $47043911$ | $893834027$ | $16983685123$ | $322689650393$ | $6131062162406$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 25 curves (of which all are hyperelliptic):
- $y^2=16 x^6+17 x^5+16 x^4+16 x^3+18 x^2+11 x+15$
- $y^2=15 x^6+7 x^5+x^4+18 x^3+2 x^2+14 x+8$
- $y^2=17 x^6+6 x^5+6 x^4+6 x^3+17 x^2+10 x+10$
- $y^2=7 x^6+15 x^5+14 x^4+15 x^3+17 x^2+6 x+9$
- $y^2=11 x^6+12 x^5+12 x^4+15 x^3+8 x^2+6 x+13$
- $y^2=15 x^6+12 x^5+4 x^4+17 x^3+2 x^2+4 x+14$
- $y^2=18 x^6+4 x^5+7 x^4+11 x^3+7 x^2+12 x+4$
- $y^2=17 x^6+9 x^5+15 x^4+16 x^3+11 x^2+12 x+14$
- $y^2=x^6+3 x^4+14 x^3+7 x^2+14 x+4$
- $y^2=10 x^5+9 x^4+16 x^3+3 x^2+10 x+4$
- $y^2=5 x^6+4 x^5+9 x^4+x^3+11 x^2+9 x+15$
- $y^2=16 x^6+9 x^5+17 x^4+2 x^3+4 x^2+9 x+7$
- $y^2=3 x^6+7 x^5+3 x^4+6 x^3+4 x^2+15 x+2$
- $y^2=x^6+18 x^5+6 x^4+4 x^3+7 x^2+4 x+11$
- $y^2=6 x^6+18 x^5+11 x^4+4 x^3+13 x^2+11 x$
- $y^2=12 x^6+8 x^5+2 x^4+3 x^3+8 x^2+15 x+5$
- $y^2=15 x^6+6 x^5+4 x^4+12 x^3+14 x^2+2 x$
- $y^2=6 x^6+16 x^5+16 x^4+12 x^3+9 x^2+12 x+9$
- $y^2=16 x^6+6 x^4+17 x^2+15 x+17$
- $y^2=11 x^6+18 x^5+10 x^4+13 x^2+16$
- $y^2=5 x^6+17 x^5+3 x^4+3 x^3+10 x^2+11 x+1$
- $y^2=16 x^6+17 x^5+7 x^4+12 x^3+4 x^2+6 x+9$
- $y^2=18 x^6+10 x^5+16 x^4+4 x^3+9 x^2+9 x+7$
- $y^2=14 x^5+17 x^4+10 x^3+13 x^2+9 x+7$
- $y^2=18 x^6+10 x^5+12 x^4+11 x^3+6 x^2+9 x+14$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 4.0.1525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.ad_j | $2$ | (not in LMFDB) |