L(s) = 1 | + 4·7-s + 4·11-s − 2·13-s + 8·17-s − 4·19-s − 8·23-s − 2·25-s − 8·29-s + 4·31-s − 4·37-s + 8·41-s + 4·47-s + 6·49-s − 16·53-s − 4·59-s + 4·61-s + 4·67-s − 12·71-s + 12·73-s + 16·77-s + 8·79-s − 12·83-s + 8·89-s − 8·91-s + 12·97-s + 24·103-s + 8·107-s + ⋯ |
L(s) = 1 | + 1.51·7-s + 1.20·11-s − 0.554·13-s + 1.94·17-s − 0.917·19-s − 1.66·23-s − 2/5·25-s − 1.48·29-s + 0.718·31-s − 0.657·37-s + 1.24·41-s + 0.583·47-s + 6/7·49-s − 2.19·53-s − 0.520·59-s + 0.512·61-s + 0.488·67-s − 1.42·71-s + 1.40·73-s + 1.82·77-s + 0.900·79-s − 1.31·83-s + 0.847·89-s − 0.838·91-s + 1.21·97-s + 2.36·103-s + 0.773·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 56070144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56070144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.633246679\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.633246679\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.88368632550861341118424097899, −7.87257744094845082926064793025, −7.39868155815422606742715521929, −7.27726763694587265967943284083, −6.53515788490221402349036629522, −6.34709445877041451921360901962, −5.85945012390542077235290694499, −5.75239784173965392161427851198, −5.21108954494631803039115143318, −4.91812019919999263046098770431, −4.33282036150045662228617801630, −4.32131499598604637052299611472, −3.75150011422070180345507027864, −3.44149246765790979365495193581, −2.99516214667113635219311628017, −2.26349649342322279889454073517, −1.85357920105956979689123341914, −1.73183976765087867153960350613, −1.08664055703967111880159582385, −0.48267628399271911089286539513,
0.48267628399271911089286539513, 1.08664055703967111880159582385, 1.73183976765087867153960350613, 1.85357920105956979689123341914, 2.26349649342322279889454073517, 2.99516214667113635219311628017, 3.44149246765790979365495193581, 3.75150011422070180345507027864, 4.32131499598604637052299611472, 4.33282036150045662228617801630, 4.91812019919999263046098770431, 5.21108954494631803039115143318, 5.75239784173965392161427851198, 5.85945012390542077235290694499, 6.34709445877041451921360901962, 6.53515788490221402349036629522, 7.27726763694587265967943284083, 7.39868155815422606742715521929, 7.87257744094845082926064793025, 7.88368632550861341118424097899